
Descriptive complexity of real computation and
probabilistic independence logic

Miika Hannula
University of Helsinki

Finland
miika.hannula@helsinki.fi

Juha Kontinen
University of Helsinki

Finland
juha.kontinen@helsinki.fi

Jan Van den Bussche
Hasselt University

Belgium
jan.vandenbussche@uhasselt.be

Jonni Virtema
Hokkaido University

Japan
jonni.virtema@let.hokudai.ac.jp

Hasselt University
Belgium

Abstract
We introduce a novel variant of BSS machines called Sepa-
rate Branching BSS machines (S-BSS in short) and develop a
Fagin-type logical characterisation for languages decidable
in nondeterministic polynomial time by S-BSS machines.
We show that NP on S-BSS machines is strictly included in
NP on BSS machines and that every NP language on S-BSS
machines is a countable union of closed sets in the usual topol-
ogy of Rn . Moreover, we establish that on Boolean inputs
NP on S-BSS machines without real constants characterises
a natural fragment of the complexity class ∃R (a class of
problems polynomial time reducible to the true existential
theory of the reals) and hence lies between NP and PSPACE.
Finally we apply our results to determine the data complexity
of probabilistic independence logic.

CCS Concepts: • Theory of computation → Complexity
theory and logic; Finite Model Theory; Models of compu-
tation; • Mathematics of computing → Probability and
statistics.

Keywords: Blum-Shub-Smale machines, descriptive complex-
ity, team semantics, independence logic, real arithmetic.

ACM Reference Format:
Miika Hannula, Juha Kontinen, Jan Van den Bussche, and Jonni
Virtema. 2020. Descriptive complexity of real computation and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
LICS ’20, July 8–11, 2020, Saarbrücken, Germany
© 2020 Copyright held by the owner/author(s). Publication rights licensed to
ACM.
ACM ISBN 978-1-4503-7104-9/20/07. . . $15.00
https://doi.org/10.1145/3373718.3394773

probabilistic independence logic. In Proceedings of the 35th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS ’20),
July 8–11, 2020, Saarbrücken, Germany. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3373718.3394773

1 Introduction
The existential theory of the reals consists of all first-order
sentences that are true about the reals and are of the form

∃x1 . . . ∃xnϕ(x1, . . . ,xn),
where ϕ is a quantifier-free arithmetic formula containing
inequalities and equalities. Known to be NP-hard on the one
hand, and in PSPACE on the other hand [6], the exact com-
plexity of this theory is a major open question. The existential
theory of the reals is today attracting considerable interest
due to its central role in geometric graph theory. First iso-
lated as a complexity class in its own right in [25], ∃R is
defined as the closure of the existential theory of the reals
under polynomial-time reductions. In the past decade several
algebraic and geometric problems have been classified as
complete for ∃R; a recent example is the art gallery problem
of deciding whether a polygon can be guarded by a given
number of guards [1].

The existential theory of the reals is closely connected to
Blum-Shub-Smale machines (BSS machine for short) which
are essentially random access machines with registers that can
store arbitrary real numbers and which can compute rational
functions over reals in a single time step. Many complex-
ity classes from classical complexity theory transfer to the
realm of BSS machines, such as nondeterministic polynomial
time (NPR) over languages consisting of finite strings of reals.
While the focus is primarily on languages over some numer-
ical domain (e.g., reals or complex numbers), also Boolean
inputs (strings over {0, 1}) can be considered. In this context
∃R corresponds to the Boolean part of NP0R (BP(NP0R)), ob-
tained by restricting NPR to Boolean inputs and limiting the
use of machine constants to 0 and 1, as feasibility of Boolean

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/333882555?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3373718.3394773
https://doi.org/10.1145/3373718.3394773

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

combinations of polynomial equations is complete for both
of these classes [5, 26].

BSS computations can also be described logically. This
research orientation was initiated by Grädel and Meer who
showed that NPR is captured by a variant of existential second-
order logic (ESOR) over metafinite structures [15]. Metafinite
structures are two-sorted structures that consist of a finite
structure, an infinite domain with some arithmetics (such as
the reals with multiplication and addition), and weight func-
tions bridging the two sorts [13]. Since the work by Grädel
and Meer, others (see, e.g., [8, 18, 24]) have shed more light
upon the descriptive complexity over the reals mirroring the
development of classical descriptive complexity. In addition
to metafinite structures, the connection between logical defin-
ability encompassing numerical structures and computational
complexity has received attention in constraint databases
[2, 14, 23]. A constraint database models, e.g., geometric
data by combining a numerical context structure, such as the
real arithmetic, with a finite set of quantifier-free formulae
defining infinite database relations [20].

In this paper we investigate the descriptive complexity of
so-called probabilistic independence logic in terms of the
BSS model of computation and the existential theory of the
reals. Probabilistic independence logic is a recent addition
to the vast family of new logics in team semantics. In team
semantics [27] formulae are evaluated with respect to sets of
assignments which are called teams. During the past decade
research on team semantics has flourished with interesting
connections to fields such as database theory [17], statistics
[7], hyperproperties [22], and quantum information theory
[19], just to mention a few examples. The focus of this article
is probabilistic team semantics that extends team based logics
with probabilistic dependency notions. While the first ideas
of probabilistic teams trace back to [11, 19], the systematic
study of the topic was initiated by the works [9, 10].

At the core of probabilistic independence logic FO(⊥⊥c) is
the concept of conditional independence. The models of this
logic are finite first-order structures but the notion of a team
is replaced by a probabilistic team, i.e., a discrete probability
distribution over a finite set of assignments. In [10] it was
observed that probabilistic independence logic is equivalent
to a restriction of ESOR in which the weight functions are dis-
tributions. The exact complexity and relationship of FO(⊥⊥c)
to ESOR and NPR was left as an open question; in this paper
we present a (strict) sublogic of ESOR and a (strict) subclass
of NPR that both capture FO(⊥⊥c).

Our contribution. In this paper we introduce a novel vari-
ant of BSS machines called Separate Branching BSS ma-
chines (S-BSS machines for short) and characterise its NP lan-
guages (denoted by S-NP

[0,1]) with L-ESO[0,1][+,×, ≤, (r)r ∈R]
that is a natural sublogic of ESOR. Likewise, we isolate a frag-
ment ∃[0, 1]≤ of the complexity class ∃R and show that it
coincides with the class of Boolean languages in S-NP0

[0,1].

BP(S-NP0
[0,1]) BP(NP0R)

NP ⊆

= ∗ ⊆

=

⊆ PSPACE
∃[0, 1]≤ ∃R

S-NP0
[0,1] NP0R

≡ ∗ ⊂∗

≡

L-ESO[0,1][+,×, ≤, 0, 1] ESOR[+,×, ≤, 0, 1]

≡ ∗

FO(⊥⊥c)
Table 1. Known complexity results and logical characterisa-
tions together with the main results of this paper. The results
of this paper are marked with an asterisk (*). The top figure
is with respect to Boolean inputs; on the bottom figure, the
inputs can include real numbers.

Moreover we establish a topological characterisation of the
languages decidable by S-BSS machines; we show that, un-
der certain natural restrictions, languages decidable by S-
BSS machines are disjoint unions of closed sets in the usual
topology of Rn . The topological characterisation separates
the languages decidable by BSS machines and S-BSS ma-
chines, respectively. Moreover it enables us to separate the
complexity classes S-NP0

[0,1] and NP0R. Finally we show the
equivalence of the logics L-ESO[0,1][+,×, ≤, 0, 1] and FO(⊥⊥c),
implying that FO(⊥⊥c) ≡ S-NP0

[0,1]. Table 1 summarises the
main results of the paper.

Structure of the paper. In Section 2 we give the basic
definitions related to descriptive complexity, BSS machines,
and logics on R-structures required for this paper. Section
3 focuses in giving logical characterisations of variants of
NP on S-BSS machines. In Section 4 we establish the afore-
mentioned topological characterisation of S-BSS decidable
languages. In Section 5 we prove a hierarchy of the related
complexity classes; in particular we separate S-NP0

[0,1] and
NP0R. Section 6 deals with probabilistic team semantics and
establishes that FO(⊥⊥c) ≡ S-NP0

[0,1]. Section 7 concludes the
paper.

2 Preliminaries
A vocabulary is relational (resp., functional) if it consists of
only relation (resp., function) symbols. A structure is rela-
tional if it is defined over a relational vocabulary. We let Var1
and Var2 denote disjoint countable sets of first-order and func-
tion variables (with prescribed arities), respectively. We write
®x to denote a tuple of first-order variables and | ®x | to denote
the length of that tuple. The arities of function variables f
and relation symbols R are denoted by ar(f) and ar(R), re-
spectively. If f is a function with domain Dom(f) and A a set,
we define f ↾ A to be the function with domain Dom(f) ∩A
that agrees with f for each element in its domain. Given a
finite set D, a function f : D → [0, 1] that maps elements of D
to elements of the closed interval [0, 1] of real numbers such
that

∑
s ∈D f (s) = 1 is called a (probability) distribution.

Real computation and probabilistic team semantics LICS ’20, July 8–11, 2020, Saarbrücken, Germany

2.1 R-structures
Let τ be a relational vocabulary. A τ -structure is a tuple A =
(A, (RA)R∈τ), whereA is a nonempty set and each RA an ar(R)-
ary relation on A. The structure A is a finite structure if τ and
A are finite sets. In this paper, we consider structures that
enrich finite relational τ -structures by adding real numbers
(R) as a second domain sort and functions that map tuples
over A to R.

Definition 2.1. Let τ and σ be respectively a finite relational
and a finite functional vocabulary, and let X ⊆ R. An X -
structure of vocabulary τ ∪ σ is a tuple

A = (A,R, (RA)R∈τ , (д
A)д∈σ),

where the reduct of A to τ is a finite relational structure, and
each дA is a weight function from Aar(д) to X . Additionally, an
d[0, 1]-structure A is defined analogously, with the exception
that the weight functions дA are distributions.

An assignment is a total function s : Var1 → A that assigns
a value for each first-order variable. The modified assignment
s[a/x] is an assignment that maps x to a and agrees with s for
all other variables.

