725 research outputs found

    A Review of Prosthetic Interface Stress Investigations

    Get PDF
    Over the last decade, numerous experimental and numerical analyses have been conducted to investigate the stress distribution between the residual limb and prosthetic socket of persons with lower limb amputation. The objectives of these analyses have been to improve our understanding of the residual limb/prosthetic socket system, to evaluate the influence of prosthetic design parameters and alignment variations on the interface stress distribution, and to evaluate prosthetic fit. The purpose of this paper is to summarize these experimental investigations and identify associated limitations. In addition, this paper presents an overview of various computer models used to investigate the residual limb interface, and discusses the differences and potential ramifications of the various modeling formulations. Finally, the potential and future applications of these experimental and numerical analyses in prosthetic design are presented

    Supporting Quantitative Visual Analysis in Medicine and Biology in the Presence of Data Uncertainty

    Full text link

    Dynamics, Electromyography and Vibroarthrography as Non-Invasive Diagnostic Tools: Investigation of the Patellofemoral Joint

    Get PDF
    The knee joint plays an essential role in the human musculoskeletal system. It has evolved to withstand extreme loading conditions, while providing almost frictionless joint movement. However, its performance may be disrupted by disease, anatomical deformities, soft tissue imbalance or injury. Knee disorders are often puzzling, and accurate diagnosis may be challenging. Current evaluation approach is usually limited to a detailed interview with the patient, careful physical examination and radiographic imaging. The X-ray screening may reveal bone degeneration, but does not carry sufficient information of the soft tissue conditions. More advanced imaging tools such as MRI or CT are available, but expensive, time consuming and can be used only under static conditions. Moreover, due to limited resolution the radiographic techniques cannot reveal early stage arthritis. The arthroscopy is often the only reliable option, however due to its semi-invasive nature, it cannot be considered as a practical diagnostic tool. Therefore, the motivation for this work was to combine three scientific methods to provide a comprehensive, non-invasive evaluation tool bringing insight into the in vivo, dynamic conditions of the knee joint and articular cartilage degeneration. Electromyography and inverse dynamics were employed to independently determine the forces present in several muscles spanning the knee joint. Though both methods have certain limitations, the current work demonstrates how the use of these two methods concurrently enhances the biomechanical analysis of the knee joint conditions, especially the performance of the extensor mechanism. The kinetic analysis was performed for 12 TKA, 4 healthy individuals in advanced age and 4 young subjects. Several differences in the knee biomechanics were found between the three groups, identifying age-related and post-operative decrease in the extensor mechanism efficiency, explaining the increased effort of performing everyday activities experienced by the elderly and TKA subjects. The concept of using accelerometers to assess the cartilage degeneration has been proven based on a group of 23 subjects with non-symptomatic knees and 52 patients suffering from knee arthritis. Very high success (96.2%) of pattern classification obtained in this work clearly demonstrates that vibroarthrography is a promising, non-invasive and low-cost technique offering screening capabilities

    Development and Implementation of Mathematical Modeling, Vibration and Acoustic Emission Technique to Correlate \u3cem\u3eIn Vivo\u3c/em\u3e Kinematics, Kinetics and Sound in Total Hip Arthroplasty with Different Bearing Surfaces

    Get PDF
    The evaluation of Total Hip Arthroplasty (THA) outcome is difficult and invasive methods are often applied. Fluoroscopy has been used as an in vivo diagnostic technique to determine separation which may lead to vibration propagation and audible interactions. The objective of this study was to develop a new, non-invasive technique of digitally capturing vibration and sound emissions at the hip joint interface and to correlate those with the hip kinematics derived from fluoroscopy. Additionally, an examination of the role of hip mechanics on walking performance in THA subjects of various bearings surfaces was performed. In vivo kinematics, kinetics, corresponding vibration and sound measurements of THA were analyzed post-operatively using video-fluoroscopy, mathematical modeling, sound sensors and accelerometers during gait on a treadmill. Twenty-seven subjects (31 hips) with a metal-on-metal, metal-on-polyethylene, ceramic-on-ceramic, ceramicon- polyethylene or metal-on-metal polyethylene-sandwich THA were analyzed. A data acquisition system was used to amplify the signal and filter out associated frequencies attributed to noise. The sound measurements were correlated to in vivo kinematics. A mathematical model of the human extremity was derived to determine in vivo bearing and soft-tissue forces. For all bearings a distinct correlation of a high frequency sound occurring at the time when the femoral head slides back into the acetabular component was observed. Subjects having a hard-on-hard bearing seemed to attenuate a squeaking and/or impacting sound, while those having polyethylene liner only revealed a knocking sound attributed to impact loading conditions. For the first time, audible effects can be derived in vivo and the examined correlation brings valuable insight into the hip joint performance in an inexpensive and non-invasive manner. This research may allow for a further correlation to be derived between sound and different types of failure mechanisms. Results from this study will give surgeons and engineers a better understanding of in vivo mechanics of the hip joint and this way improve the quality of life of THA patients. In addition, the developed technique builds the first milestone in the design and implementation of a cost effective, non-invasive diagnostic technique which has the potential to become a routine diagnosis of joint conditions

