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Summary

Quantitative Magnetic Resonance Imaging and Analysis of
Articular Cartilage and Osteoarthritis

Dimitri Alexander Kessler

MRI plays an important role in the continuing search for a sensitive osteoarthritis (OA)
imaging biomarker able to detect early, pre-morphological alterations in cartilage composition.
Determining the compositional recovery pattern of cartilage following acute joint loading could
potentially present a more sensitive biomarker for defining cartilage health [1]. However, only a
limited amount of studies have assessed both the immediate effect of joint loading on cartilage,
as well as its post-loading recovery. In addition, when assessing the compositional responses
of cartilage to joint loading, previous studies usually did not incorporate the measurement error
of the used quantitative MRI technique into their analysis. Therefore, an uncertainty persists
whether or not compositional MRI techniques are sensitive enough to measure changes in water
and macromolecular content of cartilage, or if previous studies were merely measuring noise.
Consequently, an objective of this thesis is to increase our understanding of and reliability in
quantitative T2 and T1ρ relaxation time mapping to detect compositional responses of cartilage
following a joint loading activity.

Furthermore, to obtain the quantitative morphological and compositional measures of carti-
lage, detailed region-specific delineation of cartilage is required. This delineation (or segmen-
tation) of cartilage is laborious and time-consuming as it is usually performed manually by an
expert observer. Many new advances in image analysis, particularly those in convolutional neu-
ral networks (CNNs) and deep learning, have enabled a time-efficient semi- or fully-automated
alternative to this process [2, 3]. This thesis explores the utility of deep CNNs generated seg-
mentations for accurate surface-based analysis of cartilage morphology and composition from
knee MRIs as well as of cortical bone thickness from knee CTs.

Chapter 1 will provide an introduction into the structure and biomechanics of articular
cartilage and the role of MRI in imaging the degenerative joint disorder, osteoarthritis as well
as the effects of different joint loading activities on cartilage morphology and composition.

Chapter 2 explains the principle of MRI and the pulse sequences used in the following
chapter for the morphometric and compositional assessment of articular cartilage.

Chapter 3 describes the use of 3D Cartilage Surface Mapping (3D-CaSM) [3] to assess
variations in cartilage T1ρ and T2 relaxation times of young, healthy participants following a
mild, unilateral stepping activity. By evaluating and incorporating the intrasessional repeatabil-
ity of the T1ρ and T2 mapping techniques, I aim to highlight those cartilage areas experiencing
exercise-induced compositional changes greater than measurement error.

A significant amount of time is needed to manually segment the regions-of-interest required
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vi Summary

to perform the 3D-CaSM used in Chapter 3. Therefore, in Chapter 4, I assessed the use of deep
convolutional neural networks for automating the segmentation process for multiple knee joint
tissues simultaneous and increase the time-efficiency for evaluating knee MR datasets. I evalu-
ated the use of a conditional Generative Adversarial Network (cGAN) as a potentially improved
method for automated segmentation compared to the widely used convolutional neural network,
U-Net.

In Chapter 5 I combined the 3D-CaSM and automated segmentation methods presented in
Chapters 3 and 4, respectively to assess the use of fully automatic segmentations of femoral
and tibial bone-cartilage structures for accurate surface-based analysis of cartilage morphology
and composition on knee MR images. This was performed on publicly available data from the
Osteoarthritis Initiative, a multicentre observational study with expert manual segmentations
provided by the Zuse Institute in Berlin.

Chapter 6 describes an automated pipeline for subchondral cortical bone thickness mapping
from knee CT data. I developed a method of using automated segmentations of articular carti-
lage and bone from knee MRI data to determine the periarticular bone surface which is covered
by cartilage. This surface was then used to perform cortical bone thickness measurements on
corresponding CT data. I validated this pipeline using data from the EU-funded, multi-centre
observational study called Applied Private-Public partneRship enabling OsteoArthritis Clinical
Headway (APPROACH).

Chapter 7 summarises the main conclusions and contributions of the works presented in
this thesis as well as providing directions for future work.



Acknowledgements

First and foremost, I would like to express my sincerest gratitude to my PhD advisor, Pro-
fessor Fiona Gilbert, for all her guidance and support over the course of my PhD degree. Her
mentorship has been an invaluable experience that I will carry with me throughout my career.
Thank you for allowing me to be progressively independent as my PhD progressed, and always
providing advice when things got challenging. The co-supervision of Dr Joshua Kaggie has
been irreplaceable, especially his expertise in MRI, image analysis and programming. I grate-
fully thank him for all his time, support and encouragement he has provided throughout the
past years and it has been a real pleasure to work with and learn from him.

I am indebted to Dr Jamie MacKay for helping me getting started when I arrived and al-
ways being available to discuss new ideas and projects, even after he embarked upon new
professional journeys. I am very grateful for all his clinical insights and assistance with image
analysis and statistics. I would like to sincerely thank Professor Martin Graves for not only
being the most knowledgeable MR expert I have ever met and had the privilege of working
with, but also always making the time for anyone in his already overflowing outlook calendars
to answer any question, proofread manuscripts or offer advice on professional and personal life
decisions.

To the orthopaedic department led by Professor Andrew McCaskie. They have provided
a warm welcome and continual support throughout the past years. Thank you to all for their
time and resources. Special thanks must go to Jennifer O’Callaghan, Stephen McDonnell and
Wasim Khan for their commitment, energy and backing of the FERARI study.

Thank you to all the past and present members of the radiology department, for creating
a fun and engaging learning environment, flowing with new and exciting ideas. Thanks for
always being open to sharing your research work and ideas at various seminars. I would like
to thank Dr Andrew Grainger for his expertise on all things musculoskeletal imaging. A huge
thank you to the radiology research nurses, in particular, Amy Frary, for their help with patient
recruitment and keeping study documentation on point. A special thank you goes to all previous
and current members of the ‘coolest office in town’ in room 253. I appreciate the time given
by Dr Roie Manavaki and Dr Eva Serraro for not only entertaining all my questions (mainly
concerning R&D and study amendments) but also providing valuable advice and guidance. The
wonderful and loving care of the departmental administrative staff cannot go unmentioned.
Specifically, the organisational support and patience shown by Candice Anderson and Sarah
Perkins has been unbelievable.

This work, and with it my PhD, could not have been possible without the funding and
expert support from GlaxoSmithKline. I have learnt a lot through this academic-industrial
collaboration and appreciate the knowledge and advice provided by Rob Janiczek and Alex
Morgan-Roberts throughout the set-up and coordination of a prospective clinical imaging trial.

With that in mind, I am unbelievably appreciative to all the people that have participated in
our imaging studies. They voluntarily gave up their time to be imaged for up to 3 hours at a time
and allow us to perform hopefully impactful research. It has been hugely rewarding to meet
all the participants of the prospective clinical OA trial (FERARI) and learn of their struggles
living with OA. You have instilled an ongoing motivation in me to continue the search for an
effective OA treatment.

A big thank you to my friends in and outside of the department. To Dr Gabrielle Baxter

vii



viii Summary

and Dr Sarah Hickman, thanks for the jokes and enjoyable ’soup times’ that helped calm down
the nerves at times when obstacles seemed unconquerable. Thank you also to my friends and
teammates at the Cambridge Floorball Club for giving me a place to not only welcomingly
settle in when I newly arrived in the UK but also where I could unwind and gain new energy
during my PhD.

I am very grateful to my parents, Silvia and Frank, and my sister, Isabella, for supporting
and encouraging all my life decisions, even if they meant regularly moving away. Starting at
a very early age in South Africa and Namibia, my parents have always provided me with an
excellent education. I probably would not have had the opportunity to embark on a PhD in
Cambridge if I did not have their continuous support and praise.

To Cecilia, my source of inspiration and reassurance, my link in achieving all successes
and overcoming all obstacles, my best friend and partner in life. Her love and support have and
always will push me forward and accomplish great things, and I cannot wait to spend the rest
of my life with her.



Publications and Conference Proceedings

Publications arising from this thesis

Kessler DA, MacKay JW, Crowe V, Henson F, Graves MJ, Gilbert FJ and Kaggie JD. The Op-
timisation of Deep Neural Networks for Segmenting Multiple Knee Joint Tissues from MRIs.
Computerized Medical Imaging and Graphics 86, December 2020.
https://doi.org/10.1016/j.compmedimag.2020.101793.

Kessler DA, MacKay JW, McDonald S, McDonnell SM, Grainger A, Roberts AR, Janiczek
RL, Graves MJ, Kaggie JD and Gilbert FJ. Effectively Measuring Exercise-related Variations
in T1ρ and T2 Relaxation Times of Healthy Articular Cartilage. Journal of Magnetic Reso-
nance Imaging 52(6), 1753 - 1764, 2020.
https://doi.org/10.1002/jmri.27278.

Presentations arising from this thesis

Oral

Kessler DA, Kaggie JD, MacKay JW, Morgan-Roberts AR, Janiczek R, Graves MJ and Gilbert
FJ. Quantitative MR Relaxation Imaging of Cartilage Compositional Response to Exercise. In:
Proceedings of the 27th Annual Meeting of ISMRM, Montreal, Canada, 2019; p 0416.

Poster

Kessler DA, McLean MA, Lanz T, Riemer F, Schulte RF, Grainger A, Gilbert FJ, Graves MJ
and Kaggie JD. Bilateral Sodium Magnetic Resonance Imaging of the Lower Extremity. In:
Proceedings of the 28th Annual Meeting of ISMRM, 2020; p 6277.

Kessler DA, Kaggie JD, MacKay JW, McDonald S, Grainger A, Roberts AR, Janiczek RL,
Graves MJ and Gilbert FJ. Distinguishing Exercise-Induced Compositional Changes in Knee
Cartilage with Quantitative MR Relaxation Time Mapping. In: Proceedings of the 28th Annual
Meeting of ISMRM, 2020; p 4548.

Kessler DA, MacKay JW, Gilbert FJ, Graves MJ and Kaggie JD. Automated Segmentation
of Knee Articular Cartilage on MRI Data: Increasing Network Capacity with Transfer Learn-
ing. In: Proceedings of the 28th Annual Meeting of ISMRM, 2020; p 451.

ix

https://doi.org/10.1016/j.compmedimag.2020.101793
https://doi.org/10.1002/jmri.27278


x Publications and Conference Proceedings

Kessler DA, Gilbert FJ, MacKay JW, Graves MJ and Kaggie JD. Automated Knee MRI Seman-
tic Segmentation with Generative Adversarial Networks. In: Proceedings of the 27th Annual
Meeting of ISMRM, Montreal, Canada, 2019; p 4808.