Next, we define a variant of functional existential second-
order logic with numerical terms (ESOR) that is designed
to describe properties of R-structures. As first-order terms
we have only first-order variables. For a set σ of function
symbols, the set of numerical σ -terms i is generated by the
following grammar:

i ::= c | f (®x) | i × i | i + i | SUM®y i,

where c ∈ R is a real constant denoting itself, f ∈ σ , and ®x
and ®y are tuples of first-order variables from Var1 such that
the length of ®x is ar(f). The value of a numerical term i in
a structure A under an assignment s is denoted by [i]As . In
addition to the natural semantics for the real constants, we
have the following rules for the numerical terms:

[f (®x)]As := f A(s(®x)), [i × j]As := [i]As · [j]
A
s ,

[i + j]A := [i]A + [j]A, [SUM®y i]As :=
∑
®a∈A| ®y |
[i]As[®a/®y],

where +, ·,
∑

are the addition, multiplication, and summation
of real numbers, respectively.

Definition 2.2 (Syntax of ESOR). Let τ be a finite relational
vocabulary and σ a finite functional vocabulary. Let O ⊆
{+,×, SUM}, E ⊆ {=, <, ≤}, and C ⊆ R. The set of τ ∪ σ -
formulae of ESOR[O,E,C] is defined via the grammar:

ϕ ::= x = y | ¬x = y | i e j | ¬i e j | R(®x) | ¬R(®x) |

ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ | ∃fψ ,
where i and j are numerical σ -terms constructed using oper-
ations from O and constants from C, and e ∈ E, R ∈ τ is a
relation symbol, f is a function variable, x and y are first-
order variables and ®x a tuple of first-order variables, andψ is
a τ ∪ (σ ∪ { f })-formula of ESOR[O,E,C].

Note that the syntax of ESOR[O,E,C] allows first-order
subformulae to appear only in negation normal form. This
restriction however does not restrict the expressiveness of the
language.

The semantics of ESOR[O,E,C] is defined via R-structures
and assignments analogous to first-order logic; note that first-
order variables are always assigned to a value in A whereas
functions map tuples over A to R. In addition to the clauses
of first-order logic, we have the following semantical clauses:

A |=s i e j ⇔ [i]As e [j]As , A |=s ¬i e j ⇔ A ̸ |=s i e j,

A |=s ∃f ϕ ⇔ A[h/f] |=s ϕ for some h : Aar(f) → R, (1)

where A[h/f] denotes the expansion of A that interprets f as
h.

Given S ⊆ R, we define ESOS [O,E,C] as the variant of
ESOR[O,E,C] in which (1) is modified such that h : Aar(f) →

S , and ESOd [0,1][O,E,C] as the variant in which (1) is mod-
ified such that h : Aar(f) → [0, 1] is a distribution, that is,
Σ ®a∈Aar(f)h(®a) = 1. Note that in the setting of ESOd [0,1][O,E,C]

the value f A of a 0-ary function symbol f is always 1.

Loose fragment. For both S ⊆ R and S = d[0, 1], define
L-ESOS [O,E,C] as the loose fragment of ESOS [O,E,C] in
which negated numerical atoms ¬i e j are disallowed. We
want to point out that as long as = ∈ E and 0, 1 ∈ C, the logic
L-ESOS [O,E,C] subsumes existential second-order logic over
finite structures (a precise formulation is given later by Propo-
sition 3.1).

Expressivity comparisons. Fix a relational vocabulary τ
and a functional vocabulary σ . Let L and L ′ be some logics
over τ ∪ σ defined above, and let X ⊆ R or X = d[0, 1].
For a formula ϕ ∈ L, define StrucX (ϕ) to be the class of
X -structures A of vocabulary τ ∪σ such that A |= ϕ. We write
L ≤X L

′ if for all sentencesϕ ∈ L there is a sentenceψ ∈ L ′

such that StrucX (ϕ) = StrucX (ψ). As usual, the shorthand ≡X
stands for ≤X in both directions. For X = R, we write simply
≤ and ≡.

In plain words, the subscript S in ESOS [O,E,C] constitutes
the class of functions available for quantification, whereas the
superscript X in StrucX (ϕ) constitutes the class of functions
available for function symbols in the vocabulary. Thus, ϕ ∈
ESOS [O,E,C] defines a class StrucX (ϕ), even if S and X are
different.

2.2 Blum-Shub-Smale Model
We will next give a definition of BSS machines (see e.g. [3]).
We define R∗ :=

⋃
{Rn | n ∈ N}. The size |x | of x ∈ Rn is

defined as n. The space R∗ can be seen as the real analogue
of Σ∗ for a finite set Σ. We also define R∗ as the set of all
sequences x = (xi)i ∈Z where xi ∈ R. The members of R∗
are thus of the form (. . . ,x−2,x−1,x0,x1,x2, . . .). Given an
element x ∈ R∗ ∪ R∗ we write xi for the ith coordinate of x .
The space R∗ has natural shift operations. We define shift left

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

σl : R∗ → R∗ and shift right σr : R∗ → R∗ as σl (x)i := xi+1
and σr (x)i := xi−1.

Definition 2.3 (BSS machines). A BSS machine consists of
an input space I = R∗, a state space S = R∗, and an output
space O = R∗, together with a connected directed graph
whose nodes are labelled by 1, . . . ,N . The nodes are of five
different types.

1. Input node. The node labeled by 1 is the only input
node. The node is associated with a next node β(1) and
the input mapping дI : I → S.

2. Output node. The node labeled by N is the only output
node. This node is not associated with any next node.
Once this node is reached, the computation halts, and
the result of the computation is placed on the output
space by the output mapping дO : S → O.

3. Computation nodes. A computation node m is associ-
ated with a next node β(m) and a mapping дm : S → S
such that for some c ∈ R and i, j,k ∈ Z the mapping
дm is identity on coordinates l , i and on coordinate i
one of the following holds:
• дm(x)i = x j + xk (addition),
• дm(x)i = x j − xk (subtraction),
• дm(x)i = x j × xk (multiplication),
• дm(x)i = c (constant assignment).

4. Branch nodes. A branch node m is associated with
nodes β−(m) and β+(m). Given x ∈ S the next node is
β−(m) if x0 ≤ 0, and β+(m) otherwise.

5. Shift nodes. A shift node m is associated either with
shift left σl or shift right σr , and a next node β(m).

The input mapping дI : I → S places an input (x1, . . . ,xn)
in the state

(. . . , 0,n,x1, . . . ,xn , 0, . . .) ∈ S,
where the size of the input n is located at the zeroth coordinate.
The output mapping дO : S → O maps a state to the string
consisting of its first l positive coordinates, where l is the
number of consecutive ones stored in the negative coordinates
starting from the first negative coordinate. For instance, дO
maps

(. . . , 2, 1, 1, 1,n,x1,x2,x3,x4, . . .) ∈ S,
to (x1,x2,x3) ∈ O. A configuration at any moment of com-
putation consists of a node m ∈ {1, . . . ,N } and a current
state x ∈ S. The (sometimes partial) input-output function
fM : R∗ → R∗ of a machine M is now defined in the obvious
manner. A function f : R∗ → R∗ is computable if f = fM for
some machine M . A language L ⊆ R∗ is decided by a BSS
machine M if its characteristic function χL : R∗ → R∗ is fM .

Deterministic complexity classes. A machine M runs in
(deterministic) time t : N → N, if M reaches the output in
t(|x |) steps for each input x ∈ I. The machine M runs in
polynomial time if t is some polynomial function. The com-
plexity class PR is defined as the set of all subsets of R∗ that
are decided by some machine M running in polynomial time.

Nondeterministic complexity classes. A language L ⊆ R∗

is decided nondeterministically by a BSS machine M , if

x ∈ L if and only if fM ((x ,x
′)) = 1, for some x ′ ∈ R∗,

when a slightly different input mapping дI : I → S, which
places an input (x1, . . . ,xn ,x ′1, . . . ,x

′
m) in the state

(. . . , 0,n,m,x1, . . . ,xn ,x ′1, . . . ,x
′
m , . . .) ∈ S,

where the sizes of x and x ′ are respectively placed on the first
two coordinates, is used. When we consider languages that a
machine M decides nondeterministically, we simply call M
nondeterministic. Sometimes when we wish to emphasize that
this is not the case, we call M deterministic. Moreover, we say
that M is [0,1]-nondeterministic, if the guessed strings x ′ are
required to be from [0, 1]∗. L is decided in time t : N→ N, if,
for every x ∈ L,M reaches the output 1 in t(|x |) steps for some
x ′ ∈ R∗. The machine runs in polynomial time if t is a poly-
nomial function. The class NPR consists of those languages
L ⊆ R∗ for which there exists a machine M that nondetermin-
istically decides L in polynomial time. Note that, in this case,
the size of x ′ above can be bounded by a polynomial (e.g.,
the running time of M) without altering the definition. The
complexity class NPR has many natural complete problems
such as 4-FEAS, i.e., the problem of determining whether a
polynomial of degree four has a real root [4].

Complexity classes with Boolean restrictions. If we re-
strict attention to machines M that may use only c ∈ {0, 1}
in constant assignment nodes, then the corresponding com-
plexity classes are denoted using an additional superscript 0
(e.g., as in NP0R). Complexity classes over real computation
can also be related to standard complexity classes. For a com-
plexity class C over the reals, the Boolean part of C, written
BP(C), is defined as {L ∩ {0, 1}∗ | L ∈ C}.

Descriptive complexity. Similar to Turing machines, also
BSS machines can be studied from the vantage point of de-
scriptive complexity. To this end, finite R-structures are en-
coded as finite strings of reals using so-called rankings that
stipulate an ordering on the finite domain. Let A be an R-
structure over τ∪σ where τ and σ are relational and functional
vocabularies, respectively. A ranking of A is any bijection
π : Dom(A) → {1, . . . , |A|}. A ranking π and the lexico-
graphic ordering on Nk induce a k-ranking πk : Dom(A)k →
{1, . . . , |A|k } for k ∈ N. Furthermore, π induces the following
encoding encπ (A). First we define encπ (RA) and encπ (f A)
for R ∈ τ and f ∈ σ :
• Let R ∈ τ be a k-ary relation symbol. The encoding
encπ (RA) is a binary string of length |A|k such that the
jth symbol in encπ (RA) is 1 if and only if (a1, . . . ,ak) ∈
RA , where πk (a1, . . . ,ak) = j.
• Let f ∈ σ be a k-ary function symbol. The encod-

ing encπ (f A) is string of real numbers of length |A|k

such that the jth symbol in encπ (f A) is f A(®a), where
πk (®a) = j.

Real computation and probabilistic team semantics LICS ’20, July 8–11, 2020, Saarbrücken, Germany

The encoding encπ (A) is then the concatenation of the string
(1, . . . , 1) of length |A| and the encodings of the interpreta-
tions of the relation and function symbols in τ ∪σ . We denote
by enc(A) any encoding encπ (A) of A.

