6,161 research outputs found

    Septic shock prediction for ICU patients via coupled HMM walking on sequential contrast patterns

    Full text link
    © 2016 Background and objective Critical care patient events like sepsis or septic shock in intensive care units (ICUs) are dangerous complications which can cause multiple organ failures and eventual death. Preventive prediction of such events will allow clinicians to stage effective interventions for averting these critical complications. Methods It is widely understood that physiological conditions of patients on variables such as blood pressure and heart rate are suggestive to gradual changes over a certain period of time, prior to the occurrence of a septic shock. This work investigates the performance of a novel machine learning approach for the early prediction of septic shock. The approach combines highly informative sequential patterns extracted from multiple physiological variables and captures the interactions among these patterns via coupled hidden Markov models (CHMM). In particular, the patterns are extracted from three non-invasive waveform measurements: the mean arterial pressure levels, the heart rates and respiratory rates of septic shock patients from a large clinical ICU dataset called MIMIC-II. Evaluation and results For baseline estimations, SVM and HMM models on the continuous time series data for the given patients, using MAP (mean arterial pressure), HR (heart rate), and RR (respiratory rate) are employed. Single channel patterns based HMM (SCP-HMM) and multi-channel patterns based coupled HMM (MCP-HMM) are compared against baseline models using 5-fold cross validation accuracies over multiple rounds. Particularly, the results of MCP-HMM are statistically significant having a p-value of 0.0014, in comparison to baseline models. Our experiments demonstrate a strong competitive accuracy in the prediction of septic shock, especially when the interactions between the multiple variables are coupled by the learning model. Conclusions It can be concluded that the novelty of the approach, stems from the integration of sequence-based physiological pattern markers with the sequential CHMM model to learn dynamic physiological behavior, as well as from the coupling of such patterns to build powerful risk stratification models for septic shock patients

    Research methods for subgrouping low back pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is considerable clinician and researcher interest in whether the outcomes for patients with low back pain, and the efficiency of the health systems that treat them, can be improved by 'subgrouping research'. Subgrouping research seeks to identify subgroups of people who have clinically important distinctions in their treatment needs or prognoses. Due to a proliferation of research methods and variability in how subgrouping results are interpreted, it is timely to open discussion regarding a conceptual framework for the research designs and statistical methods available for subgrouping studies (a method framework). The aims of this debate article are: (1) to present a method framework to inform the design and evaluation of subgrouping research in low back pain, (2) to describe method options when investigating prognostic effects or subgroup treatment effects, and (3) to discuss the strengths and limitations of research methods suitable for the hypothesis-setting phase of subgroup studies.</p> <p>Discussion</p> <p>The proposed method framework proposes six phases for studies of subgroups: studies of assessment methods, hypothesis-setting studies, hypothesis-testing studies, narrow validation studies, broad validation studies, and impact analysis studies. This framework extends and relabels a classification system previously proposed by McGinn et al (2000) as suitable for studies of clinical prediction rules. This extended classification, and its descriptive terms, explicitly anchor research findings to the type of evidence each provides. The inclusive nature of the framework invites appropriate consideration of the results of diverse research designs. Method pathways are described for studies designed to test and quantify prognostic effects or subgroup treatment effects, and examples are discussed. The proposed method framework is presented as a roadmap for conversation amongst researchers and clinicians who plan, stage and perform subgrouping research.</p> <p>Summary</p> <p>This article proposes a research method framework for studies of subgroups in low back pain. Research designs and statistical methods appropriate for sequential phases in this research are discussed, with an emphasis on those suitable for hypothesis-setting studies of subgroups of people seeking care.</p

    Predictive Modelling Approach to Data-Driven Computational Preventive Medicine

    Get PDF
    This thesis contributes novel predictive modelling approaches to data-driven computational preventive medicine and offers an alternative framework to statistical analysis in preventive medicine research. In the early parts of this research, this thesis presents research by proposing a synergy of machine learning methods for detecting patterns and developing inexpensive predictive models from healthcare data to classify the potential occurrence of adverse health events. In particular, the data-driven methodology is founded upon a heuristic-systematic assessment of several machine-learning methods, data preprocessing techniques, models’ training estimation and optimisation, and performance evaluation, yielding a novel computational data-driven framework, Octopus. Midway through this research, this thesis advances research in preventive medicine and data mining by proposing several new extensions in data preparation and preprocessing. It offers new recommendations for data quality assessment checks, a novel multimethod imputation (MMI) process for missing data mitigation, a novel imbalanced resampling approach, and minority pattern reconstruction (MPR) led by information theory. This thesis also extends the area of model performance evaluation with a novel classification performance ranking metric called XDistance. In particular, the experimental results show that building predictive models with the methods guided by our new framework (Octopus) yields domain experts' approval of the new reliable models’ performance. Also, performing the data quality checks and applying the MMI process led healthcare practitioners to outweigh predictive reliability over interpretability. The application of MPR and its hybrid resampling strategies led to better performances in line with experts' success criteria than the traditional imbalanced data resampling techniques. Finally, the use of the XDistance performance ranking metric was found to be more effective in ranking several classifiers' performances while offering an indication of class bias, unlike existing performance metrics The overall contributions of this thesis can be summarised as follow. First, several data mining techniques were thoroughly assessed to formulate the new Octopus framework to produce new reliable classifiers. In addition, we offer a further understanding of the impact of newly engineered features, the physical activity index (PAI) and biological effective dose (BED). Second, the newly developed methods within the new framework. Finally, the newly accepted developed predictive models help detect adverse health events, namely, visceral fat-associated diseases and advanced breast cancer radiotherapy toxicity side effects. These contributions could be used to guide future theories, experiments and healthcare interventions in preventive medicine and data mining

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    Quality data assessment and improvement in pre-processing pipeline to minimize impact of spurious signals in functional magnetic imaging (fMRI)

    Get PDF
    In the recent years, the field of quality data assessment and signal denoising in functional magnetic resonance imaging (fMRI) is rapidly evolving and the identification and reduction of spurious signal with pre-processing pipeline is one of the most discussed topic. In particular, subject motion or physiological signals, such as respiratory or/and cardiac pulsatility, were showed to introduce false-positive activations in subsequent statistical analyses. Different measures for the evaluation of the impact of motion related artefacts, such as frame-wise displacement and root mean square of movement parameters, and the reduction of these artefacts with different approaches, such as linear regression of nuisance signals and scrubbing or censoring procedure, were introduced. However, we identify two main drawbacks: i) the different measures used for the evaluation of motion artefacts were based on user-dependent thresholds, and ii) each study described and applied their own pre-processing pipeline. Few studies analysed the effect of these different pipelines on subsequent analyses methods in task-based fMRI.The first aim of the study is to obtain a tool for motion fMRI data assessment, based on auto-calibrated procedures, to detect outlier subjects and outliers volumes, targeted on each investigated sample to ensure homogeneity of data for motion. The second aim is to compare the impact of different pre-processing pipelines on task-based fMRI using GLM based on recent advances in resting state fMRI preprocessing pipelines. Different output measures based on signal variability and task strength were used for the assessment
    • …
    corecore