Kessler DA, Kaggie JD, MacKay JW, Morgan AR, Janiczek R, Graves MJ and Gilbert FJ.
Imaging Compositional Cartilage Response After Exercise Using T1rho and T2 Relaxation
Mapping. In: Proceedings of the 24th Annual Meeting of British Chapter ISMRM, Oxford,
United Kingdom, 2018; p 97 (Poster 09).

Publications arising from work unrelated to this thesis

Ranmuthu CDS., MacKay JW, Crowe VA, Kaggie JD, Kessler DA and McDonnell SM. Quan-
titative analysis of the ACL and PCL using T1rho and T2 relaxation time mapping: an ex-
ploratory, cross-sectional comparison between OA and healthy control knees. BMC Muscu-
loskeletal Disorder 22, 916 2021.
https://doi.org/10.1186/s12891-021-04755-y

Kaggie JD, Lanz T, McLean MA, Riemer F, Schulte RF, Benjamin AJV, Kessler DA, Sun
C, Gilbert FJ, Graves MJ and Gallagher FA. Combined 23Na and 13C imaging at 3.0 Tesla
using a single-tuned large FOV birdcage coil. Magnetic Resonance in Medicine, 2021.
https://doi.org/10.1002/mrm.28772.

Serrao EM, Kessler DA, Carmo B, Beer L, Brindle KM, Buonincontri G, Gallagher FA, Gilbert
FJ, Godfrey E, Graves MJ, McLean MA, Sala E, Schulte RF and Kaggie JD. Magnetic reso-
nance fingerprinting of the pancreas at 1.5 T and 3.0 T. Scientific Reports 10(1), 17563, 2020.
https://doi.org/10.1038/s41598-020-74462-6.

Kessler DA, MacKay JW, McDonnell S and Kaggie JD. Editorial for ”Diffusion Tensor Imag-
ing for Quantitative Assessment of Anterior Cruciate Ligament Injury Grades and Graft”. Jour-
nal of Magnetic Resonance Imaging 52(5), 1485-1486, 2020.
https://doi.org/10.1002/jmri.27317.

Kaggie JD, Deen S, Kessler DA, McLean MA, Buonincontri G, Schulte RF, Addley H, Sala
E, Brenton J, Graves MJ and Gallagher FA. Feasibility of Quantitative Magnetic Resonance
Fingerprinting in Ovarian Tumours for T1 and T2 Mapping in a PET/MR Setting. IEEE Trans-
actions on Radiation and Plasma Medical Sciences 3(4), 509-515, 2019.
https://doi.org/10.1109/TRPMS.2019.2905366.

https://doi.org/10.1186/s12891-021-04755-y
https://doi.org/10.1002/mrm.28772
https://doi.org/10.1038/s41598-020-74462-6
https://doi.org/10.1002/jmri.27317
https://doi.org/10.1109/TRPMS.2019.2905366


Commonly used Abbreviations and
Mathematical Symbols

Abbreviations / Acronyms
2D Two-dimensional
3D Three-dimensional
3D-CaSM Three-dimensional cartilage surface mapping
APPROACH Applied Public-Private Research enabling OsteoArthritis Clinical Headway
cGAN Conditional generative adversarial network
CNN Convolutional neural network
CV Coefficient of variation
DL Deep learning
FERARI Functional Excercise Response on osteoArthritis Imaging
FoV Field of view
FSE Fast spin echo
GAN Generative adversarial network
GRE Gradient echo
MRI Magnetic resonance imaging
OA Osteoarthritis
OAI Osteoarthritis Initiative
PD Proton density
RF Radiofrequency
RMS Root-mean-squared
SE Spin echo
SDD Smallest detectable difference
SKI10 Segmentation of Knee Images 2010
SPGR Spoiled gradient recalled-echo
T1 Spin-lattice relaxation time
T1ρ Spin-lattice relaxation time in the rotation frame
T2 Spin-spin relaxation time
T∗2 "Effective" T2

TE Echo time
TR Repetition time



xii Publications and Conference Proceedings

TSL Spin-lock time
ZIB Zuse Institute Berlin

Mathematical Symbols
α Flip angle
γ Gyromagnetic ratio
~ Reduced Planck’s constant
µ Magnetic dipole moment
ωL Larmor frequency
B0 Static magnetic field
B1 Radiofrequency field
M0 Net longitudinal magnetisation



List of Figures

1.1 Illustration of the knee joint and structural components of articular cartilage. . . 2

1.2 Model of subchondral bone remodelling during OA progression. . . . . . . . . 3

1.3 Radiographic progression of knee OA. . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Segmentation of knee joint tissues. . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 Boltzmann distribution of the proton spins within an applied static magnetic field. 16

2.2 T1 and T2 relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Illustration of an MR system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4 Gradient coil configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Frequency encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.6 MR image reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.7 Single-echo spin echo pulse sequence diagram . . . . . . . . . . . . . . . . . . 25

2.8 Fast spin echo pulse sequence diagram . . . . . . . . . . . . . . . . . . . . . . 25

2.9 Gradient echo pulse sequence diagram . . . . . . . . . . . . . . . . . . . . . . 26

2.10 Spoiled gradient echo pulse sequence diagram . . . . . . . . . . . . . . . . . . 27

2.11 T1ρ pulse sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.12 T2 pulse sequence diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1 Summary of MR sessions performed. . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Summary of 3D-CaSM analysis pipeline illustrated for femoral cartilage surface. 38

3.3 Bland-Altman plots of T1ρ and T2 measurements with knee repositioning. . . . 41

3.4 T1ρ (top) and T2 measurements (bottom) averaged over whole femoral, medial
tibial, lateral tibial and patellar cartilage surfaces for all exercise recovery scans. 43

3.5 Participant-averaged T1ρ difference maps from (top) patellar, (middle) femoral,
(bottom) lateral and medial tibial cartilage surfaces. . . . . . . . . . . . . . . . 44

3.6 Plots showing the normalized change in participant-average femoral, patellar,
medial and lateral tibial T1ρ (%T1ρ change). . . . . . . . . . . . . . . . . . . . 45

3.7 Participant-averaged T2 difference maps from (top) patellar, (middle) femoral,
(bottom) lateral and medial tibial cartilage surfaces. . . . . . . . . . . . . . . . 46

3.8 Plots showing the normalized change in participant-average femoral, patellar,
medial and lateral tibial T2 (%T2 change). . . . . . . . . . . . . . . . . . . . . 47

4.1 Conditional GAN structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



xiv LIST OF FIGURES

4.2 Results of Network Objective Function. . . . . . . . . . . . . . . . . . . . . . 62

4.3 Results of testing on noise only images. . . . . . . . . . . . . . . . . . . . . . 65

4.4 Results of Altering the Loss Objective during Training. . . . . . . . . . . . . . 66

4.5 Influence of altering the loss objective during cGAN training on the segmenta-
tion performance of the medial gastrocnemius and vastus muscles. . . . . . . . 68

4.6 Results of PatchGAN Receptive Field Size. . . . . . . . . . . . . . . . . . . . 71

4.7 Image Artefact due to the choice of PatchGAN Receptive Field Size. . . . . . . 71

4.8 Loss Evolution during cGAN Training. . . . . . . . . . . . . . . . . . . . . . . 72

4.9 Results of Transfer Learning: SKI10 and OAI ZIB. . . . . . . . . . . . . . . . 76

4.10 Results of Transfer Learning: AMROA. . . . . . . . . . . . . . . . . . . . . . 78

5.1 The 2D and 3D U-Net architectures. . . . . . . . . . . . . . . . . . . . . . . . 90

5.2 3D Cartilage Surface Mapping (3D-CaSM) pipeline used to compare quanti-
tative cartilage measurements determined from manual and network-generated
segmentations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3 Scatterplots show comparison of vertex-wise thickness measurements. . . . . . 97

5.4 Bland-Altman plots show comparison of vertex-wise thickness measurements. . 98

5.5 Vertex-wise RMS thickness data extracted from manual and automated seg-
mentations from the OAI ZIB test set displayed on the canonical femoral, me-
dial tibial and lateral tibial cartilage surfaces. . . . . . . . . . . . . . . . . . . 98

5.6 Scatterplots show comparison of vertex-wise T2 measurements. . . . . . . . . . 99

5.7 Bland-Altman plots show comparison of vertex-wise T2 measurements. . . . . 99

5.8 Vertex-wise RMS T2 data extracted from manual and automated segmentations
from the OAI ZIB test set displayed on the canonical femoral, medial tibial and
lateral tibial cartilage surfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.1 Flowchart of periarticular bone surface estimation. . . . . . . . . . . . . . . . 107

6.2 Flowchart of cortical bone mapping pipeline. . . . . . . . . . . . . . . . . . . 108

6.3 Bone segmentation accuracy of the APPROACH testing dataset with different
pretraining / fine-tuning ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Cartilage segmentation accuracy of the APPROACH testing dataset with dif-
ferent pretraining / fine-tuning ratios. . . . . . . . . . . . . . . . . . . . . . . . 110

6.5 Scatterplot and Bland-Altman plot showing the comparison of surfacewise av-
erage cortical thickness measurements determined from periarticular bone sur-
faces extracted from manual and automatic segmentations. . . . . . . . . . . . 111

6.6 Vertexwise RMS cortical thickness data determined from periarticular bone
surfaces extracted from manual and 3D U-Net automated segmentations from
the APPROACH test set displayed on the canonical femoral surface. . . . . . . 111

6.7 Scatterplot and Bland-Altman plot showing the comparison of vertexwise cor-
tical thickness measurements determined from periarticular bone surfaces ex-
tracted from manual and automatic segmentations. . . . . . . . . . . . . . . . 112

7.1 FERARI study protocol and MR compatible loading device. . . . . . . . . . . 116



LIST OF FIGURES xv

7.2 Magnetic resonance fingerprinting maps of the knee. . . . . . . . . . . . . . . 119



xvi



List of Tables

1.1 Summary of studies investigating the effects of daily living on articular carti-
lage using in vivo MRI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Summary of studies investigating the effects of different exercise regimes on
articular cartilage using in vivo MRI. . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Summary of studies investigating the effects of mechanical joint loading on
articular cartilage using in vivo MRI. . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Gyromagnetic ratio and spin quantum number of nuclei used in MRI. . . . . . 15

3.1 Coefficients of variation (CV) for phantom T1ρ and T2 repeatability measure-
ments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Root-mean-squared coefficients of variation (RMS-CV) for in vivo T1ρ and T2

repeatability measurements. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Determined smallest detectable differences and ±95% limits of agreement from
Bland-Altman analysis for both T1ρ and T2 and for all cartilage surfaces. Ab-
breviations: LoA, limits of agreement; SDD, smallest detectable difference. . . 42

3.4 Results of the linear mixed-effects models. . . . . . . . . . . . . . . . . . . . . 42

3.5 The total number of canonical surface vertices from all four cartilage sur-
faces and the percentage of surface covered by cartilage regions experiencing
changes in T1ρ (T1ρ-%SC) and T22 (T2-%SC) above the measurement error in
response to exercise. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1 Participant characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.2 Results of the Network Objective Function: cGAN. . . . . . . . . . . . . . . . 61