Let C be a complexity class and ESOS [O,E,C] a logic,
where O ⊆ {+,×, SUM}, E ⊆ {=, <, ≤}, C ⊆ R, and S ⊆ R
or S = d[0, 1]. Let X ⊆ R or X = d[0, 1], and let S be an
arbitrary class of X -structures over τ ∪ σ that is closed under
isomorphisms. We write enc(S) for the set of encodings of
structures in S. Consider the following two conditions:

(i) enc(S) = {enc(A) | A ∈ StrucX (ϕ)} for some ϕ ∈
ESOS [O,E,C][τ ∪ σ]},

(ii) enc(S) ∈ C.
If (i) implies (ii), we write ESOS [O,E,C] ≤X C, and if the
vice versa holds, we write C ≤X ESOS [O,E,C]. If both direc-
tions hold, then we write ESOS [O,E,C] ≡X C. We omit the
subscript X in the notation if X = R.

The following results due to Grädel and Meer extends
Fagin’s theorem to the context of real computation.1

Theorem 2.4 ([15]). ESOR[+,×, ≤, (r)r ∈R] ≡ NPR and
ESOR[+,×, ≤] ≡ NP0R.

2.3 Separate Branching BSS
We now define a restricted version of the BSS model which
branches with respect to two separated intervals (−∞, ϵ−] and
[ϵ+,∞). We will later relate these BSS machines to certain
fragments of ESOR and the existential theory of the reals.

Definition 2.5 (Separate Branching BSS Machine). Separate
branching BSS machines (S-BSS machines for short) are
otherwise identical to the BSS machines of Definition 2.3,
except that the branch nodes are replaced with the following
separate branch nodes.
• Separate branch nodes. A separate branch node m is

associated with ϵ−, ϵ+ ∈ R, ϵ− < ϵ+, and nodes β+(m)
and β−(m). Given x ∈ S the next node is β+(m) if
x0 ≥ ϵ+, β−(m) if x0 ≤ ϵ−, and otherwise the input is
rejected.

Note that for a given S-BSS machine it is easy to write an
equivalent BSS machine. A priori it is not clear whether the
converse is possible; in fact, we will later show that in some
cases the converse is not possible.

We can now define the variants of the complexity classes
PR, P0R, NPR, and NP0R that are obtained by replacing BSS
machines with S-BSS machines in the definitions of the com-
plexity classes. Furthermore, we define NP[0,1], and NP0

[0,1] as
the variants of NPR, and NP0R in which the input x may be any
element from R∗ but the guessed element x ′ must be taken
from [0, 1]∗. Let C be one of the aforementioned complexity
1Only the first equivalence is explicitly stated in [15]. The second, how-
ever, is a simple corollary, using the fact that 0 and 1 can be identified in
ESOR[+, ×, ≤]; these two are the only idempotent reals for multiplication,
and 0 is the only idempotent real for addition.

classes. We define S-C to be the variant of C, where, instead
of BSS machines, S-BSS machines are used. If C includes
the superscript 0, this means that not only the parameter c in
constant assignment, but also ϵ− and ϵ+ in separate branching
are from {0, 1}.

3 Descriptive complexity of nondeterministic
polynomial time in S-BSS

We now show that S-NP
[0,1] corresponds to a numerical vari-

ant of ESO in which quantified functions may only take values
from the unit interval and numerical inequality atoms may
only appear positively. Later we will show that both of these
restrictions are necessary in the sense that removing either
one lifts expressiveness to the level of ESOR[+,×, ≤, (r)r ∈R]
which captures NPR. On the other hand, we give a logical
proof, based on topological arguments, that S-NP

[0,1] < NPR.
The proof of Theorem 3.3 is a nontrivial adaptation of the

proof of Theorem 2.4 (see [15, Theorem 4.2]). In the proof
we apply Lemma 3.2 and, by Proposition 3.1, assume without
loss of generality built-in ESO definable predicates on the
finite part.

Let 0 and 1 be two distinct constants, d be a (k + 1)-ary
distribution, and R a k-ary relation on a finite domainA of size
n. We say that d is the characteristic distribution of R (w.r.t.
0 and 1) if ®a ∈ R implies d(®a, 1) = 1

nk , and ®a < R implies
d(®a, 0) = 1

nk . The next proposition implies that it is possible
to simulate existential quantification of ESO definable pred-
icates on the finite domain using function (or distribution)
quantification; in particular, we may assume without loss of
generality built-in predicates such as a linear ordering and
its induced successor relation on the finite domain. Clearly,
any predicate that is ESO-definable over finite structures is
also ESO-definable (with respect to the finite domain) over
R-structures.

Below, we write L-ESOS [O,E,C,∃X] to denote the exten-
sion of L-ESOS [O,E,C] by existential quantification of rela-
tions over the finite domain with the usual semantics.

Proposition 3.1. Let {0, 1} ⊆ S and O,E,C be arbitrary.
For every formula ϕ ∈ L-ESOS [O,E,C,∃X] there exist for-
mulas ϕ ′ ∈ L-ESOS [O,E ∪ {=},C ∪ {0, 1}] and ϕ ′′ ∈ L-
ESOd [0,1][O,E ∪ {=},C] such that

A |=s ϕ ⇔ A |=s ϕ
′ ⇔ A |=s ϕ

′′,

for every R-structure A and assignment s.

Proof. The sentence ϕ ′ (ϕ ′′, resp.) is obtained from ϕ by a
recursive translation that is the identity for all other cases, ex-
cept that, for second-order variables X of arity k, we rewrite
the quantifications ∃X as ∃fX , where fX is an k-ary ((k + 1)-
ary, resp.) function variable, and the atoms X (®x) and ¬X (®x)
by fX (®x) = 1 and fX (®x) = 0 (fX (®x , 1) = u(®x) and fX (®x , 0) =
u(®x), resp.), respectively. Here, u is the k-ary uniform dis-
tribution which is definable in the logic L-ESOd [0,1][=] by
∀®x ®x ′u(®x) = u(®x ′). □

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

Lemma 3.2. If {0, 1} ⊆ C, we have L-ESO[0,1][+,×, ≤,C] ≡
L-ESO[−1,1][+,×, ≤,C].

Proof. Left-to-right direction is straightforward; the quan-
tification ∃f ψ in L-ESO[0,1][+,×, ≤,C] can be simulated in
L-ESO[−1,1][+,×, ≤,C] by the formula

∃f (∀®x 0 ≤ f (®x) ∧ψ).

The converse direction is nontrivial. Let ϕ be an arbitrary
L-ESO[−1,1][+,×, ≤,C]-formula. We will show how to con-
struct an equivalent L-ESO[0,1][+,×, ≤,C]-formula ϕ ′. By the
standard Skolemization argument we may assume that ϕ is
in the prenex normal form. Moreover, we assume that every
atomic formula of the form t1 ≤ t2 is written such that t1 and
t2 are multivariate polynomials where function terms f (®x)
play the role of variables; this normal form is obtained by
using the distributive laws of addition and multiplication. Let
M be the smallest set that includes every term of polynomials
t1 and t2 such that t1 ≤ t2 is a subformula of ϕ, and is closed
under taking subterms. Clearly M is a finite set, for its cardi-
nality is bounded by the length of ϕ. For each p ∈ M withm
variables, we introduce anm-ary function дp that will be inter-
preted as the sign function for the term p. Let ®xp be the related
tuple of variables. The idea is that дp (®a) = 0 (дp (®a) = 1) if
p(®a) < 0 (p(®a) ≥ 0).

We are now ready to define the translation ϕ 7→ ϕ ′, where

ϕ = ∃f1 . . . ∃fmQ1x1 . . .Qnxn ψ

is in the normal form mentioned above. We define

ϕ ′ := ∃
p∈M

дp∃f1 . . . ∃fmQ1x1 . . .Qnxn(θ ∧ψ
◦),

where the recursively defined translation ◦ is homomorphic
for the Boolean connectives and identity for first-order liter-
als.

For atomic formulae t1 ≤ t2 of the form s1 + · · · + sl ≤
r1 + · · · + rm the translation is defined as follows. The trans-
lation makes certain that every term (of polynomial) of the
inequation after the translation has a non-negative value; this
is done by moving terms to the other side of the inequa-
tion. Denote I = {1, . . . , l} and J = {1, . . . ,m}, and define
(t1 ≤ t2)

◦ as∨
I ⊆I
J ⊆J

(∧
i ∈I
j ∈J

дsi (®xsi) = 1 ∧ дr j (®xr j) = 1

∧
∧
i ∈I\I
j ∈J\J

дsi (®xsi) = 0 ∧ дr j (®xr j) = 0

∧
∑
i ∈I

si +
∑

j ∈J\J

r j ≤
∑
i ∈I\I

si +
∑
j ∈J

r j
)
.

Finally the subformula θ makes sure that the signs of the
terms in p ∈ M propagate correctly from subterms to terms.

Define θ as∧
p∈M

c ∈M∩[0,∞]
d ∈M∩[−∞,0)

∀®x (дp (®x) = 0 ∨ дp (®x) = 1
)
∧ дc = 1 ∧ дd = 0

∧
∧

p,q,r ∈M
p=q×r

((
дq(®xq) = дr (®xr) ∧ дp (®xp) = 1

)
∨
(
дq(®xq) = 0 ∧ дr (®xr) = 1 ∧ дp (®xp) = 0

)
∨
(
дq(®xq) = 1 ∧ дr (®xr) = 0 ∧ дp (®xp) = 0

))
.

Note that the sign function maps terms of value 0 to either 0
or 1, since for the purpose of the construction the sign of 0
valued terms does not matter. □

Theorem 3.3. L-ESO[0,1][+,×, ≤, (r)r ∈R] ≡ S-NP
[0,1].