    Functional MRI of the lower extremities

    Get PDF

    Biomechanics of Contemporary Implants and Prosthesis: Modeling, Experiments, and Clinical Application

    Get PDF
    Modern medicine is now more oriented towards patient-based treatments. Taking into account individual biological features allows for increasing the quality of the healing process. Opportunities for modern hardware and software allow not only the complex behavior of implants and prostheses to be simulated, but also take into account any peculiarities of the patient. Moreover, the development of additive manufacturing expands the opportunities for materials. Technical limits for composite materials, biomaterials, and metamaterials are decreasing. On the other hand, there is a need for more detailed analyses of biomechanics research. A deeper understanding of the technological processes of implants, and the mechanobiological interactions of implants and organisms will potentially allow us to raise the level of medical treatment. Modern trends of the biomechanics of contemporary implants and prostheses, including experimental and mathematical modeling and clinical application, are discussed in this book

    Evaluating the reliability of four-dimensional computed tomography scans of the wrist

    Get PDF
    Introduction: Four-dimensional CT (or 4D CT) scans are a novel approach to diagnosing musculoskeletal pathology. Although still in its infancy, there has been a surge of interest in identifying clinical applications for musculoskeletal 4D CT. The scapholunate joint has received the most attention thus far due to the complex articulations and challenges faced with prompt diagnosis of scapholunate injuries. The objective of this thesis is to review current literature on musculoskeletal 4D CT and to evaluate the inter- and intra-rater reliability of the assessment of scapholunate stability in 4D CT wrist scans. Methodology: 4D CT scans of thirteen healthy volunteers and four patients were prepared. Seven orthopaedic and plastic surgeons were recruited to qualitatively assess the stability of the scapholunate joint in the 4D CT scans. Statistical analysis included percent agreement, Fleiss’ kappa, and Gwet’s AC1 coefficient. Results: The percent agreement amongst all raters was 0.80392 (95% CI: 0.675 - 0.932). Fleiss’ Kappa was 0.54895 (95% CI: 0.252 - 0.846) and Gwet’s AC₁ was 0.54895 (95% CI: 0.391 - 0.915). The intraclass correlation coefficient (ICC) for intra-rater reliability was 0.71631 (95% CI: 0.5567 – 0.8423). Conclusion: Our pilot study suggests good inter- and intra-rater reliability for the qualitative assessment of scapholunate instability in 4D CT scans. Although further studies are required, this thesis highlights the vast potential of 4D CT as a non-invasive diagnostic technique of dynamic musculoskeletal injuries

    Quantification of knee extensor muscle forces: a multimodality approach

    Get PDF
    Given the growing interest of using musculoskeletal (MSK) models in a large number of clinical applications for quantifying the internal loading of the human MSK system, verification and validation of the model’s predictions, especially at the knee joint, have remained as one of the biggest challenges in the use of the models as clinical tools. This thesis proposes a methodology for more accurate quantification of knee extensor forces by exploring different experimental and modelling techniques that can be used to enhance the process of verification and validation of the knee joint model within the MSK models for transforming the models to a viable clinical tool. In this methodology, an experimental protocol was developed for simultaneous measurement of the knee joint motion, torques, external forces and muscular activation during an isolated knee extension exercise. This experimental protocol was tested on a cohort of 11 male subjects and the measurements were used to quantify knee extensor forces using two different MSK models representing a simplified model of the knee extensor mechanism and a previously-developed three-dimensional MSK model of the lower limb. The quantified knee extensor forces from the MSK models were then compared to evaluate the performance of the models for quantifying knee extensor forces. The MSK models were also used to investigate the sensitivity of the calculated knee extensor forces to key modelling parameters of the knee including the method of quantifying the knee centre of rotation and the effect of joint translation during motion. In addition, the feasibility of an emerging ultrasound-based imaging technique (shear wave elastography) for direct quantification of the physiologically-relevant musculotendon forces was investigated. The results in this thesis showed that a simplified model of the knee can be reliably used during a controlled planar activity as a computationally-fast and effective tool for hierarchical verification of the knee joint model in optimisation-based large-scale MSK models to provide more confidence in the outputs of the models. Furthermore, the calculation of knee extensor muscle forces has been found to be sensitive to knee joint translation (moving centre of rotation of the knee), highlighting the importance of this modelling parameter for quantifying physiologically-realistic knee muscle forces in the MSK models. It was also demonstrated how the movement of the knee axis of rotation during motion can be used as an intuitive tool for understanding the functional anatomy of the knee joint. Moreover, the findings in this thesis indicated that the shear wave elastography technique can be potentially used as a novel method for direct quantification of the physiologically-relevant musculotendon forces for independent validation of the predictions of musculotendon forces from the MSK models.Open Acces
    • 

    corecore