4.3 Results of the Network Objective Function: U-Net. . . . . . . . . . . . . . . . 63

4.4 Results of additionally testing on noise only images. . . . . . . . . . . . . . . . 64

4.5 Results of Altering the Loss Objective during Training. . . . . . . . . . . . . . 67

4.6 Results of Varying Generator Network Depth: Number of Convolutions. . . . . 69

4.7 Results of Varying Generator Network Depth: Number of Minimum Feature
Maps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.8 Results of PatchGAN Receptive Field Size. . . . . . . . . . . . . . . . . . . . 73

4.9 Results of Transfer Learning. SKI10 and OAI ZIB . . . . . . . . . . . . . . . 75

4.10 Results of Transfer Learning. AMROA . . . . . . . . . . . . . . . . . . . . . . 77



xviii LIST OF TABLES

5.1 Summary of testing dataset used to evaluate networks and to perform quantita-
tive cartilage surface analysis. . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Comparison of segmentation performance of the proposed 2D and 3D U-Net . 95
5.3 Results of Pearson correlation (R) and Bland-Altman analysis. . . . . . . . . . 96
5.4 Results of thickness and T2 analysis of the baseline OAI ZIB testing dataset. . . 97

6.1 MRI pulse sequence parameters of training, validation and testing datasets. . . 105
6.2 CT acquisition parameters of testing dataset. . . . . . . . . . . . . . . . . . . . 105
6.3 Summary of the APPRAOCH dataset characteristics used for training, valida-

tion and testing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106



Contents

Summary v

Publications and Conference Proceedings ix

Nomenclature xi

List of Figures xiii

List of Tables xvii

1 Introduction 1
1.1 Knee Articular Cartilage and Osteoarthritis . . . . . . . . . . . . . . . . . . . 1

1.1.1 Cartilage Structure, Metabolism and Biomechanics . . . . . . . . . . . 1

1.1.2 Aging, Degeneration and Osteoarthritis . . . . . . . . . . . . . . . . . 2

1.1.3 Role of MRI in Imaging Articular Cartilage and
Osteoarthritis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 MRI Assessment of In Vivo Cartilage Response to Joint Loading Activities . . 5

1.3 Deep Convolutional Neural Networks for Knee Joint Tissue Segmentation . . . 11

2 Quantitative Magnetic Resonance Imaging 15
2.1 Principles of Nuclear Magnetic Resonance . . . . . . . . . . . . . . . . . . . . 15

2.2 Signal Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 T1 and T2 Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 Relaxation in the Rotating Frame . . . . . . . . . . . . . . . . . . . . 19

2.4 The MR System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4.1 Magnet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.2 Gradient Coil System . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4.3 Radio-Frequency Coil System . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Basic Pulse Sequences and Quantitative Relaxation Time Mapping . . . . . . . 24

2.5.1 Single-Echo Spin Echo . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5.2 Fast Spin Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25



xx CONTENTS

2.5.3 Gradient Echo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.5.4 Spoiled Gradient Echo . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5.5 Fat Suppression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.6 T1ρ and T2 Quantification . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Measuring Exercise-related Variations in T1ρ and T2 of Healthy Articular Carti-
lage 33
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 Study Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.2 Sequence Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.3 Imaging Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.4 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Phantom Imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.2 Group 1: In Vivo Repeatability Study . . . . . . . . . . . . . . . . . . 39

3.3.3 Group 2: Exercise and Recovery Study . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Optimisation of Deep Neural Networks for Segmenting Multiple Knee Joint Tis-
sues 51
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.1 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.2.2 Training Data and Masking . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.3 Network Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.2.4 Segmentation Evaluation Metrics . . . . . . . . . . . . . . . . . . . . 57

4.2.5 Evaluation of Network Characteristics . . . . . . . . . . . . . . . . . . 57

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.3.1 Network Training and Testing . . . . . . . . . . . . . . . . . . . . . . 59

4.3.2 Evaluation of Network Objective Function . . . . . . . . . . . . . . . 59

4.3.3 Evaluation of Altering Loss Objective during Training . . . . . . . . . 65

4.3.4 Evaluation of the Generator Depth . . . . . . . . . . . . . . . . . . . . 68

4.3.5 Evaluation of PatchGAN Receptive Field Size . . . . . . . . . . . . . 71

4.3.6 Evaluation of Transfer Learning . . . . . . . . . . . . . . . . . . . . . 74

4.3.7 AMROA: Comparison to Previous Studies . . . . . . . . . . . . . . . 79

4.3.8 SKI10 and OAI ZIB: Comparison to Previous Studies . . . . . . . . . 81

4.3.9 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5 Automated Segmentation of Knee MRIs for Quantitative Cartilage Surface-based
Analysis 87
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.2.1 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2.2 2D and 3D U-Net Model Specifications . . . . . . . . . . . . . . . . . 89
5.2.3 Data Preparation and Network Training . . . . . . . . . . . . . . . . . 91
5.2.4 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2.5 Postprocessing and Cartilage Surface-based Analysis . . . . . . . . . . 92
5.2.6 Statistical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.1 Network Training and Testing . . . . . . . . . . . . . . . . . . . . . . 94
5.3.2 Segmentation Performance . . . . . . . . . . . . . . . . . . . . . . . . 94
5.3.3 Cartilage Surface-based Analysis . . . . . . . . . . . . . . . . . . . . 94

5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 Towards Automated Cortical Bone Mapping using Knee MRI and CT Data 103
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.2.1 Image Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
6.2.2 Data Preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
6.2.3 Model Architecture and Training . . . . . . . . . . . . . . . . . . . . . 106
6.2.4 Postprocessing and 3D Surface Analysis . . . . . . . . . . . . . . . . . 107
6.2.5 Model Evaluation and Statistical Analysis . . . . . . . . . . . . . . . . 109

6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3.1 Segmentation Performance Comparison . . . . . . . . . . . . . . . . . 109
6.3.2 Cortical Bone Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Future Developments and Conclusions 115
7.1 Contributions to Knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

xxi



xxii CONTENTS



Chapter 1

Introduction

1.1 Knee Articular Cartilage and Osteoarthritis

1.1.1 Cartilage Structure, Metabolism and Biomechanics

Hyaline (articular) cartilage is an elastic tissue that covers the synovial, or diarthrodial, joint
areas as the articular surface to reduce friction between opposing bone surfaces and to with-
stand and distribute pressure in the joint. This cartilage primarily consists of an extracellular
matrix (ECM) and a small number of sparsely distributed chondrocyte cells. Articular cartilage
lacks blood vessels and nerves with mass exchange taking place through diffusion [4]. The
most abundant component of articular cartilage and the ECM is water, with other lesser con-
centrated components being proteoglycans and multiple types of collagen fibres. The cellular
organisation and collagen fibre architecture of articular cartilage can be divided into four zones
- the thin superficial zone (10%-20% of total thickness), the middle zone (40%-60% of total
thickness), the deep zone (30% of total thickness) and the calcified zone [5–7]. The tidemark
characterises the interface between the deep zone and the calcified cartilage layer [6]

Collagen fibrils within articular cartilage are primarily type II collagen with the lesser pop-
ulated collagen types (such as XI and IX) being there to stabilise the fibrils structures [7].
When expanded, collagen fibrils are stiff and strong, however offer minimal resistance when
compressed due to their large length-to-thickness ratio. In the thin superficial zone, the col-
lagen fibrils are densely packed and orientated parallel to the cartilage surface to protect and
maintain the deeper cartilage layers. The fibrils in the middle zone are less compressed and
randomly orientated, contributing to the resistant response of cartilage to shear stress [7]. In
the deep zone, the collagen fibrils compose larger, parallel aligned bundles that are fixed per-
pendicular through the calcified cartilage layer to the subchondral bone [6, 7]. This variation
in orientation, size and density of the collagen fibrils is fundamental to the ability of cartilage
to withstand mechanical pressure [6, 7].

Articular cartilage contains large aggregating proteoglycans (aggrecans) along with several
smaller proteoglycans. Proteoglycans consist of a protein core with one or more (up to few
hundred) negatively charged glycosaminoglycans (GAGs) attached to it. This negative charge
within the cartilage tissue attracts counterions, such as sodium ions, which in turn results in an
uptake of water by osmotic processes. Thus, a crucial function of the proteoglycans is to attract
water and maintain turgor to enable the cartilage tissue to cope with pressure and distribute
mechanical stress [8].
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Figure 1.1: Illustration of the knee joint and structural components of articular cartilage.

An important function of the chondrocytes is the continuous synthesis and replacement
of GAGs on the proteoglycans as these only have half-lives of weeks to years [9]. Collagen
however, has a half-life of several decades and its production by chondrocytes slows down with
aging [7, 9, 10]. Regular deformation of the cartilage structure and ultimately that of the ECM
through moderate mechanical loading generates biochemical signals affecting the metabolic
activity of the chondrocytes to maintain homeostasis throughout life [11–13].

1.1.2 Aging, Degeneration and Osteoarthritis

Osteoarthritis (OA) is a common degenerative disorder affecting one or multiple diarthrotic
joints and a major cause of physical disability in the adult population [9, 14]. Symptomatically,
OA is characterised by varying degrees of pain, stiffness, instability and functional impairment
during normal daily activities and ultimately impairing quality of life [14–16]. OA is nowa-
days regarded as a disorder involving the entire joint. The pathophysiology of the disease and
structural changes occurring during progression are cartilage loss and calcification, osteophyte
formation, subchondral bone and meniscal modifications, and inflammation of the synovial
joint lining [9, 14, 16, 17].

Early changes in osteoarthritic cartilage include the loss of macromolecular components
such as proteoglycans and collagen. With the loss of negatively charged GAGs, the water
content increases and the cartilage matrix swells up, resulting in the biomechanical abilities
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of articular cartilage altering and load-bearing capabilities reducing [9, 11, 12, 16]. As OA
progresses and cartilage matrix components deplete, the calcified cartilage and subchondral
bone become exposed to forces during joint loading, which could lead to the development of
bone marrow lesions [9, 16]. Both the dense subchondral cortical as well as the underlying,
porous subchondral cancellous bone undergo compositional and structural alterations to adapt
to OA-induced biomechanical variations Figure 1.2 [18]. Due to an increased bone remodelling
rate in the early stages of OA, the subchondral cortical bone becomes thinner, and concurrently,
cancellous bone is lost. In late-stage OA, the calcified cartilage increases and extends into the
hyaline articular cartilage. Additionally, the cortical bone becomes thicker while the cancellous
trabecular bone becomes sclerotic [19, 20].