Proof. Right-to-left direction. Suppose L ∈ S-NP
[0,1] is a

class of R-structures that is closed under isomorphisms. By
Lemma 3.2 it suffices to construct an L-ESO[−1,1][+,×, ≤,R]
sentence ϕ such that A |= ϕ iff A ∈ L for all R-structures A.
Let M be an S-BSS machine such that M consists of N nodes,
and for each input x it accepts (x ,x ′) for some x ′ ∈ [0, 1]∗ in
time |x |k

∗

iff x = enc(A) for some A ∈ L, where k∗ is some
fixed natural number. We may assume that |x ′ | is of size |x |k

∗

.
Let k be a fixed natural number such that |x |k

∗

≤ |A|k ; such
a k always exists since |enc(A)| is polynomial in |A|. The
computation of M on a given input enc(A) can be represented
using functions f : A2k+1 → (−1, 1), д : A2k+1 → (0, 1], and
h1, . . . ,hN : Ak → {0, 1} such that
(a) f (®s, ®t)/д(®s, ®t) is the content of register ®s at time ®t ;
(b) hi (®t) is 1 if i is the node label at time ®t , and 0 otherwise.
Note that ®s is (k+1)-ary because we need to store |A|k positive
and negative register contents. We may assume k such that
registers with index greater than |A|k do not contribute to the
final outcome, i.e., their contents are never shifted to registers
associated with the nodes of M . Construct a formula

ψ (f ,д,h) := θpre ∧ θinitial ∧ θcomp ∧ θaccept

of L-ESO[−1,1][+,×, ≤, (r)r ∈R] such that A |= ∃f дhψ iff M
accepts enc(A). By Proposition 3.1 we may assume a built-in
ordering ≤fin and its induced successor relation S and con-
stants 0, 1,max on the finite domain. Likewise, we may extend
≤fin to order also k-tuples from the finite domain. Under such
ordering we then write ®x+1 (®x−1) for the element succeeding
(preceding) a k-tuple ®x , and ®n for the n-th k-tuple. First, θpre
is the conjunction of a formula stating that the ranges of д
and h are as stated, and another formula

∀®y f (®y)2 + д(®y) = 1, (2)

where f (®y)2 is a shorthand for f (®y) × f (®y). Observe that (2)
implies

f (®y)

д(®y)
=

f (®y)

(1 − f (®y)2)
.

Real computation and probabilistic team semantics LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Also, x 7→ x/(1−x2) is a bijection from (−1, 1) to R. That the
range of f is (−1, 1) will follow from the remaining conjuncts
ofψ , described below.
Initial configuration. We give a description of θinitial such that

(A, f ,д, ®h) |= θinitial

iff (f ,д, ®h) satisfies (a) & (b) at time ®0. (3)

For clause (b) it suffices to add to θinitial

h1(®0) = 1 ∧ h2(®0) = 0 ∧ . . . ∧ hN (®0) = 0.

Consider then clause (a). We denote by ®s0 the ⌊|Ak+1 |/2⌋th
k + 1-tuple with respect to ≤fin. The sequence ®s0, which is
clearly definable in ESO, now represents the zeroth coordinate
of R∗. To encode that |x | is placed on zeroth coordinate we
add to θinitial

∃ϵ∃fcount
(
fcount(0) = ϵ (4)

∧ ∀xy (S(x ,y) → fcount(y) = fcount(x) + ϵ
)

∧ fcount(max) = 1 ∧ f (®s0, ®0) = p(1/ϵ) × д(®s0, ®0)
)
,

where ϵ is a nullary function variable (i.e., a real from [−1, 1]),
p is a polynomial such that |enc(A)| = p(|A|), and the last
conjunct of (4) is a shorthand for

ϵdeg(p) × f (®s0, ®0) = p∗(ϵ) × д(®s0, ®0),

where deg(p) is the degree of the polynomial p, and p∗ is
the polynomial obtained by multiplying p by ϵdeg(p) (that is
ϵdeg(p) × p(1/ϵ) = p∗(ϵ)). It follows from (2) and (4) that
f (®s0, ®0) ∈ (−1, 1) and f (®s0, ®0)/д(®s0, ®0) = |enc(A)|. To en-
code that |x ′ | is placed on the first coordinate we also add
to θinitial a formula stipulating that f (®s0, ®0)k

∗

/д(®s0, ®0)k
∗

=

f (®s0 + 1, ®0)/д(®s0 + 1, ®0).
Let f ∗ ∈ τ be a function symbol and let rf ∗ be a natural

number that indicates the starting position of the encoding of
f ∗ in enc(A). Clearly rf ∗ is a definable real number as it is the
value of a fixed univariate polynomial. We use the shorthand
®s = ®y + rf ∗ to denote that in the ordering of k-tuples (induced
from ≤fin) the ordinal number of ®s is the sum of the ordinal
number of ®y and rf ∗ . Clearly ®s = ®y + rf ∗ is expressible in our
logic. We then add the following to θinitial:

∀®s ®y
∧
f ∗∈τ

(
®s = ®y + rf ∗ →

(
f (®s, ®0) = f ∗(®y) × д(®s, ®0)

))
(5)

Note that (2) and (5) imply that f (®s, ®0) ∈ (−1, 1); for, by
(2), | f (s, 0)| = 1 leads to д(s, 0) = 0 which contradicts (5).
The interpretations of relations in σ are treated analogously.
For all the remaining positions ®s > ®s0 we stipulate that 0 ≤
f (®s, ®0) ≤ д(®s, ®0), and for all positions ®s < ®s0 we stipulate
that f (®s, ®0) = 0. In the first case f (®s, ®0)/д(®s, ®0) is some value
guessed from the unit interval [0, 1] and in the second case it
is 0. We conclude that (3) holds by this construction.

Computation configurations. Then we define θcomp such that

(A, f ,д, ®h) |= θcomp

iff (f ,д, ®h) satisfies (a) and (b) at time ®t > ®0. (6)

We let

θcomp := ∀®s ®t
(∨
1≤m<m′≤N

(
hm(®t) = 0 ∨ hm′(®t) = 0

)
∧∨

1≤m≤N

(
hm(®t) = 1 ∧ θm

))
,

where each θm describes the instruction of nodem. Suppose
m is a computation node associated with a mapping дm that is
the identity on coordinates l , i and on coordinate i defined
as дm(x)i = x j + xk . Let us write f®s, ®t and д®s, ®t for f (®s, ®t)

and д(®s, ®t), and ®si , ®sj , ®sk for the tuples that correspond to the
ith, jth, and kth input coordinates. Clearly, these tuples are
definable. We define

θm :=hβ (m)(®t + 1) = 1 ∧ f®si , ®t+1 × д®sj , ®t × д®sk , ®t

= д®si , ®t+1 × (f®sj , ®t × д®sk , ®t + д®sj , ®t × f®sk , ®t)∧

®s , ®si → (f®s, ®t+1 = f®s, ®t ∧ д®s, ®t+1 = д®s, ®t).

The other computation nodes are described analogously. For
a shift left nodem we define

θm :=hβ (m)(®t + 1) = 1∧
®s < ®max→ (f®s, ®t+1 = f®s+1, ®t ∧ д®s, ®t+1 = д®s+1, ®t),

and the case for shift right node is analogous. For a separate
branch nodem we define

θm :=
((
hβ+(m)(®t + 1) = 1 ∧ f®s0, ®t ≥ ϵ

+
)
∨(

hβ−(m)(®t + 1) = 1 ∧ f®s0, ®t ≤ ϵ
−
))
∧

f®s, ®t+1 = f®s, ®t ∧ д®s, ®t+1 = д®s, ®t .

Our formulae now imply that (6) follows by the construction.
In particular, keeping the values of f in (−1, 1) ensures that
the arithmetical operations are encoded correctly.

Finally, to express that the value of the characteristic func-
tion fM is 1 we may stipulate without loss of generality that
coordinates −2,−1, 1 respectively contain 0, 1, 1; we also need
to state that the machine is in node N at the last step:

θaccept :=hN (®max) = 1 ∧ f®s0+1, ®max = д®s0+1, ®max

∧ f®s0−1, ®max = д®s0−1, ®max ∧ f®s0−2, ®max = 0.

We conclude that A |= ∃f д®hψ iff M accepts enc(A).
Left-to-right direction. Let ϕ ∈ L-ESO[0,1][+,×, ≤,R] be

a sentence over some vocabulary σ ∪ τ . As in the previous
lemma, we may assume that ϕ is of the form

∃f1 . . . ∃fmQ1x1 . . .Qnxn ψ ,

whereψ is quantifier-free. We may further may transform ϕ
to an equivalent form

∃f1 . . . ∃fm∃дil+1 . . . ∃дin∀xi1 . . . ∀xil ψ ′, (7)

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

where дi j are Skolem functions on the finite domain and
ψ ′ is obtained from ψ by replacing each occurrence of xi j ,
l + 1 ≤ j ≤ n, with дi j (®x j). Note that (7) is an intermediate
expression which is not anymore in L-ESO[0,1][+,×, ≤,R].
We may assume ψ ′ is in disjunctive normal form

∨
i ∈I Ci ,

where I is a finite set of indices.
Suppose the relational and function symbols in σ ∪ τ ∪
{ f1, . . . , fm} are of arity at most n′ ≥ n. First, a fixed initial
segment of negative coordinates is allocated with the follow-
ing intention:
• one coordinate a for separate branching,
• three coordinates i, j,k for numerical identity atoms,
• two sequences of coordinates ®b = (b1, . . . ,bn) and ®c =
(c1, . . . , cn′) for elements of the finite domain.

We construct a machine M which runs in polynomial time
and accepts (x ,x ′) iff

1. x = enc(A) where A is a model over σ ∪ τ , and
2. (x ,x ′) is a concatenation of enc((A, ®f , ®д)) and indices

i ®a ∈ I such that (A, ®f , ®д, ®a) |= Ci ®a for each ®a ∈ Al .

We may suppose that ®f and (®д, (i ®a) ®a∈Al) are respectively en-
coded as strings of reals and integers.

Let p ′ be a polynomial such that for each A over σ ∪ τ
we have p ′(|A|) = enc(A). The machine first checks whether
there is a natural number d such that p ′(d) = |x |. For this, it
first sets xi ← 1 and xa ← x0−p

′(xi), where initially x0 = |x |.
If xa = 0, then x0 ← xi , and if xa ≥ 1, then xi ← xi + 1 and
the process is repeated. Otherwise, if xa < {0} ∪ [1,∞), the
input is rejected. This type of branching can be implemented
repeating separate branching twice. Provided that the input
is not rejected, this process terminates with x0 = d where
p ′(d) = |x |. The machine then checks whether item 1 holds;
given |A | this is straightforward. Checking that (x ,x ′) is a
concatenation of enc((A, ®f , ®д)), for some functions ®f , ®д, and
some indices i ®a is analogous.

It remains to be checked that the last claim of item 2
holds. We go through all tuples ®a ∈ Al , calculate the val-
ues of the Skolem functions, and check that the disjunct
Ci ®a holds for the calculated value of the variables. For each
®a = (a1, . . . ,al) ∈ {0, . . . ,d − 1}l , placed on the coordinates
b1, . . . ,bl , the machine uses x0 and ®c for retrieving and plac-
ing дil+1 (®al+1), . . . ,дin (®an) on the coordinates bl+1, . . . ,bn .
The machine then retrieves the index i ®a and checks whether
Ci ®a holds true with respect to the values on coordinates ®b.
Once this process is completed for all value combinations
(a1, . . . ,al) ∈ {0, . . . ,d − 1}l the computation halts with ac-
cept.

