2 research outputs found

    Descriptive complexity of real computation and probabilistic independence logic

    Get PDF
    We introduce a novel variant of BSS machines called Separate Branching BSS machines (S-BSS in short) and develop a Fagin-type logical characterisation for languages decidable in non-deterministic polynomial time by S-BSS machines. We show that NP on S-BSS machines is strictly included in NP on BSS machines and that every NP language on S-BSS machines is a countable union of closed sets in the usual topology of R^n. Moreover, we establish that on Boolean inputs NP on S-BSS machines without real constants characterises a natural fragment of the complexity class existsR (a class of problems polynomial time reducible to the true existential theory of the reals) and hence lies between NP and PSPACE. Finally we apply our results to determine the data complexity of probabilistic independence logic.Peer reviewe

    On elementary logics for quantitative dependencies

    Get PDF
    We define and study logics in the framework of probabilistic team semantics and over metafinite structures. Our work is paralleled by the recent development of novel axiomatizable and tractable logics in team semantics that are closed under the Boolean negation. Our logics employ new probabilistic atoms that resemble so-called extended atoms from the team semantics literature. We also define counterparts of our logics over metafinite structures and show that all of our logics can be translated into functional fixed point logic implying a polynomial time upper bound for data complexity with respect to BSS-computations.(c) 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).Peer reviewe
    corecore