Figure 1.2: Model of subchondral bone remodelling during OA progression. (a) Sagittal CT image with (b) a
close up of the femoral condyle. Illustration of (c) normal, (d) early OA and (e) late-stage OA subchondral bone
composition and remodelling.

The prevailing risk factor for primary OA development is age, as cartilage metabolism
and composition (water and macromolecular content/distribution) as well as chondrocyte ac-
tivity change with advancing years [7, 21]. As a result, the load-bearing capabilities of the
articular cartilage reduce and other structures, such as the subchondral bone, are consequently
subjected to greater forces. Secondary OA results from another disorder or condition such as
trauma or injury, obesity, genetics, knee malalignment and other abnormal joint biomechanics
[9, 14, 22]. While long-term articular cartilage homeostasis is maintained while being sub-
ject to physiologic mechanical loads, repeated or continuous exposure of cartilage to abnormal
loads (high-impact sports) or minimal loads (for example non-weight bearing after injury) can
have degenerative effects on cartilage structure and ultrastructure [13, 22].

Currently, OA is treated using palliative approaches to treat symptoms such as pain evoked
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by inflammation to improve mobility rather than target the disease itself [16, 23]. In most cases,
treatment begins at advanced osteoarthritic stages where radiographic evidence of OA, such as
joint space narrowing, is already present [9]. Treatments which can prevent OA, halt or slow
down progression or even reverse the effects, are lacking at present [9, 23]. As OA progresses,
a total joint replacement may be the final option to treat relentless severe pain. Developing new
imaging methods and determining corresponding imaging biomarkers to identify the cartilage
compositional state could help improve our understanding of the osteoarthritic process and aid
the development of treatment strategies prior to irreversible joint damage [23].

1.1.3 Role of MRI in Imaging Articular Cartilage and
Osteoarthritis

Clinical diagnosis of OA is based on patient-reported symptoms of joint pain and stiffness, and
radiographic evidence of an osteophyte and joint space narrowing, indicating loss of cartilage
and meniscal degeneration. Radiographic detection of OA means the disease is diagnosed at a
later stage in the progression pathway and structural changes already exist.

Figure 1.3: Radiographic progression of knee OA. Radiographs show a) normal appearance, b) doubtful to min-
imal joint space narrowing (JSN), c) mild JSN with formation of small osteophytes, d) moderate JSN and osteo-
phyte development, and e) severe narrowing to complete loss of joint space with bone on bone contact.

The Kellgren and Lawrence (K-L) grading system [24] is most often used to classify ra-
diographic knee OA. The system consists of five grades: None (0), Doubtful (1), Minimal (2),
Moderate (3) and Severe (4). Structural knee joint changes used to grade the degree of OA are
mainly the presence of osteophytes, the magnitude of joint space narrowing and an increased
density of subchondral bone. Grade 0 indicates the certain absence, while grades ≥2 specify
the definite appearance of radiographic changes associated with OA [24, 25].

Although the acquisition and classification of plain radiographs are cost effective and swiftly
performed, they assume a linear progression of the disease and do not allow direct visualisation
of all tissues involved in OA [26]. Recent research studies evaluating the longitudinal progres-
sion of knee OA, such as the Osteoarthritis Initiative, have incorporated magnetic resonance
imaging (MRI) due to its ability to visualise bone and soft tissues and allow both the qualitative
and quantitative assessment of articular cartilage and other joint tissues [27].

Qualitative MRI based on morphologic evaluation of OA-related abnormalities is most
frequently used. The MRI Osteoarthritis Knee Score (MOAKS) system is one of the most
commonly used semi-quantitative MR scoring system for knee OA [28]. MOAKS was devel-
oped from two existing scoring systems, the Whole Organ Magnetic Resonance Imaging Score
(WORMS) and Boston Leeds Osteoarthritis Knee Score (BLOKS), in an effort to combine their
advantages while also addressing their limitations [29, 30]. A common feature of all MR-based
semi-quantitative scoring systems is that the knee is divided into multiple anatomical subre-
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gions and graded according to the presence of various tissue abnormalities such as cartilage
defects, meniscal tears, and bone marrow lesions [31]. Being able to evaluate various OA-
related pathologies using conventional MR sequences that are widely and clinically available is
a great advantage to the semi-quantitative assessment methods. Although the semi-quantitative
scoring methods allow the evaluation of all tissues involved in OA, they are susceptible to
inter-observer variability, dependent on the observers expertise and have been shown to be less
sensitive to changes in cartilage and bone marrow lesions over a 2-year period compared to
quantitative assessment [32].

Quantitative MRI methods can provide more detail on cartilage morphological and physio-
logical state. Morphological quantifications typically include measurements of cartilage thick-
ness, volume and surface area [33–35]. As the cartilage thickness only ranges over a few mil-
limetres, these MR-based quantifications require images with high-resolution as well as high
contrast differences between cartilage and other joint tissues to achieve accurate delineations.
Consequently, gradient echo-based sequences with different methods of fat suppression are typ-
ically employed to measure cartilage morphological features. These include three-dimensional
(3D) spoiled gradient echo (SPGR) sequences with fat-suppression or dual echo steady state
(DESS) sequences with fluid-excitation.

In addition, several advanced quantitative MRI techniques have been developed to charac-
terise the physiology (composition) of cartilage. These techniques include the measurement
of transverse relaxation time (T2) and the spin lattice relaxation time in the rotating frame
(T1ρ). Both T2 and T1ρ are tissue-specific parameters that influence image contrast. Therefore,
quantifying these relaxation times through T2 and T1ρ mapping techniques can assist in tissue
characterisation as well as determine differences between healthy and diseased tissues. Their
potential lies particularly in the detection of early alterations in the biochemical composition
of cartilage prior to any OA-induced morphological changes. T2 relaxation time mapping is
the most commonly used and well established technique for studying cartilage composition
[36]. T2 relaxation times have been shown to be sensitive to alterations in cartilage hydration
as well as collagen integrity with prolonged T2 relaxation times being associated with degen-
erated cartilage [37, 38]. T1ρ is increasingly being used assess cartilage composition and has
been demonstrated to be sensitive to variations in the proteoglycan content of cartilage [39, 40].
T1ρ possesses a superior discriminatory ability to differentiate between various degrees of OA
compared to T2 [41, 42]. Although both T2 and T1ρ relaxation time mapping techniques have
been shown to be reliable and able to discriminate between normal and osteoarthritic cohorts,
these techniques have not yet been adopted into routine clinical use [41]. At present, their use is
mainly limited to academic institutions that have the required hardware and analysis expertise
[43].

1.2 MRI Assessment of In Vivo Cartilage Response to Joint
Loading Activities

Exercise programs have been suggested as a form of non-invasive treatment and management
option of knee OA-related symptoms [44]. Increasingly more studies are evaluating the ben-
eficial effects of different exercise programs for reducing knee pain and increasing mobility,
however, these outcomes are usually based on objective measures [45]. By incorporating quan-
titative MRI measures of the effects of joint loading activities on cartilage structure and compo-
sition into these studies, a sensitive imaging biomarkers able to quantify cartilage health could
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potentially be identified and further the development of appropriate treatment strategies for OA.
Numerous studies have examined the effects of daily living, different exercise types and in

vivo mechanical loading on articular cartilage structure and composition to assess the repeata-
bility and sensitivity of different quantitative MRI techniques. The purpose of this section is
to provide a short summary of the current literature on the impact of various knee joint load-
ing activities on articular cartilage structure (thickness or volume) and composition (T1ρ or T2)
assessed with in vivo MRI. A literature search strategy was formulated to identify all publi-
cations in Medline via PubMed and Scopus assessing diurnal-, exercise- and loading-related
effects on knee articular cartilage structure and micro-structure using MRI. Studies involving
participants with healthy, injured or diseased knee joints were considered. All identified publi-
cations were divided into three groups: Cartilage response to activities of daily living, exercise
and mechanical joint loading.

Understanding the diurnal strains on articular cartilage is of great interest as these effects
play an important part in maintaining healthy cartilage functionality and composition with car-
tilage degeneration potentially resulting from any alterations to normal, physiological cartilage
loading. During normal daily loading, the cartilage structure and composition is varied through
its compression resulting in water displacement from the cartilages extracellular matrix and
altering its macromolecular content [46]. Morphological and compositional alterations in the
whole cartilage due to diurnal effects were presented in most studies investigating these effects
(Table 1.1) as non-significant. Nevertheless, it was highly recommended that the diurnal effects
should be considered and avoided when conducting a longitudinal imaging study as significant
focal deformations in the most weight-bearing cartilage regions were determined [46, 47]. Al-
though the results from Li et al showed no significant difference in diurnal variations of T1ρ

and T2 relaxation values between morning and evening scans, the relaxation time measure-
ments from the evening scans exhibited higher coefficients of variation than those determined
during morning scans [48]. Consequently, they advised scanning participants in longitudinal
studies in the morning to minimise diurnal-related variations of relaxation time measurements
due to different daily activities of participants.

Studying the effects of different forms of static and dynamic joint loading exercise activities
is important for determining the strain and magnitude of loading that promote healthy cartilage
metabolism and when catabolic and cartilage degenerative effects begin to take over. The find-
ings in the current studies (Table 1.2) suggest that short-term joint loading activities deform
human articular cartilage independent of the cartilage state (healthy or diseased). While carti-
lage deformations seemed to be more focal and restricted to limited regions during more static
activities such as a squat hold, the deformations seen during more dynamic exercises such as
knee bends or running appeared to be more distributed over the entire cartilage surface [55,
58, 67, 71]. The structural and compositional response of cartilage suggests to depend more
on loading type rather than the magnitude of load the whole joint is exposed to [69, 71]. The
study results suggest good cartilage adaptation to static and dynamic loads and that cartilage
possesses the ability to recover structurally from deformation within 15 - 90 min after joint
loading, depending on loading type, cartilage region and cartilage state, but not necessarily
on magnitude and duration of the joint loading activity [54, 60, 65]. With increasing age, the
magnitude of cartilage deformation seems to become less, while sex, physical training status
and duration of activity appears not to affect deformational behaviour [56, 58, 59]. A key con-
founder in imaging the effects of exercise on cartilage morphology and composition is, that the
deformational behaviour of cartilage can only be determined shortly after and not immediately
after exercise since time is needed to position the participant back on the MRI scanner before
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being able to acquire the data.
An MR compatible loading device can assist in determining the immediate effects that me-

chanical loading of the knee joint has on cartilage morphology and composition. The majority
of the current studies using loading devices (Table 1.3) applied a load of about 50% of the par-
ticipants body weight as this is thought to emulate the magnitude of static loading of the knee
joint present during normal standing. Additionally, joint loading was typically applied for 8-20
minutes prior to post-loading MR imaging. The findings from Nag and colleagues [76] suggest
that healthy ageing of cartilage does not influence the response ability to mechanical loading.
However, degenerated cartilage of OA patients showed slightly less weight-bearing capabilities
through greater deformational and compositional changes compared to healthy cartilage during
loading [80, 82]. The medial cartilage compartments seem to be more involved in the weight-
bearing and -distribution process during loading showing larger compositional variations and an
increase in cartilage-to-cartilage contact area [78, 79, 81]. Additionally, results from Schoen-
bauer et al suggest plateau-like cartilage adaptation to static mechanical loads with increasing
load duration [83].