The contents of the input are accessed using shifts which
fix the contents of the allocated coordinates. That is, we use
operations σXl , where X is a finite set of coordinates, such
that σXl (x)i = xi if i ∈ X , and otherwise σXl (x)i = x j where
j = min{k ∈ N | k > i,k < X }. For instance, σ {0}l is obtained
by first swapping x0 and x1 and then shifting left.

Also, if Ci ®a contains a numerical atom f (®t0) ≤ д(®t1) ×

h(®t2), then the values of its constituent function terms with
respect to ®b are placed on coordinates i, j,k. The machine
then sets xa ← xi − x j × xk , and if xa ≤ 0, then it continues
to the next atom in Ci ®a , and else it rejects. If Ci ®a contains
a relational atom R(®x0), then the value of its characteristic
function with respect to ®b is placed on coordinate a. If xa = 1,
then the machine moves to the next atom in Ci ®a , and else
it rejects. Negated relational atoms are treated analogously,
and the stated branching is straightforward to implement with
separate branch nodes.

It follows from our construction that M runs in polynomial
time and accepts (x ,x ′) iff items 1 and 2 hold. Hence, we
conclude that L-ESO[0,1][+,×, ≤, (r)r ∈R] ≤ S-NP

[0,1]. □

Suppose we above consider (i) guesses from R instead of
[0, 1], or (ii) BSS instead of S-BSS machines. Then slightly
modified proofs yield (i) L-ESOR[+,×, ≤, (r)r ∈R] ≡ S-NPR,
and (ii) ESO[0,1][+,×, ≤, (r)r ∈R] ≡ NP[0,1]. Furthermore, logi-
cal constants r ∈ R\{0, 1} are only needed to capture c in con-
stant assignment and ϵ+, ϵ− in separate branching, and for the
converse direction only those machine constants r ∈ R\{0, 1}
which explicitly occur in the logical expression are needed.
Thus we obtain the following corollary.

Corollary 3.4.
1. L-ESOR[+,×, ≤, (r)r ∈R] ≡ S-NPR,
2. L-ESOR[+,×, ≤, 0, 1] ≡ S-NP0R,
3. L-ESO[0,1][+,×, ≤, 0, 1] ≡ S-NP0

[0,1],
4. ESO[0,1][+,×, ≤, (r)r ∈R] ≡ NP[0,1],
5. ESO[0,1][+,×, ≤, 0, 1] ≡ NP0

[0,1].

In the following two sections we investigate how S-BSS
computability relates to BSS computability, and in particular
how S-NP

[0,1] relates to NPR. On the one hand it turns out
that S-NP

[0,1] is strictly weaker than NPR. On the other hand
both obvious strengthenings of S-NP

[0,1], namely S-NPR and
NP[0,1], collapse to NPR.

4 Characterisation of S-BSS decidable
languages

We give a characterisation of languages decidable by S-BSS
machines using the ideas from the previous section. The goal
of this section is to establish the following theorem:

Theorem 4.1. Every language that can be decided by a) a
deterministic S-BSS machine, or b) a [0, 1]-nondeterministic
S-BSS machine in time t , for some Turing computable function
t : N→ N, is a countable disjoint union of closed sets in the
usual topology of Rn .

The result complements an analogous characterisation of
BSS-decidable languages thus giving insight on the difference
of the computational powers of BSS machines and S-BSS
machines.

Real computation and probabilistic team semantics LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Theorem 4.2 ([3, Theorem 1]). Every language decidable by
a (deterministic) BSS machine is a countable disjoint union
of semi-algebraic sets.

These characterisations are based on the fact that the com-
putation of BSS and S-BSS machines can be encoded by
formulae of first-order real arithmetic.

Existential theory of the real arithmetic. Formulae of the
existential real arithmetic are given by the grammar

ϕ ::= i ≤ i | i < i | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ, (8)

where i stands for numerical terms given by the grammar

i ::= 0 | 1 | x | i × i | i + i,

where x is a first-order variable. The semantics is defined
over a fixed structure (R,+,×, ≤, 0, 1) of real arithmetic in
the usual way. Relations definable by such formulae with
additional real constants are called semi-algebraic.

Let M be an S-BSS machine and n, t ∈ N positive natural
numbers. We denote by Lnt (M) (Ln≤t (M), resp.) the set of
strings s ∈ Rn accepted by M in time exactly (at most, resp.)
t , and define Ln(M) := L(M) ∩ Rn . The following restricted
fragment of ∃FO is enough to encode S-BSS computations.

Existential theory of the loose [0, 1]-guarded real arith-
metic. Formulae of the existential loose [0, 1]-guarded real
arithmetic are defined as in (8), but without i < i and replac-
ing ∃xϕ with ∃x(0 ≤ x ≤ 1 ∧ ϕ).

Lemma 4.3. Given a deterministic or [0, 1]-nondeterminis-
tic S-BSS machine M and positive n, t ∈ N it is possible to
construct, in polynomial time, formulas ϕ and ψ of loose
[0, 1]-guarded real arithmetic, with free variables x1, . . . ,xn ,
that may use real constants used in M such that

{
(
s(x1), . . . , s(xn)

)
| (R,+,×, ≤, (r)r ∈R) |=s ϕ} = Lnt (M),

{
(
s(x1), . . . , s(xn)

)
| (R,+,×, ≤, (r)r ∈R) |=s ψ } = Ln≤t (M).

Proof. For a given input of length n, the computation of M
consists of t many configurations ®c1, . . . ®ct of M , where ®c1
and ®ct are the initial configuration and a terminal configura-
tion, respectively, and, for 1 ≤ m < t , ®cm+1 is a successor
configuration of ®cm . Each configuration is a string of real
numbers of length O(t). We can use a similar technique as
in the right-to-left direction of Theorem 3.3 and encode the
contents of registers by pairs of real numbers from the unit
interval [0, 1]. In order to encode the computation, it suffices
to encode the values of O(t2) registers; thus O(t2) variables
suffice. We then construct a formula of existential loose [0, 1]-
guarded real arithmetic of size O(t2) that first existentially
quantifies O(t2)-many variables in order to guess the whole
computation of M on the given input and then expresses, us-
ing perhaps at most polynomially many extra variables, that
the computation is correct and accepting. We omit further
details, for the encoding is done in a similar manner as in the
right-to-left direction of Theorem 3.3. □

Given a deterministic S-BSS machine M , it is easy to see
that the sets Lnt (M), for n, t ∈ N, are disjoint. However, the
same does not need to hold for nondeterministic machines,
for the time it takes to accept an input string x might depend
on the guessed value for the string x ′ (and there may be
multiple accepting runs with different values for x ′). This
problem can be evaded for languages L that can be decided
by a [0, 1]-nondeterministic S-BSS machine N in time f , for
some function f : N → N. In this case Ln(N) = Ln

≤f (n)(N),
for each n ∈ N. Now since L(M) =

⋃
n,t ∈N L

n
t (M) and L(N) =⋃

n∈N L
n(N) where the unions are disjoint, we obtain the

following characterisation.

Theorem 4.4. Every language decidable by a) a determin-
istic S-BSS machine or b) a [0, 1]-nondeterministic S-BSS
machine in time t , for some t : N→ N, is a countable disjoint
union of relations defined by existential loose [0, 1]-guarded
real arithmetic formulae that may use real constants from
some finite set.

The rest of this section is dedicated on proving the fol-
lowing theorem, which together with Theorem 4.4 implies
Theorem 4.1.

Theorem 4.5. Every relation defined by some existential
loose [0, 1]-guarded real arithmetic formula ϕ(x1, ...,xn) with
real constants is closed in Rn .

Point-set topology. The proof of the theorem relies on
some rudimentary notions and knowledge from point-set
topology summarised in the following two lemmas (for basics
of point-set topology see, e.g., the monograph [28]). In order
to simplify the notation, for a topological space X , we use X
to denote also the underlying set of the space. Likewise, in
this section, we let [0, 1] denote the topological space that
has domain [0, 1] and the metric of Euclidean distance.

Lemma 4.6. Let X and Y be topological spaces, f : X → Y
a continuous function, A and B closed sets in X , and C a
closed set in Y . Then
• X , A ∩ B, A ∪ B, and f −1[C] are closed in X ,
• the product A ×C is closed in the product space X × Y ,
• if Y ⊇ A is a subspace of X then A is closed in Y .

Lemma 4.7. Let X be a topological space, Y a compact
topological space, A a closed set in the product space X × Y ,
and f the projection function X × Y → X . Then the image
f [A] of A is closed in X .

Proof of Theorem 4.5. We prove the following claim by in-
duction on the structure of the formulae: Let ®x be a k-tuple of
distinct variables and ϕ(®x) an existential loose [0, 1]-guarded
real arithmetic formula with real constants, and its free vari-
ables in ®x . The relation defined by ϕ(®x) is closed in Rk .
• Assume ϕ = t1 ≤ t2. Recall that t1(®x) and t2(®x) are

multivariate polynomials. Define д(®x) as the multivari-
ate polynomial t1(®x) − t2(®x) and consider the preim-
age д−1[(−∞, 0]]. Since (−∞, 0] is closed in R and

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

д : Rk → R is a continuous function, it follows that
д−1[(∞, 0]] is closed. Clearly д−1[(−∞, 0]] is the rela-
tion defined by ϕ(®x).
• The cases of disjunctions and conjunctions are clear,

for the union and intersection of closed sets is closed.
• Assume ϕ = ∃y(0 ≤ y ≤ 1 ∧ ψ (®x ,y)). Let Rψ be the

relation defined byψ (®x ,y), which by induction hypoth-
esis is closed in Rk+1. Define R′ψ := Rψ ∩ (R

k × [0, 1]).
Since [0, 1] is closed in R, it follows from Lemma 4.6
that R′ψ is closed both in Rk+1 and Rk × [0, 1]. Now
let R∗ψ be the projection of R′ψ to its k first columns.

Since R′ψ is closed in Rk ×[0, 1], and [0, 1] is a compact
topological space, it follows from Lemma 4.7 that R∗ψ
is closed in Rk . Clearly R∗ψ is the relation defined by
ψ (®x). □

5 Hierarchy of the complexity classes
The main result of this section is the separation of the com-
plexity classes S-NP

[0,1] and NPR. We have already done
most of the work required for the separation as the result
follows directly from the topological argument of Section
4.5 that more generally separates S-BSS computations from
BSS computations. The characterisations of Section 3 then
yield the separation of the related logics on R-structures. We
also give logical proofs implying that the obvious strength-
enings of S-NP

[0,1] coincide with NPR. Finally we study the
restriction of S-NP0

[0,1] on Boolean inputs and establish that it
coincides with a natural fragment of ∃R.