To summarise, high-resolution 3D gradient echo sequences have shown to provide reliable
measures of cartilage volume and thickness, allowing the assessment of cartilage compression
and deformation in response to different types and magnitudes of joint loading. Additionally,
quantitative T2 and T1ρ relaxation time mapping techniques suggest being reproducible and
permit the assessment of cartilage compositional alterations following joint loading.

1.3 Deep Convolutional Neural Networks for Knee Joint Tis-
sue Segmentation

Most quantitative MR imaging methods used for assessing musculoskeletal joint tissues have
not been able to make the step into clinical practice due to the large burden placed upon the
observes to manually validate these methods. Developing tools that can automatically analyse
the health state of joint tissues fast, reliable and accurate are therefore desirable. Additionally,
such tools could aid in evaluating large scale longitudinal knee imaging datasets such as the Os-
teoarthritis Initiative (OAI) or the Applied Private-Public partneRship enabling OsteoArthritis
Clinical Headway (APPROACH) studies.

The motivation behind deep learning comes from the inability of simple machine learning
algorithms extracting hand-crafted features to generalise large, high-dimensional datasets [86].
Convolutional neural networks, or CNNs, are deep neural networks designed to extract impor-
tant texture and intensity features from data grids such as images or time-series. CNNs have
shown tremendous potential in overcoming the time-consuming, demanding and variability-
prone process of manual tissue segmentation from medical images [87]. The CNN architec-
tures consist of different types of layers that either perform a fixed mathematical function or a
transformation on the inputs. The building blocks of almost all CNNs are:

• Convolutional layers are the core parts and the so-called feature extractors of any CNN.
Every input passing through a convolutional layer will have a defined number of small
n x n filters slide or convolve over its grid and output the dot product of each grid and
filter entry. These layers take advantage of sparse connectivity within the input image
by constraining the output entries on a spatially local subarea of the input. The output
of a convolutional layer is referred to as a feature map. The number of feature map
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representations of the input is determined by the number of filters convolving over the
input. The size of the output is defined by the stride with which the filter is slid across
the input as well as the size of zero-padding around the inputs boarder.

• Pooling layers, which help reduce the dimensionality and the computational time of the
network by outputting a summary statistic of a spatially local subset of the input. The
most common statistical pooling operations are max pooling (only forward the maximum
value of the input subset) and average pooling (forward the average value of the input
subset). This layer helps preserve the important feature information of the image, while
less important features are removed.

• Activation layers, which are typically applied after every convolutional layer to introduce
non-linearity into the network and allow it to solve more complex problems. The most
frequently used activation functions are the sigmoid function, the tanh function as well
as the ReLU (Rectified Linear Unit) and leakyReLU functions [88].

In supervised learning, the training phase of the CNN consists of the minimisation of a pre-
defined objective function, also known as the loss function L, by using a pre-annotated dataset
and comparing the ground truth segmentations with the networks predicted segmentations. In
segmentations tasks, this loss function is usually the Cross Entropy or Binary Cross Entropy
loss, or loss functions based on segmentation evaluation metrics such as the Dice similarity
coefficient [89].

Figure 1.4: Sagittal DESS image overlayed with manual cartilage and bone segmentations (left) and the corre-
sponding volumetric representation of the bone and cartilage surfaces (right).

Two layers used to typically speed up and stabilize training of deep neural networks are
the Batch Normalisation and Dropout layers. The Batch Normalisation layer enables stabil-
ity during learning by decreasing the influence of outlying large weights that can impact the
training process [90]. These layers are typically placed after convolutional layers to produce
normalised activation maps by subtracting the mean and dividing by the standard deviation for
each training batch. By normalizing, one can use larger training rates during loss optimisation
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which speeds training. This also makes the network less dependent on careful parameter ini-
tialisation. The Dropout layer changed the concept of learning all input entries to learning only
from a random fraction of the input entries in the network in each training iteration [91]. There-
fore, during loss optimisation, a different, slightly smaller network is trained in each iteration.
Dropout layers consequently act as regularisers as they force the network to learn more robust
features.

To assess the accuracy of the network-generated segmentation map compared to the ground
truth, different evaluation metrics are used. Overlap-based metrics such as the Dice similarity
coefficient [89] or Jaccard similarity coefficient [92] evaluate the accuracy of spatial overlap
of generated and true segmentation. Volume-based metrics such as the volume overlap error
assess volumetric overlap between ground truth and automated segmentations. Lastly, distance-
based metrics such as the average symmetric surface distance evaluate the similarities between
automated and manual segmentation contours. They measure the distance between each voxel
from the manual segmentation contours to the nearest voxel on the contours of the automated
segmentation and vice versa.

The most widely used CNN for automated image segmentation is the U-Net introduced
by [93]. This CNN consists of a contracting path and an expansive path, which gives it the
u-shaped architecture. In the contracting (encoding) path, an input image is increasingly down-
sampled for coarse feature detection. In the ensuing expansive (decoding) path, the data is
up-sampled to allow detailed feature localisation. Together with additional skip-connections,
in which features from the contracting path are concatenated to features from the expanding
path, high-resolution outputs (segmentations) are attained.

Image-to-image translation CNNs such as Generative Adversarial Networks (GANs) as
well as their conditional variant (cGAN) have also recently been exploited for segmentation
of musculoskeletal MRIs [94, 95]. GANs involve two CNNs, a generative and a classification
network that are trained competitively and simultaneously towards optimising a loss function
[96]. The generative network, typically a U-Net, focusses on generating realistic translations
of the ground truth training images, while the classification / discriminator network decides
if both the generated and ground truth images are accurate representations of each other, i.e.
come from the same data distribution. While GANs typically generate images from random
noise inputs, cGANs additionally receive an image as input which to translate to the desired
output [97].

Further details on the architectures and trainings of U-Nets and cGANs for segmentation of
knee joint tissues from MRIs will be provided in Chapters 4 - 6 of this thesis and therefore not
be discussed here.
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Chapter 2

Quantitative Magnetic Resonance Imaging

2.1 Principles of Nuclear Magnetic Resonance

Magnetic resonance imaging (MRI) is a non-ionising, cross-sectional imaging method in medicine
with which metabolic and functional information of the human body can be obtained. Atomic
nuclei that are made up of an odd number of nucleons possess an intrinsic angular momentum
or spin J and a therewith connected magnetic dipole moment:

µ = γ · J. (2.1.1)

Here, γ is the gyromagnetic ratio, a characteristic constant of each type of nucleus. The mag-
nitude of the angular momentum is given by:

|J| = ~ [I(I + 1)]
1
2 (2.1.2)

where ~ is Plank’s constant h divided by 2π and I is the nuclear spin quantum number of
the nucleus under investigation. The values of γ and I for nuclei frequently used in MRI are
listed in Table 2.1.

Table 2.1: Gyromagnetic ratio and spin quantum number of nuclei used in MRI.

Isotope 1H 13C 19F 23Na 31P

Gyromagnetic ratio, γ (MHz/T) 42.58 10.71 40.08 11.26 17.24

Spin quantum number, I 1/2 1/2 1/2 3/2 1/2

Clinical MRI mainly includes the imaging of hydrogen atoms (or protons,1H) since the human
body consists of 70% water. Hydrogen has a half-integer nuclear spin and the largest gyromag-
netic ratio. In a homogeneous magnetic field B0 = Bz, a Zeeman splitting of the spins into two
spin states is observed. The associated energy of the spins is given by

E = −µz ·B0 (2.1.3)
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where µz = γJz = γ~m and m = (−1
2
,+1

2
). Therefore, two equidistant energy states exist for

protons:

E = −γ~mB0 = ±1

2
γ~B0 (2.1.4)

with the energy difference ∆E between the states being ∆E = γ~B0. Within an applied, static
magnetic field, the protons do not perfectly align with the magnetic field lines, but rotate around
them at an angle α in a gyro-shape motion. The frequency at which this precession takes place
depends on the magnetic field strength B0 and is given by:

ωL =
∆E

~
= γ ·B0. (2.1.5)

This frequency is known as the Larmor frequency.
In addition, the spins tend to align either parallel (energetically more favourable, lower

energy state E↑) or anti-parallel (higher energy state E↓) with the magnetic field lines. The
population probability of the spins between these two energy states is determined by the Boltz-
mann equation:

N↑
N↓

= exp

(
−E↑ − E↓

kBT

)
= exp

(
−∆E

kBT

)
= exp

(
−γ~B0

kBT

)
(2.1.6)

where kB is the Boltzmann constant and T is the absolute temperature in Kelvin.

Figure 2.1: Boltzmann distribution of the proton spins within an applied static magnetic field. The spins are
either oriented parallel (spin up, lower energy state E↑) or anti-parallel (spin down, higher energy state E↓) with
the magnetic field.

At thermal equilibrium, the lower energy state E↑ is occupied slightly greater than the
higher energy state E↓ (N↑ > N↓). Given the large number of protons in the human body, this
slight preference leads to a measurable magnetisation M0 in the z-direction, i.e. parallel to the
applied magnetic field.

2.2 Signal Generation

By emitting an alternating magnetic field (radio-frequency RF pulse) with a frequency that
corresponds exactly to the Larmor frequency, energy is supplied to the system. This leads to
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a tilting or tipping of the nuclear spins and the longitudinal magnetisation from the z-direction
into the transverse, x-y plane. The flip angle α by which the longitudinal magnetisation is
tipped from the z-axis depends on the amplitude B1 and the duration tp of the RF pulse.

α = γB1tp (2.2.1)

Emitting a π
2

RF pulse causes the magnetisation to be tipped by 90◦ into the x-y plane. Here
the magnetisation precesses around the z-axis (transverse magnetisation Mxy) and induces a
measurable voltage within a receiving coil, which measures the MR signal. The amplitude
of this signal quickly decays exponentially to zero, since the protons quickly dephase due to
energy exchange with nearby nuclear system caused by magnetic field inhomogeneities. This
signal is known as Free Induction Decay (FID). Emitting an RF pulse either twice the strength
or the duration of the π

2
pulse inverts M0 by 180◦ and is called a π or inversion pulse. These RF

pulses can be used as an excitation pulse (tipping M0 away from B0) which causes the initial
signal or refocusing pulse (bringing the magnetisation back towards B0) to refocus signal that
has previously been excited.

2.3 Relaxation

2.3.1 T1 and T2 Relaxation

Two relaxation processes convert an induced transverse magnetisation back into the intial and
stable longitudinal magnetisation at thermal equilibrium. These two processes are called lon-
gitudinal (T1) relaxation and transverse (T2) relaxation.

The longitudinal T1 relaxation causes the recovery of the longitudinal magnetisation Mz

through the interaction of the spin system (in the form of energy transfer) with the surrounding
macromolecules (lattice). Therefore, it is also referred to as the spin-lattice relaxation. T1

relaxation occurs due to the tumbling of the surrounding molecules at the Larmor frequency,
generating fluctuating magnetic fields and stimulating a loss of energy as the the spins return to
the lower energy state in thermal equilibrium. The time required to recover 63% of the original
longitudinal magnetisation M0 is defined as the T1 relaxation time.

The transverse T2 relaxation causes a decrease in the transverse magnetisation Mxy due to
spin-spin interaction resulting in the loss of the phase coherence of the precessing spins in the
transverse plane. Therefore, it is also referred to as the spin-spin relaxation. The T2 relaxation
time refers to the time for the transverse magnetisation to decay to 37% ofM0. While T1 and T2

relaxation take place simultaneously, Mxy dephasing is significantly faster than Mz recovery.
Additional local magnetic field inhomogeneities (∆B0) caused by different macromolecular
environments result in an additional signal decay of the transverse magnetisation. Therefore,
the overall rate of dephasing is increased and described by the T∗2 relaxation time. T∗2 is defined
as:

1

T ∗2
=

1

T2
+ γ∆B0 (2.3.1)

With the help of the Bloch equations, macroscopic alterations in the magnetisation during
excitation and relaxation can be described. If M describes the summation of all magnetic
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Figure 2.2: Longitudinal and and transverse relaxation simulated for typical relaxation time values for articular
cartilage (T1 = 1200 ms and T2 = 40 ms).

moments of the spin system, then the change in M over time due to the experienced torque of
the spins in an external magnetic field B can be defined as:

dM
dt

= γM× B (2.3.2)

where M is made up of the transverse magnetisation components, Mx and My, and the longi-
tudinal component, Mz. Similarly, B encompasses the static magnetic field along the z-axis,

Bz = B0 (2.3.3)

and Bx and By which are the rotating B1 magnetic fields along the x and y direction:

Bx = B1 cos(ωt), (2.3.4)

By = −B1 sin(ωt). (2.3.5)

By expanding the vector product of Equation 2.3.2 and including the T1 and T2 relaxation
processes as first-order processes, the directional components of M can be described as:

dMx

dt
= γ (MyB0 +MzB1 sin(ωt))− Mx

T2
, (2.3.6)

dMy

dt
= γ (−MxB0 +MzB1 cos(ωt))− My

T2
, (2.3.7)

dMz

dt
= γ (−MxB1 sin(ωt) +MyB1 cos(ωt))− Mz −M0

T1
. (2.3.8)

If a 90◦ RF excitation pulse is applied, where immediately after the pulse, Mx,y = M0 and
Mz = 0, the solutions to these differential equations are:
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Mx(t) = M0 sin(ωt)e
− t
T2 (2.3.9)

My(t) = M0 cos(ωt)e
− t
T2 (2.3.10)

Mz(t) = M0

[
1− e−

t
T1

]
. (2.3.11)

While the transverse magnetisation components Mx and My precess at the Larmor fre-
quency and decay back to equilibrium (Mx,y = 0) at a rate 1/T2, the longitudinal magnetisation
Mz exponentially recovers back to its equilibrium (Mz = M0) at a rate 1/T1.

2.3.2 Relaxation in the Rotating Frame

T1ρ is the relaxation time of transverse magnetisation under the influence of an external spin-
lock RF pulse. T1ρ is also regarded as the time constant for spin-lattice relaxation in the rotating
frame.

After tipping the magnetisation into the transverse plane using a 90◦ RF excitation pulse, a
continuous wave spin-lock RF pulse BSL is applied, locking the spins in the transverse plane.
While the spin-lock pulse is applied, the spins precess around BSL rather than B0 with an
angular frequency

ωSL = γ ·BSL. (2.3.12)

and the magnetisation decays with the time constant T1ρ in a new composite rotating frame of
the spin lock pulse:

M(TSL) = M0e
−TSL
T1ρ (2.3.13)

where TSL is the spin-lock time.
Consequently, in contrast to the conventional spin-lattice relaxation (T1) that is sensitive to

fast motion interactions near the Larmor frequency (MHz range), T1ρ can probe low frequency
biological interactions (few hundred Hz to kHz) in macromolecular environments. Therefore,
by varying the amplitude of the spin-lock pulse BSL, the macromolecular interactions at differ-
ent frequencies can be probed with T1ρ imaging.

2.4 The MR System

The MR system typically comprises of three main components: (1) a large static magnetic field,
(2) a radio-frequency (RF) coil system to transmit energy and receive the MR signal, and (3)
gradient coils to generate spatially varying magnetic fields and encode the MR signal.
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2.4.1 Magnet

The static magnetic field in clinical systems is typically produced by a superconducting coil
system made of an niobium-titanium alloy and immersed in liquid helium at about 4 K temper-
ature. The low temperatures are fundamental to achieve superconductivity and simultaneously
zero electric resistance in the coil windings avoiding heating. Clinical MR systems have mag-
netic field strength of typically 1.5 T or 3.0 T. Strong magnetic fields are required to obtain the
necessary nuclear polarisation introduced in Section 2.1 to allow MR imaging.

Figure 2.3: Illustration of an MR system. Example of patient undergoing knee MRI with a dedicated transmit /
receive knee RF coil.

An important requirement to the static magnetic field is that it should be highly uniform
to allow accurate spatial encoding. Field inhomogeneities are minimised by active shim coils
while additional superconductive shielding coils reduce the effect of external fields on the en-
vironment.

2.4.2 Gradient Coil System

For the exact spatial localisation of the MR signal in each voxel, three linear, spatially-varying
magnetic field gradients in the x, y and z directions are superimposed onto the main static mag-
netic field. These magnetic field gradients are produced by three pairs of orthogonal gradient
coils. For the x and y direction, the coil pairs are oriented in the Golay configuration and for
the z direction, a Maxwell coil pair is used.

Slice Selection

For the slice selection, a gradient in the z-direction is superimposed on the main magnetic field
during the application of an RF excitation pulse, which is intended to induce a flipping of the
nuclear spins and thereby a build-up of the transverse magnetisation. This leads to different
Larmor frequencies of the nuclear spins in each z-plane

ω(z) = γ (B0 + zGSS) . (2.4.1)
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Figure 2.4: Different gradient coil configurations are used to generate magnetic field gradients in x, y (a) Golay
configuration) and z direction (b) Maxwell coil pair).

In order to be able to map a certain slice, the centre frequency of the RF excitation pulse
must correspond exactly to the specific Larmor frequency of the spins in the selected slice.
The thickness of the slice ∆z is defined by the amplitude of the slice select gradient G and the
bandwidth of the sinc-shaped RF excitation pulse ωRF :

∆z =
∆ωRF
γG

. (2.4.2)

Phase Encoding

After the RF pulse has been applied, a gradient in the y-direction is briefly switched on and,
after a time ty, switched off again. This gradient is applied between excitation and readout.
During ty, the spins precess at different speeds depending on their y position. After the gra-
dient has been switched off, all spins along the y-axis return to precessing at the same speed
again however, have different phases. Hence, this gradient is also called a phase encoding gra-
dient. The accumulated spatial phase shift ∆φ(x) during the application of the phase encoding
gradient GPE for the time ty is defined as

∆φ(y) = γ

∫ ty

0

GPE(t)ydt. (2.4.3)

Frequency Encoding

To distinguish between two nuclear spins which have the same y position but a different x po-
sition, a gradient varying in the x-direction is superimposed on the main magnetic field. This
gradient is used for frequency encoding (or readout), since it influences the Larmor frequencies
of the nuclear spins along the x-axis and completes the three dimensional spatial localisation
of the MR signal. This measured MR signal by the receiver coil consists of a range of frequen-
cies from all voxels in the slice. By applying an inverse Fourier transform to the signal, the
individual frequencies can be separated.
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Figure 2.5: The acquired MR signal consists of different individual signals with various frequencies and ampli-
tudes. These can be separated by the inverse Fourier transform into spectral lines with respect to their frequency.
The proton density at that given location defines the amplitude of the spectral lines.

k-Space

The MR system generates the specific gradient and RF waveforms required to obtain the MR
signal of any selected slice. It therefore knows the amplitudes and directions of the applied
gradients from which it can determine the precise location of the raw MR signal detected in the
receiver coil. This signal contains the spatial frequencies of the MR image and is stored in the
so called k-space, where each row in k-space corresponds to a different phase encoding step.

The signal dS(x,y) at each point in a 2D k-space is defined as

dS(x, y) = ρ(x, y)e−iγt(Gxx+Gyy)dxdy (2.4.4)

where ρ(x, y) is the spin density also incorporating relaxation effects such as T1 and T2. There-
fore, the signal over the entire slice is given by

S(x, y) =

∫ ∫
ρ(x, y)e−iγt(Gxx+Gyy)dxdy (2.4.5)

This equation shows that S(x,y) is the Fourier transform of the spin density ρ(x, y). The final
MR image can be reconstructed by applying an inverse Fourier transform to the k-space

ρ(x, y) =

∫ ∫
S(x, y)eiγt(kxx+kyy)dkxdky (2.4.6)
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where kx and ky are the k-space positions or spatial frequencies introduced by the applied
frequency encoding (Gx = GFE) and phase encoding (Gy = GPE) gradients

kx = γ

∫
Gx(t)dt (2.4.7)

ky = γ

∫
Gy(t)dt, (2.4.8)

respectively. Between k-space and the reconstructed magnitude image, the following relation-
ships exist:

• The spatial frequency resolutions (∆kx, ∆ky) i.e the steps for frequency and phase en-
coding defines the field of view (FOV) of the magnitude image

FOVx =
1

∆kx
; FOVy =

1

∆ky
. (2.4.9)

• The spatial frequency field of view (FOVk) defines the spatial resolution i.e. pixel sizes
(∆x, ∆y) of the magnitude image

∆x =
1

FOVkx
=

1

NFE ·∆kx
; ∆y =

1

FOVky
=

1

NPE ·∆ky
. (2.4.10)

where NFE and NPE are the total number of frequency encoding and phase encoding
steps, respectively.