5.1 Separation of S-NP
[0,1] and NPR

We can now use Theorem 4.5 to prove the following:

Theorem 5.1. The following separations hold:

1. S-NP0
[0,1] < NP0R and S-NP

[0,1] < NPR,
2. L-ESO[0,1][+,×, ≤, 0, 1] < ESOR[+,×, ≤, 0, 1],
3. L-ESO[0,1][+,×, ≤, (rr ∈R)] < ESOR[+,×, ≤, (r)r∈R].

Proof. We prove 1. by showing that there are languages in
NP0R that are not in S-NP

[0,1]. The claims 2. and 3. then follow
from the logical characterisations of Corollary 3.4.

Let L be a language in S-NP
[0,1] and M an S-NP

[0,1] S-
BSS machine such that L(M) = L. Let p be a polynomial
function that bounds the running time of M . Fix n ∈ N. Now
Ln = Ln

≤p(n). By Lemma 4.3 Ln
≤p(n), and hence Ln , is definable

by an existential loose [0, 1]-guarded real arithmetic formula
ϕ(x1, ...,xn) that uses real constants from M . By Theorem 4.5
Ln is a closed set in the product space Rn , which is not true
for all languages in NP0R; for instance, a language P consisting
of all finite strings of positive reals can be decided in NP0R
(using branching), but Pn is not closed in Rn . □

5.2 Robustness of NPR
We have just seen that S-NP

[0,1] is a complexity class strictly
below NPR. We now give purely logical proofs implying that
the obvious strengthenings of S-NP

[0,1] collapse to NPR. The
proofs are based on the logical characterisations established
in Corollary 3.4.

The first obvious question is: Are S-NPR and S-NP0R strictly
below NPR and NP0R? In logical terms this boils down to the
expressivity of the logic L-ESOR[+,×, ≤, (r)r ∈R]. We answer
to this question in the negative.

Proposition 5.2. L-ESOR[+,×, ≤, 0, 1] ≡ ESOR[+,×, ≤] and
L-ESOR[+,×, ≤, (r)r ∈R] ≡ ESOR[+,×, ≤, (r)r ∈R].

Proof. The left-to-right direction is immediate as the con-
stants 0 and 1 are definable in ESOR[+,×, ≤]. For the con-
verse direction, note that the numerical atom ¬i ≤ j is equiv-
alent to the statement j < i. We show that < is definable in
L-ESOR[+,×, ≤, 0, 1]. First note that every strictly positive
real number r ∈ R can be expressed by a ratio of two real
numbers n,m ∈ R such that n,m ≥ 1. Moreover note that, for
every such n and m, the ratio n/m > 0. It is easy to see that
the following L-ESOR[+,×, ≤, 0, 1]-formula

∃r∃n∃m(1 ≤ n ∧ 1 ≤ m ∧ n = r ×m ∧ i + r = j),

where r , n, and m are 0-ary function variables, expresses that
i < j. □

Theorem 2.4, Proposition 5.2, Corollary 3.4 together then
yield the following:

Corollary 5.3. S-NPR = NPR and S-NP0R = NP0R.

The second natural question is: Are NP[0,1] and NP0
[0,1]

strictly below NPR and NP0R? Again, the answer is no. The
proof of the following proposition follows directly from the
observation that arbitrary real numbers can be encoded as ra-
tios x/(1−x), where x ∈ [0, 1], using an additional marker for
sign. It is crucial to note that with negated numerical atoms
one can express that the denominators of such encodings are
positive; in the loose fragment this is not possible. The encod-
ings needed can be clearly expressed in ESO[0,1][+,×, ≤]. We
omit the proof.

Proposition 5.4. ESO[0,1][+,×, ≤, 0, 1] ≡ ESOR[+,×, ≤, 0, 1]
and ESO[0,1][+,×, ≤, (r)r ∈R] ≡ ESOR[+,×, ≤, (r)r ∈R].

Hence Corollary 3.4 yields the following:

Corollary 5.5. NP[0,1] = NPR and NP0
[0,1] = NP0R.

Finally we consider a weakening of L-ESOR[+,×, ≤, 0, 1]
by removing the constant 1 from the language. It turns out
that this small weakening has profound implications to the
expressivity of the logic when restricted to function-free vo-
cabularies.

Proposition 5.6. Let 0 ∈ S ⊆ R. Then L-ESOS [+,×, ≤] ≡ FO
with respect to R-structures on function-free vocabularies.

Real computation and probabilistic team semantics LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Proof. The direction FO ≤ L-ESOS [+,×, ≤] is self-evident.
We give a proof for the converse. Let A be an R-structure of
a function-free vocabulary τ , ϕ ∈ L-ESOS [+,×, ≤][τ] a for-
mula, and s an assignment for the first-order variables. Note
that ϕ can be regarded also as a formula of L-ESO{0}[+,×, ≤];
we write ϕ0 to denote this interpretation. Let ϕ⊤ denote the
FO-formula obtained from ϕ by removing the function quan-
tifications in ϕ and replacing every numerical atom i ≤ j
in ϕ with the formula ∃x x = x . Now note that there is a
homomorphism from the first-order structure (S,+,×, ≤) to
({0},+,×, ≤), and consequently, A |=s φ ⇔ A |=s φ0. Here
we note that φ0 implies φ since the second structure is a
substructure of the first, and truth of existential formulae is
preserved to extensions. Conversely, φ implies φ0 because
atoms i ≤ j appear only positively, and the truth of formulae
with only positive literals are preserved to homomorphic im-
ages. Since in the evaluation of ϕ0 every numerical term is
evaluated to 0 it follows that A |=s ϕ0 ⇔ A |=s ϕ⊤. □

5.3 Separate branching on Boolean inputs and the
existential theory of the reals

It is known that on Boolean inputs NP0R coincides with the
complexity class ∃R (i.e., the class of problems polynomially
reducible to the existential theory of the reals) [5, 26]. In this
section we show an analogous result for S-NP0

[0,1].

Definition 5.7. Define ∃[0, 1]≤ to be the set of all languages
L ⊆ {0, 1}∗ for which there is a polynomial-time reduction f
from {0, 1}∗ into sentences of existential loose [0, 1]-guarded
real arithmetic such that x ∈ L iff (R,+,×, ≤, 0, 1) |= f (x).

We show the following theorem:

Theorem 5.8. ∃[0, 1]≤ = BP(S-NP0
[0,1]).

Proof. Note that the right-to-left direction of this theorem
follows immediately from Lemma 4.3 by noting that the only
real constants used by S-NP0

[0,1] S-BSS machines M are 0 and
1, and that the Boolean inputs to M can be defined in ∃[0, 1]≤
by using the constants 0 and 1.

Left-to-right. There exists a deterministic polynomial time
Turing machine M that given an input string computes the
corresponding sentence ϕ of existential loose [0, 1]-guarded
real arithmetic. Let p be the polynomial that bounds the run-
ning time of M . Without loss of generality we may assume
that, for any given input i of length n, the formula computed
by M from input i uses only variables x1, . . . ,xp(n). Let M∗

be a nondeterministic S-BSS machine that, for a given in-
put i of length n, first guesses p(n) many real numbers from
the unit interval [0, 1] (these will correspond to the values of
the variables x1, . . . ,xp(n)). Then M∗ simulates the run of the
deterministic polynomial time Turing machine M on input
i. Let ϕ be the formula computed this way. Finally we can
use M∗ to check the matrix of ϕ using the values guessed for
the variables x1, . . . ,xp(n). We omit further details, for the

evaluation of the matrix can done essentially in the same way
as in the left-to-right direction of Theorem 3.3. □

6 Probabilistic team semantics
The purpose of this section is to characterise the descrip-
tive complexity of probabilistic independence logic [10]. The
formulae of this logic, and other logics that make use of
dependency concepts involving quantities, are interpreted
in probabilistic team semantics which generalises team se-
mantics by adding weights on variable assignments. A finite
model together with a probabilistic team can then be seen as
a particular metafinite structure, and thus a natural approach
to computational complexity comes from BSS machines.

Let D be a finite set of first-order variables, A a finite set,
and X a finite set of assignments (i.e., a team) from D to A. A
probabilistic team X is then defined as a function

X : X → [0, 1]

such that
∑

s ∈X X(s) = 1. Also the empty function is con-
sidered a probabilistic team. We call D and A the variable
domain and value domain of X, respectively.

Probabilistic independence logic (FO(⊥⊥c)) is now defined
as the extension of first-order logic with probabilistic inde-
pendence atoms ®y ⊥⊥®x ®z whose semantics is the standard
semantics of conditional independence in probability distri-
butions. Another probabilistic logic, FO(≈), is obtained by
extending first-order logic with marginal identity atoms ®x ≈ ®y
which state that the marginal distributions on ®x and ®y are iden-
tically distributed. The semantics for complex formulae are
defined compositionally by generalising the team semantics
of dependence logic to probabilistic teams. For details, not
necessary in this paper, we refer the reader to [10]. In princi-
ple, the point is that formulae of probabilistic independence
logic define properties of (A,X) where A is a finite model
and X a probabilistic team with value domain Dom(A).

Example 6.1. Suppose we flip a coin. If we get heads, we
roll two dice x and y. If we get tails, we roll only x and
copy the same value for y. Repeating this procedure infinitely
many times yields at the limit a probabilistic team (i.e., a joint
probability distribution) over variables x and y satisfying

(x ⊥⊥ y ∨ x = y) ∧ ∀z x ≈ z.
By definition ϕ ∨ψ is true for a probabilistic team X if X is
a mixture of two teams with respective properties ϕ and ψ
(here independence and (row-wise) identity between x and
y). By definition ∀zϕ is true for a probabilistic team X if
the extension of X with a uniform distribution for z has the
property ϕ (here identity between marginal distributions on x
and z).

We will now show that the descriptive complexity of prob-
abilistic independence logic is exactly S-NP0

[0,1]. For this we
need some background definitions and results.

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

Expressivity comparisons wrt. probabilistic team seman-
tics. Fix a relational vocabulary τ . For a probabilistic team
X with variable domain {x1, . . . ,xn} and value domain A,
the function fX : An → [0, 1] is defined as the probability
distribution such that fX(s(®x)) = X(s) for all s ∈ X . For a
formula ϕ ∈ FO(⊥⊥c) of vocabulary τ and with free variables
{x1, . . . ,xn}, the class Struc(ϕ) is defined as the class of R-
structures A over τ ∪ { f } such that (A ↾ τ) |=X ϕ, where
fX = f A and A ↾ τ is the finite τ -structure underlying A.

Let L be any of the logics defined in Section 2. We write
FO(⊥⊥c) ≤ L if for every formula ϕ ∈ FO(⊥⊥c) of vocabulary
τ there is a sentenceψ ∈ L of vocabulary τ ∪ { f } such that
Struc(ϕ) = Strucd [0,1](ψ). Vice versa, we write L ≤ FO(⊥⊥c)
if for every sentence ψ ∈ L of vocabulary τ ∪ { f } there is
a formula ϕ ∈ FO(⊥⊥c) of vocabulary τ such that Struc(ϕ) =
Strucd [0,1](ψ).

Complexity characterisations wrt. probabilistic team se-
mantics. Let FO(⊥⊥c) be a logic with vocabulary τ and C a
complexity class. Let S be an arbitrary class of R-structures
over τ ∪ { f } that is closed under isomorphisms and where the
interpretations of f are distributions. We write enc(S) for the
set of encodings of structures in S. Consider the following
two conditions:

(i) enc(S) = {enc(A) | A ∈ Struc(ϕ)} for some ϕ ∈
FO(⊥⊥c)}.

(ii) enc(S) ∈ C.
If (i) implies (ii), we write FO(⊥⊥c) ≤ C, and if the vice versa
holds, we write C ≤ FO(⊥⊥c).

It is already known that probabilistic independence logic
captures a variant of loose existential second-order logic
in which function quantification ranges over distributions.
This result was shown in two stages. First, it was proven
in [10] that the logic FO(⊥⊥c,≈) is expressively equivalent
to L-ESOd [0,1][SUM,×,=].2 Later, it was proven in [16] that
marginal identity can be expressed using independence, that
is, FO(⊥⊥c,≈) is expressively equivalent to FO(⊥⊥c).3

Theorem 6.2 ([10, 16]). FO(⊥⊥c) ≡ L-ESOd [0,1][SUM,×,=].

We will now improve this result by removing the condition
that restricts function quantification to distributions. For this
we utilize a normal form lemma from [10]. Observe that
we restrict attention to d[0, 1]-structures, that is, all function
symbols from the underlying vocabulary are interpreted as
distributions.

Lemma 6.3 ([10]). For every L-ESOd [0,1][SUM,×,=]-formula
ϕ there is an L-ESOd [0,1][SUM,×,=]-formula ϕ∗ such that

2In [10] equi-expressivity with ESOd [0,1][SUM, ×, =] is erroneously
stated; the results in the paper actually entail equi-expressivity with
L-ESOd [0,1][SUM, ×, =].
3In fact, FO(⊥⊥c) is expressively equivalent to FO(⊥⊥) which is the extension
of first-order logic with marginal independence atoms ®x ⊥⊥ ®y , the semantics
of which is the standard semantics of marginal independence in probability
distributions [16].

Strucd [0,1]ϕ = Strucd [0,1]ϕ∗, where ϕ∗ is of the form ∃ ®f ∀®xθ ,
where θ is quantifier-free and such that its second sort iden-
tity atoms are of the form fi (®u, ®v) = fj (®u) × fk (®v) or fi (®u) =
SUM ®v fj (®u, ®v) for distinct fi , fj , fk such that at most one of
them is not quantified.

Lemma 6.4. L-ESOd [0,1][SUM,×,=]
≡d [0,1] L-ESOd [0,1][+,×,=] ≡d [0,1] L-ESO[0,1][+,×,=, 0, 1].

Proof. We prove the claim in three steps, without relying on
multiplication at any step. By Proposition 3.1 we may assume
that the finite domain is enriched with a successor function
S for tuples, its transitive derivatives <, ≤, and its minimal
and maximal tuples ®min and ®max (of an appropriate arity),
obtained by the lexicographic ordering induced from some
linear ordering ≤fin. Additionally, we may assume a constant
c on the finite domain.
Step 1: L-ESOd [0,1][SUM,×,=] ≤d [0,1] L-ESOd [0,1][+,×,=].
We may assume that any L-ESOd [0,1][SUM,×,=] formula is
of the form stated in Lemma 6.3. Thus it suffices to express
in L-ESOd [0,1][+,×,=] each numerical identity of the form
f (®u) = SUM®x f ′(®u, ®x). First, we quantify a 2m-ary distribu-
tion variable д upon which we impose:

∀®x ®y [д(®x , ®min) + д(®x , ®min) = f ′(®u, ®x)∧ (9)(
®y < ®max→
д(S(®y), S(®y)) + д(S(®y), S(®y)) = д(S(®y), ®y) + д(®y, ®y)

)
∧(

S(®y) < ®x →

д(®x , S(®y)) + д(®x , S(®y)) = д(®x , ®y)
)]
.

The point is to calculate partial sums SUM®x ≤y f ′(®u, ®x) and
store sufficiently small fractions of them in д(®y, ®y). Suppose
®y is the nth tuple. Then

д(®y, ®y) =
1
2n
(f ′(®u, ®min) + . . . + f ′(®u, ®y)),

and for ®x > ®y,

д(®x , ®y) =
1
2n

f ′(®u, ®x).

Consequently, the sum of all д(®x , ®y) where ®x ≥ ®y is at most 1.
By allocating the remaining weights to (®x , ®y) such that ®x < ®y,
it follows that д is a distribution.

Furthermore, we quantify a 2m-ary distribution variable h
satisfying:

∀®x[h(®min) + h(®min) = f (®u)∧

®x < ®max→ h(S(®x)) + h(S(®x)) = h(®x)].

It follows that h(®y) = 1
2n f (®u). Consequently, д(®max, ®max) =

h(®max) if and only if f (®u) = SUM®x f ′(®u, ®x). Note that h is not
a distribution since the weights do not add up to 1. However,
we may increment the arity of h by one and replace h(®x)
above with h(®x , c). Then h is a distribution if the remaining
weights are pushed to h(®x ,y), where y , c. This concludes
the proof of Step 1.

Real computation and probabilistic team semantics LICS ’20, July 8–11, 2020, Saarbrücken, Germany

Step 2: We show a stronger claim: L-ESOd [0,1][+,×,=] ≤
L-ESO[0,1][+,×,=, 0, 1]. For this, it suffices to show how to
express in L-ESO[0,1][+,=, 0, 1] that a function f is a distribu-
tion. The following formula expresses just that:

∃д (д(®min) = f (®min)∧
∀®x(®x < ®max→ д(S(®x)) = д(®x) + f (S(®x))) ∧ д(®max) = 1

)
.

Step 3: We show a stronger claim: L-ESO[0,1][+,×,=, 0, 1]
≤[0,1] L-ESOd [0,1][SUM,×,=]. Suppose ϕ is some formula in
L-ESO[0,1][+,×,=, 0, 1]. Let k be the maximal arity of any
function variable/symbol appearing in ϕ, and suppose n is the
size of the finite domain; the total sum of the weights of a
function is thus at most nk . We now show how to obtain from
ϕ an equivalent formula in L-ESOd [0,1][SUM,×,=]; the idea
is to scale all function weights by 1/nk . We have two cases:
Function variables. If f is anm-ary quantified function vari-
able, we replace it with an (m + 1)-ary quantified distribution
variable df satisfying

∀®x∃d ′∀®y d ′(®y, c) = df (®x , c),
whered ′ is a (k+1)-ary distribution variable. Nownkdf (®x , c) ≤

1 because d ′ is a distribution, and thus df (®x , c) ≤ 1
nk .

Function symbols. Suppose f (®x) is a function term which
appears as a term or subterm in ϕ, and f is a function symbol
from the underlying vocabulary. We quantify a (k + 1)-ary
distribution variable df (®x) satisfying

∀®x(SUM®ydf (®x)(®y, c) = f (®x) ∧ ∀®y®zdf (®x)(®y, c) = df (®x)(®z, c)).
It follows that df (®x)(®x , c) = 1

nk f (®x). Since f (®x) ≤ 1, we may
define df (®x) as a distribution.

Observe now that each numerical atom appearing in ϕ is an
identity between two multivariate polynomials over function
terms. Without loss of generality all the constituent monomi-
als in these atoms are of a fixed degree D and have coefficient
one; note that each monomial with degree less than D can be
appended in L-ESO[0,1][+,×,=, 0, 1] with a quantified nullary
function n taking value 1. We now replace in each numerical
atom i = j function terms f (®x) with df (®x , c) or df (®x)(®x , c),
depending on whether f is a function variable or a function
symbol. Thus we represent i = j in L-ESOd [0,1][SUM,×,=] as
i

nDk =
j

nDk , wherefore not only its truth value, but also that
of ϕ, is preserved in the transformation. □

By combining Corollary 3.4.3, Theorem 6.2, and Lemma
6.4, we finally obtain the following result.

Theorem 6.5. FO(⊥⊥c) ≡ S-NP0
[0,1].

7 Concluding remarks
Applications of logic in AI and advanced data management
require probabilistic interpretations, a role that is well fulfilled
by probabilistic team semantics. On the other hand, in the
theory of computation and automated reasoning, computation

and logics over the reals are well established with solid foun-
dations. In this paper we have provided bridges between the
two worlds. We introduced a novel variant of BSS machines
and provided a logical and topological characterisation of its
computational power. In addition, we determined the expres-
sivity of probabilistic independence logic with respect to the
BSS model of computation.

There are many interesting directions of future research.
One is to consider the additive fragment of BSS computa-
tion. Restricted to Boolean inputs it is known that, if unre-
stricted use of machine constants is allowed, the additive
NPR branching on equality collapses to NP and branching
on inequality captures NP/poly [21]. What can we say about
the additive fragment of S-BSS computation? Another di-
rection is to devise logics that characterise other important
complexity classes over S-BSS machines. Grädel and Meer
[15] established a characterisation of polynomial time on
ranked R-structures using a variant of least fixed point logic.
In the setting of team semantics and classical computation,
Galliani and Hella [12] showed that the so-called inclusion
logic characterises polynomial time on ordered structures.
Can we extend the applicability of these results to the realms
of S-BSS computation and probabilistic team semantics? Fi-
nally, we would like to devise natural complete problems for
the complexity classes defined by S-BSS machines. In par-
ticular, we would like to obtain a natural complete problem
for ∃[0, 1]≤; a weakening of the art gallery problem is one
promising candidate.