Figure 2.6: A two-dimensional inverse Fourier transform is applied to reconstruct an image from k-space while
k-space is the 2D Fourier transform of the MR image.
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2.4.3 Radio-Frequency Coil System

The RF coil system create the RF pulses which are used to excite the spins and tip the net
magnetisation. This RF pulse created and transmitted by the RF coils is called B+

1 . While the
RF transmit coil is typically a large body coil housed inside the MR system bore close to the
gradient coils, the receiver coil capturing the spatially encoded MR signal is commonly placed
close to the imaged volume to increase the signal-to-noise ratio (SNR) (B−1 ). The MR signal is
detected by the receiver coil as a current induced by the variations in magnetic flux due to the
rotation of the tipped magnetisation. Following detection, the signal is amplified, digitalised
and reconstructed after processing phase and frequency data.

2.5 Basic Pulse Sequences and Quantitative Relaxation Time
Mapping

In MR imaging, the FID is rarely measured directly but instead two types of echoes, the so-
called spin echo and gradient echo are measured. In both cases, the magnetisation is oriented
along the main magnetic field in the z-direction to begin with.

2.5.1 Single-Echo Spin Echo

In the spin echo sequence, a 90◦ RF excitation pulse flips the magnetisation into the transverse
xy plane. Here, the spins begin to dephase due to T2 relaxation and additional B0 and suscep-
tibility non-uniformities. After a time TE/2, where TE is the so-called echo time, a 180◦ in-
version pulse is applied, which reflects the magnetisation components and accumulated phase.
The spins now begin to rephase because, despite the inversion of the component distribution,
the direction of rotation of the spins is retained and the slightly slower spins now precess ahead
of the faster ones. After the same time TE/2, all magnetisation components point in the same
direction and a clear maximum of the signal, the spin echo, is generated. However, only the
dephasing effects from magnetic field inhomogeneities are rephased leaving a T2 dependency
on the generated spin echo signal.

SSE ∝ [PD]
(

1− e−
TR
T1

)
e
−TE
T2 (2.5.1)

Here, PD is the proton density and TR is the repetition time, time between the first 90◦ ex-
citation pulse and the next 90◦ pulse starting the new spin echo sequence, during which time
the longitudinal magnetisation will recover. By varying TR and TE, different image contrast
or weightings can be attained. Setting a long TR will result in complete longitudinal recovery,
making the spin echo signal independent of tissue T1 relaxation effects. Similarly, using a short
TE will minimise the dependence of the spin echo signal on tissue T2 relaxation effects. By
minimizing the effects of both T1 and T2 relaxation processes through long TR and short TE,
the signal will be dominated by the tissues proton density PD.
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Figure 2.7: MR pulse sequence diagram for the single-echo spin echo sequence.

2.5.2 Fast Spin Echo

In contrast to the single-echo spin echo sequence, the fast spin echo (FSE) pulse sequence, also
known as turbo spin echo, uses a train of 180◦ refocusing pulses after the initial 90◦ excitation
pulse to generate multiple spin echoes. The total number of 180◦ refocusing pulses per TR
is the echo train length (ETL), or turbo factor. By applying different phase encoding gradient
amplitudes, each generated spin echo can be encoded as a discrete line in k-space and hence,
reducing the time to acquire a full k-space. However, as with the single-echo spin echo se-
quence, the refocusing pulses do not recover T2 decay effects resulting in an increased loss of
signal with longer ETLs and T2 image blurring.

Figure 2.8: MR pulse sequence diagram for the fast spin echo sequence.

2.5.3 Gradient Echo

In the gradient echo sequence, or gradient recalled echo (GRE), the magnetisation is also first
flipped into the transverse plane by an RF excitation pulse. The angle α of the initial RF ex-
citation pulse is typically set to less than 90◦ to speed up acquisition by avoid saturation of
longitudinal magnetisation and allowing a shorter TR. Immediately afterwards, a dephasing
frequency encoding gradient is superimposed onto the main magnetic field, whereby the Lar-
mor frequencies of the nuclear spins become location-dependent. Compared to the normal FID,
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this results in an accelerated dephasing. A rephasing gradient of same amplidtude but doubled
area and opposite polarity is then applied, thereby generating a gradient echo. Similar to nor-
mal FID decay, the transverse magnetisation of the gradient echo decays with T∗2 relaxation as
only the additional dephasing of the spins due to the applied frequency encoding gradient is
rephased while the natural dephasing due to magnetic field inhomogeneities remains.

Figure 2.9: MR pulse sequence diagram for the gradient echo sequence.

2.5.4 Spoiled Gradient Echo

To allow even shorter TRs and faster gradient echo acquisitions, the spoiled gradient echo
sequence, also referred to as spoiled gradient recalled echo (SPGR) on General Electric MR
systems, uses RF or gradient spoiling or both to remove any residual transverse magnetisation
after data acquisition. The contrast of SPGR sequences is mainly either T1 or PD weighted,
influenced by the choice of TR, TE and the flip angle α:

SSPGR = [PD]
sinα ·

(
1− e−

TR
T1

)
e
−TE
T∗
2

1− cosαe
−TR
T1

(2.5.2)

Therefore, selecting a short TR, short TE and a larger α will result in T1-weighting, while a
long TR, short TE and a small α will lead to greater PD-weighting of the image. Additionally,
the SPGR signal in Equation 2.5.2 can be maximised when

α = αE = arccos
(
e
−TR
T1

)
(2.5.3)

where αE is the Ernst angle. To note, the Ernst angle only maximises the signal of a specific
tissue i.e. specific T1.



Basic Pulse Sequences and Quantitative Relaxation Time Mapping 27

Figure 2.10: MR pulse sequence diagram for the spoiled gradient echo sequence showing both RF spoiling
(phase-cycled RF excitation pulse from one TR to the next) and gradient spoiling (applied along the slice-select
and readout gradient before the next TR).

2.5.5 Fat Suppression

MRI involves detecting the MR signal produced by the excitation of hydrogen atoms. The large
majority of these hydrogen atoms are components of water or fat. However, in a static magnetic
field, the hydrogen atoms in water and fat resonate at different Larmor frequencies (∆ωfw).
This difference is also known as the chemical shift and increases with magnetic field strength.
The chemical shift between water and fat is 3.5 parts per million (ppm) which corresponds to
∆ωfw ≈ 220 Hz at 1.5T and ∆ωfw ≈ 440 Hz at 3T. Additionally, fat has a short T1 relaxation
relative to other tissues with water components. Techniques used for suppressing or separating
fat and water signals based on either their difference in Larmor frequencies or T1 relaxation are
commonly divided into fat saturation, selective excitation and tissue nulling inversion recovery
techniques.

Fat Saturation

Fat saturation (FS) techniques typically use a narrow band 90◦ RF pulse at the beginning of the
sequence to spectrally excite fat. A spoiler gradient is then applied shortly after to eliminate
all transverse magnetisation from fat. Since there is now no longitudinal component of fat, a
conventional spatially-selective RF pulse will only excite water resulting in a fat saturated im-
age. However, this technique requires a highly homogeneous magnetic field achieve complete
spectral suppression of the fat signal prior to water-only acquisition.

Selective Water Excitation

Water excitation (WE), also known as spectral-spatial fat suppression, uses two RF pulses
selectively excite water signal. The first RF pulse (B1,x) rotates both the water and fat signals
to the y-axis into the transverse plane. After a time t, a second RF pulse (B1,−y) is applied.
During the time t, a phase difference of ∆φ(t) = 2π∆ωfwt is accumulated between the water
and fat magnetisations in the transverse plane. Selective water-only excitation is achieved if
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the second RF pulse is applied when ∆φ = 180◦ and rotates the fat-only magnetisation back
towards the z-axis while leaving the water magnetisation unaffected.

Fat Nulling with Inversion Recovery

With the help of an inversion recovery sequence and exploiting the difference in T1 relaxation
time between fat and water the MR signal from fat can be suppressed. The inversion recovery
sequence first inverts the longitudinal magnetisation of fat and water with a 180° RF inversion
pulse. Due to the different T1 relaxation times of water and fat the time of zero crossing
(inversion time TI) is different for both. Since fat has a shorter T1 it also has a shorter TI than
other tissues with water components. By collecting data at the zero crossing of fat, the MR
signal from fat can be suppressed or nulled. However, a drawback of this technique is its long
acquisition time as it requires a long repetition time for the magnetisation of all tissues to return
to equilibrium (M0) before the next RF inversion pulse can be applied.

2.5.6 T1ρ and T2 Quantification

In this section, methods utilised for the quantification of T1ρ and T2 relaxation times are de-
scribed. Quantifying these relaxation times could not only be used to characterise tissue and
determine differences between healthy and diseased but also help in understanding contrast
mechanisms and optimising contrast between different tissue properties [98]. The compo-
sitional MRI techniques presented here are included in the prospective study introduced in
Chapter 3.

T1ρ Mapping

A T1ρ-weighted image can be acquired by applying a T1ρ magnetisation preparation cluster
prior to a typical 2D or 3D pulse sequence for data acquisition. The conventional T1ρ prepa-
ration cluster begins with a 90◦ hard pulse (tip-down) along the x-direction to flip the mag-
netisation into the transverse plane. This is followed by an on-resonance spin-lock RF pulse
(continuous wave RF pulse) applied for a time TSL (spin-lock time) in y-direction parallel to
the magnetisation and results in the transverse magnetisation to precess around it. The final
pulse is a 90◦ hard pulse (tip-up) applied along the -x-direction and is used to flip the magneti-
sation back into the longitudinal plane.

This conventional spin-lock preparation cluster is thus often abbreviated as 90◦x − TSLy −
90◦−x. A spoiler gradient is applied immediately after the T1ρ preparation cluster to dephase
residual transverse magnetisation [99]. In theory, during the application of the spin-lock pulse
the magnetisation parallel to the pulse field direction will decay mono-exponentially with re-
gard to TSL at a rate 1/T1ρ and the magnetisation perpendicular to the pulse field direction also
decays mono-exponentially with TSL, however at a rate 1/T2ρ [100, 101].

The spin-lock (T1ρ and T2ρ) relaxation under a spin-lock pulse applied for a time T can be
described by a spin-lock relaxation matrix Eρ(T ). For a spin-lock pulse applied along the y
direction, Eρ(T ) is defined as:
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Eρ(T ) =


e
− T
T2ρ 0 0

0 e
− T
T1ρ 0

0 0 e
− T
T2ρ

 =


E2ρ(T ) 0 0

0 E1ρ(T ) 0

0 0 E2ρ(T )

 (2.5.4)

A RF pulse can be represented as a rotation matrix Rr(Φ) where Φ is the pulse flip angle and
r is the axis the magnetisation is rotated about. The basic rotation matrices for magnetisation
rotation about x, y and z are:

Rx(Φ) =


1 0 0

0 cos(Φ) sin(Φ)

0 − sin(Φ) cos(Φ)

 ; Ry(Φ) =


cos(Φ) 0 sin(Φ)

0 1 0

− sin(Φ) 0 cos(Φ)

 ;

Rz(Φ) =


cos(Φ) sin(Φ) 0

− sin(Φ) cos(Φ) 0

0 0 1


(2.5.5)

Since the duration of the 90◦ tip-down and tip-up pulses are much shorter than TSL, the re-
laxation during these are negligible [100]. With β as the flip angle of the tip-down/tip-up
pulses, ∂ = 2π · FSL · TSL the total flip angle of the spin-locking pulse and FSL the set
spin-lock frequency (typically 500 Hz), the magnetisation evolution during the conventional
90x − TSLy − 90−x preparation is:

M(TSL) = R−x(β) ·Ry(∂)Eρ(TSL) ·Rx(β) ·M(t0) (2.5.6)

where M(t0) =
[
0 0 M0

]T
.