We conclude with a few open problems:
• Is ∃[0, 1]≤ strictly included in ∃R? A positive answer

would be a major breakthrough, as it would separate
NP from PSPACE.
• We know that NP ≤ ∃[0, 1]≤ ≤ ∃R ≤ PSPACE. Can

we establish a better upper bound for ∃[0, 1]≤? In partic-
ular, is ∃[0, 1]≤ contained in the polynomial hierarchy?
• We established that S-BSS computable languages are

included in the class of BSS computable languages that
are countable disjoint unions of closed sets. Does the
converse hold?

Acknowledgments
The first and second authors were supported by the Acad-
emy of Finland grant 308712. The third and fourth authors
were supported by the Research Foundation Flanders grant
G0G6516N. The third author was partially supported by the
National Natural Science Foundation of China under grant
61972455, and the fourth author was an international research
fellow of the Japan Society for the Promotion of Science,
Postdoctoral Fellowships for Research in Japan (Standard).

References
[1] Mikkel Abrahamsen, Anna Adamaszek, and Tillmann Miltzow. 2018.

The art gallery problem is ∃ R-complete. In Proceedings of the 50th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018,

LICS ’20, July 8–11, 2020, Saarbrücken, Germany M. Hannula, J. Kontinen, J. Van den Bussche, and J. Virtema

Los Angeles, CA, USA, June 25-29, 2018. 65–73. https://doi.org/10.
1145/3188745.3188868

[2] Michael Benedikt, Martin Grohe, Leonid Libkin, and Luc Segoufin.
2003. Reachability and connectivity queries in constraint databases.
J. Comput. System Sci. 66, 1 (2003), 169 – 206. https://doi.org/10.
1016/S0022-0000(02)00034-X Special Issue on PODS 2000.

[3] Lenore Blum, Felipe Cucker, Michael Shub, and Steve Smale. 1997.
Complexity and Real Computation. Springer-Verlag, Berlin, Heidel-
berg.

[4] Lenore Blum, Mike Shub, and Steve Smale. 1989. On a theory of
computation and complexity over the real numbers: NP - completeness,
recursive functions and universal machines. Bull. Amer. Math. Soc.
(N.S.) 21, 1 (07 1989), 1–46. https://projecteuclid.org:443/euclid.
bams/1183555121

[5] Peter Bürgisser and Felipe Cucker. 2006. Counting complexity classes
for numeric computations II: Algebraic and semialgebraic sets. J.
Complexity 22, 2 (2006), 147–191. https://doi.org/10.1016/j.jco.
2005.11.001

[6] John F. Canny. 1988. Some Algebraic and Geometric Computations
in PSPACE. In Proceedings of the 20th Annual ACM Symposium on
Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA. 460–467.
https://doi.org/10.1145/62212.62257

[7] Jukka Corander, Antti Hyttinen, Juha Kontinen, Johan Pensar, and
Jouko Väänänen. 2019. A logical approach to context-specific inde-
pendence. Ann. Pure Appl. Logic 170, 9 (2019), 975–992. https:
//doi.org/10.1016/j.apal.2019.04.004

[8] Felipe Cucker and Klaus Meer. 1999. Logics Which Capture Com-
plexity Classes Over The Reals. J. Symb. Log. 64, 1 (1999), 363–390.
https://doi.org/10.2307/2586770

[9] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and
Jonni Virtema. 2018. Approximation and dependence via multi-
team semantics. Ann. Math. Artif. Intell. 83, 3-4 (2018), 297–320.
https://doi.org/10.1007/s10472-017-9568-4

[10] Arnaud Durand, Miika Hannula, Juha Kontinen, Arne Meier, and Jonni
Virtema. 2018. Probabilistic Team Semantics. In Foundations of Infor-
mation and Knowledge Systems - 10th International Symposium, FoIKS
2018, Budapest, Hungary, May 14-18, 2018, Proceedings. 186–206.
https://doi.org/10.1007/978-3-319-90050-6_11

[11] Pietro Galliani. 2008. Game Values and Equilibria for Undetermined
Sentences of Dependence Logic. (2008). MSc Thesis. ILLC Publica-
tions, MoL–2008–08.

[12] Pietro Galliani and Lauri Hella. 2013. Inclusion Logic and Fixed Point
Logic. In Computer Science Logic 2013 (CSL 2013) (Leibniz Inter-
national Proceedings in Informatics (LIPIcs)), Simona Ronchi Della
Rocca (Ed.), Vol. 23. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik, Dagstuhl, Germany, 281–295. https://doi.org/10.4230/LIPIcs.
CSL.2013.281

[13] Erich Grädel and Yuri Gurevich. 1998. Metafinite Model Theory. Inf.
Comput. 140, 1 (1998), 26–81. https://doi.org/10.1006/inco.1997.
2675

[14] Erich Grädel and Stephan Kreutzer. 1999. Descriptive Complexity
Theory for Constraint Databases. In Computer Science Logic, 13th
International Workshop, CSL ’99, 8th Annual Conference of the EACSL,
Madrid, Spain, September 20-25, 1999, Proceedings. 67–81. https:
//doi.org/10.1007/3-540-48168-0_6

[15] Erich Grädel and Klaus Meer. 1995. Descriptive complexity theory over
the real numbers. In Proceedings of the Twenty-Seventh Annual ACM
Symposium on Theory of Computing, 29 May-1 June 1995, Las Vegas,
Nevada, USA. 315–324. https://doi.org/10.1145/225058.225151

[16] Miika Hannula, Åsa Hirvonen, Juha Kontinen, Vadim Kulikov, and
Jonni Virtema. 2019. Facets of Distribution Identities in Probabilis-
tic Team Semantics. In JELIA (Lecture Notes in Computer Science),
Vol. 11468. Springer, 304–320.

[17] Miika Hannula and Juha Kontinen. 2016. A finite axiomatization of
conditional independence and inclusion dependencies. Inf. Comput.
249 (2016), 121–137. https://doi.org/10.1016/j.ic.2016.04.001

[18] Uffe Flarup Hansen and Klaus Meer. 2006. Two logical hierarchies
of optimization problems over the real numbers. Math. Log. Q. 52, 1
(2006), 37–50. https://doi.org/10.1002/malq.200510021

[19] Tapani Hyttinen, Gianluca Paolini, and Jouko Väänänen. 2017. A
Logic for Arguing About Probabilities in Measure Teams. Arch. Math.
Logic 56, 5-6 (2017), 475–489. https://doi.org/10.1007/s00153-
017-0535-x

[20] Paris C. Kanellakis, Gabriel M. Kuper, and Peter Z. Revesz. 1995.
Constraint Query Languages. J. Comput. Syst. Sci. 51, 1 (1995), 26–52.
https://doi.org/10.1006/jcss.1995.1051

[21] Pascal Koiran. 1994. Computing over the Reals with Addition and
Order. Theor. Comput. Sci. 133, 1 (1994), 35–47. https://doi.org/10.
1016/0304-3975(93)00063-B

[22] Andreas Krebs, Arne Meier, Jonni Virtema, and Martin Zimmermann.
2018. Team Semantics for the Specification and Verification of Hyper-
properties. In MFCS (LIPIcs), Vol. 117. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik, 10:1–10:16.

[23] Stephan Kreutzer. 2000. Fixed-Point Query Languages for Linear
Constraint Databases. In Proceedings of the Nineteenth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, May
15-17, 2000, Dallas, Texas, USA. 116–125. https://doi.org/10.1145/
335168.335214

[24] Klaus Meer. 2000. Counting problems over the reals. Theor. Com-
put. Sci. 242, 1-2 (2000), 41–58. https://doi.org/10.1016/S0304-
3975(98)00190-X

[25] Marcus Schaefer. 2009. Complexity of Some Geometric and Topo-
logical Problems. In Graph Drawing, 17th International Symposium,
GD 2009, Chicago, IL, USA, September 22-25, 2009. Revised Papers.
334–344. https://doi.org/10.1007/978-3-642-11805-0_32

[26] Marcus Schaefer and Daniel Stefankovic. 2017. Fixed Points, Nash
Equilibria, and the Existential Theory of the Reals. Theory Comput.
Syst. 60, 2 (2017), 172–193. https://doi.org/10.1007/s00224-015-
9662-0

[27] Jouko Väänänen. 2007. Dependence Logic. Cambridge University
Press.

[28] S. Willard. 2004. General Topology. Dover Publications. https:
//books.google.co.jp/books?id=-o8xJQ7Ag2cC

https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1145/3188745.3188868
https://doi.org/10.1016/S0022-0000(02)00034-X
https://doi.org/10.1016/S0022-0000(02)00034-X
https://projecteuclid.org:443/euclid.bams/1183555121
https://projecteuclid.org:443/euclid.bams/1183555121
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1016/j.jco.2005.11.001
https://doi.org/10.1145/62212.62257
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.1016/j.apal.2019.04.004
https://doi.org/10.2307/2586770
https://doi.org/10.1007/s10472-017-9568-4
https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.4230/LIPIcs.CSL.2013.281
https://doi.org/10.1006/inco.1997.2675
https://doi.org/10.1006/inco.1997.2675
https://doi.org/10.1007/3-540-48168-0_6
https://doi.org/10.1007/3-540-48168-0_6
https://doi.org/10.1145/225058.225151
https://doi.org/10.1016/j.ic.2016.04.001
https://doi.org/10.1002/malq.200510021
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1007/s00153-017-0535-x
https://doi.org/10.1006/jcss.1995.1051
https://doi.org/10.1016/0304-3975(93)00063-B
https://doi.org/10.1016/0304-3975(93)00063-B
https://doi.org/10.1145/335168.335214
https://doi.org/10.1145/335168.335214
https://doi.org/10.1016/S0304-3975(98)00190-X
https://doi.org/10.1016/S0304-3975(98)00190-X
https://doi.org/10.1007/978-3-642-11805-0_32
https://doi.org/10.1007/s00224-015-9662-0
https://doi.org/10.1007/s00224-015-9662-0
https://books.google.co.jp/books?id=-o8xJQ7Ag2cC
https://books.google.co.jp/books?id=-o8xJQ7Ag2cC

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 R-structures
	2.2 Blum-Shub-Smale Model
	2.3 Separate Branching BSS

	3 Descriptive complexity of nondeterministic polynomial time in S-BSS
	4 Characterisation of S-BSS decidable languages
	5 Hierarchy of the complexity classes
	5.1 Separation of S-NP[0,1] and NPR
	5.2 Robustness of NPR
	5.3 Separate branching on Boolean inputs and the existential theory of the reals

	6 Probabilistic team semantics
	7 Concluding remarks
	Acknowledgments
	References