When inserting the respective rotation and spin-lock relaxation matrices and simplifying the
resulting complex magnetisation orientation by removing the transverse components through
the application of a crusher gradient, the longitudinal magnetisation can be derived as:

Mz = M0 ·
[
E1ρ(TSL) · sin2 β − E2ρ(TSL) · cos2 β · cos ∂

]
(2.5.7)

Thus, if the tip-down and tip-up pulses have a perfect β = 90◦ flip angle, the resulting longitu-
dinal magnetisation simply follows a mono-exponential decay related to T1ρ relaxation:

Mz = M0 · E1ρ(TSL) = M0 · e
−TSL
T1ρ (2.5.8)

The most common application of T1ρ magnetisation preparation is the voxel-wise mapping of
T1ρ relaxation values. For this, the signal intensities from a series of differently T1ρ-weighted
images acquired with multiple spin-lock times (TSL) and constant spin-lock frequency (FSL)
are fitted to the mono-exponential decay function in Equation 2.5.8.

Due to B0 and B1 field inhomogeneities, the anticipated spin-lock pulse direction and am-
plitude could be distorted. This can lead to errors in T1ρ quantification due to the magnetisation
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being deviated from the requested spin-lock direction, resulting in a distant magnetisation evo-
lution from the theoretically ideal mono-exponential decay[101]. Several methods have been
proposed with modified T1ρ magnetisation preparation clusters to diminish the effects and elim-
inate the banding artefacts from both types of magnetic field inhomogeneities [99–104].

Rotary-Echo Spin-Lock Preparation: Given B1 RF inhomogeneities, the flip angles of the
tip-down and tip-up pulses during T1ρ magnetisation preparation become imperfect. The mag-
netisation will deviate from the intended transverse plane after the initial tip-down pulse and
begin to precess at spatially varying angles around the spin-lock field during TSL [102]. To
reduce the artefacts induced by the SL flip angle ∂, Charagundla et al [102] proposed us-
ing a self-compensating pulse cluster. This pulse cluster uses a ’rotary-echo’ SL pulse con-
sisting of two SL segments (SL1 and SL2) of equal duration but with opposite phase shifts:
90◦x − TSL/2y − TSL/2−y − 90◦−x [100, 104]. In a homogeneous B0, the rotation angle ac-
cumulated during SL1 with a phase shift of 90◦ along the y direction will be ∂/2. Ideally, the
accumulated rotation angle during SL2 with phase shift of -90◦ will equally be -∂/2 and the
resulting overall longitudinal magnetisation will be independent of ∂.

M(TSL) = R−x(β) ·R−y
(
∂

2

)
Eρ(TSL) ·Ry

(
∂

2

)
Eρ(TSL) ·Rx(β) ·M(t0) (2.5.9)

Mz = M0 ·
[
E1ρ(TSL) · sin2 β − E2ρ(TSL) · cos2 β

]
(2.5.10)

Again, if the flip angle β = 90◦, then Mz reduces to Equation 2.5.8. However, if β 6= 90◦, the
magnetisation is contaminated by T2ρ relaxation and a T1ρ relaxation reduced by sin2 β.

Figure 2.11: MR pulse sequence diagram for the T1ρ-prepared sequence. The T1ρ-preparation pulse cluster is a
rotary-echo spin-lock preparation with two spin lock segments inducing opposite phase shifts. Image acquisition
is performed with a 3D FSE sequence.

T2 Mapping

Similar to T1ρ-weighted imaging, a T2-weighted image can be acquired by using a T2 mag-
netisation preparation cluster followed by a fast imaging sequence. The cluster consists of a
three-pulse sequence and is known as the driven equilibrium Fourier transform (DEFT) method
[105].

The method includes a typical spin echo pulse setup followed by an additional 90◦ pulse
to bring residual transverse magnetisation back to the longitudinal axis before T1 relaxation
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is completed. The first 90◦ tip-down pulse along the x-direction flips the magnetisation into
the transverse plane along the y-axis. The induced transverse magnetisation decays because
of spin-spin relaxation (T2) and of magnetic field inhomogeneity (T∗2). After a time τ , a 180◦

pulse is applied along the x-direction to reverse the dephasing of the transverse magnetisation
due to field inhomogeneities, which refocuses the magnetisation and produces an echo at t =
2τ . The last 90◦ tip-up pulse applied at the peak of the echo along the x-direction restores
the magnetisation along the z-axis [106]. The T2 preparation cluster can be abbreviated as
90◦x− τ − 180◦x− τ − 90◦x with τ being the time between the pulses. A spoiler gradient follows
the T2 preparation cluster to eliminate any unwanted transverse magnetisation caused by pulse
imperfections. Therefore, the magnitude of longitudinal magnetisation Mz after the final 90◦

tip-up pulse depends on the extent of T2 spin-spin relaxation during the time interval 2τ = TE:

Mz = M0 · e−
TE
T2 (2.5.11)

Quantitative T2 maps can be calculated by fitting the signal intensities of acquired data sets
with different echo times TE on a voxel-by-voxel basis to the mono-exponential decay function
in Equation 2.5.11.

Figure 2.12: MR pulse sequence diagram for the T2-prepared sequence. The T2-preparation pulse cluster is a
driven equilibrium preparation (90◦x − τ − 180◦x − τ − 90◦x). Image acquisition is performed with a 3D FSE
sequence.
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Chapter 3

Effectively Measuring Exercise-related
Variations in T1ρ and T2 Relaxation Times
of Healthy Articular Cartilage

Published as Original Research in Journal of Magnetic Resonance Imaging, 52(6):1753-1764;
December 2020.

3.1 Introduction

Over the last two decades in vivo magnetic resonance imaging (MRI) has increasingly been
used to determine the mechanical properties of knee articular cartilage. Previous studies have
shown that cartilage loading activities affect the morphology and biochemical composition of
articular cartilage and have provided important information on the behaviour of cartilage when
exposed to different compressive loads [54, 71, 107]. T1ρ and T2 relaxation time mapping tech-
niques allow the assessment of cartilage compositional alterations in response to joint loading
as they have been demonstrated to be sensitive to variations in the water and macromolecu-
lar content of cartilage [39, 42, 108]). Normalised changes in T1ρ and T2 relaxation times of
cartilage following different exercise regimes have been shown to be in the order of -2.6% to
-14.3% and +3.7% to -12.5%, respectively [62, 71, 107, 109, 110]. Since the measured changes
resulting from joint loading can be small, determining the intra-sessional repeatability of these
quantitative measures is essential for reliable assessment of joint loading-related effects on
cartilage structure and composition.

A systematic review showed that studies assessing the repeatability of these quantitative
relaxation techniques without any joint loading activity have reported root-mean-squared coef-
ficient of variation (RMS-CV) for large regional analysis of T1ρ values in the range of 2.3% –
6.3% and of T2 values in the range of 2.3% – 6.5% [41]. When sub-regional or laminar cartilage
analysis was performed, test-retest CVs for T1ρ were up to 19% and for T2 as high as 22% [41].
Intra-sessional repeatability assesses the repeatability of measurements of i) consecutive scans
without repositioning and ii) consecutive scans with repositioning of the subject [111]. Evalu-
ating the repeatability of consecutive scans without repositioning is important when measuring
T1ρ and T2 at multiple time-points after joint-loading for determining longitudinal cartilage
recovery as previous studies have reported [54, 60, 112].

Healthy cartilage is maintained with regular deformation and compression of the cartilage
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structure and its extracellular matrix (ECM) through physiological loading, such as experienced
during exercise [11, 13]. However, both overuse and disuse can have degenerative effects on
the cartilage and are important risk factors in the development of osteoarthritis (OA) [13, 16,
21]. When exposing the cartilage repeatedly to excessive loads, such as may occur during
high-impact sports or, to minimal or no load following injury, the cartilage structure and micro-
structure begin to break down [13, 22]. Morphological changes in articular cartilage volume,
thickness and joint space narrowing are not necessarily present in the early stages of OA and
may change very slowly during disease progression. Therefore, measuring differences in carti-
lage deformational responses during or after loading may represent a more sensitive biomarker
for detecting the early onset of OA [23, 113].

The aim of this study was to measure the intra-sessional repeatability of both T1ρ and T2

of knee articular cartilage and to determine if these quantitative relaxation measurement tech-
niques are sensitive to permit effective measurement of short-term cartilage compositional re-
sponses after a joint loading activity.

3.2 Methods

All imaging was performed on a 3 T MRI system (MR750, GE Healthcare, Waukesha, WI,
USA) using an 8-channel transmit/receive knee coil (Invivo, Gainesville, FL, USA). Partici-
pant imaging had local ethical approval, and written informed consent was provided by each
participant.

3.2.1 Study Procedures

Phantom Repeatability

To assess the test-retest repeatability of the quantitative T1ρ and T2 relaxation time measure-
ments for a range of relaxation times, two consecutive T1ρ and T2 relaxation mapping datasets
were obtained from a phantom. The phantom consisted of five vials having different T1ρ and T2

relaxations. Two vials had T1ρ and T2 relaxation times similar to cartilage ( 40 - 50 ms) at 3 T
while the relaxation times of the remaining three vials were greater [114, 115]. To additionally
assess the inter-sessional variability (scanning the same phantom on different days), two further
T1ρ and T2 relaxation mapping datasets were acquired two days later. On each day, the same
knee coil and setup was used with the phantom centred in the coil.

Group 1: In Vivo Repeatability Study

To assess the intra-sessional repeatability of T1ρ- and T2-relaxation mapping of cartilage, the
right knee of ten healthy participants (five men, five women, mean age 28.9 ± 5.5 years) with
no current knee pain symptoms, nor known history of joint disorder was imaged. Imaged knees
were unloaded for 15 minutes prior to the imaging session to minimise short-term loading
effects on the joint.

The MR session consisted of a sagittal 3D fat-saturated spoiled gradient recalled-echo (3D-
FS SPGR) sequence, and sagittal T1ρ- and T2-mapping sequences. For details on pulse se-
quence parameters used, see section ‘Sequence Parameters’ below. Following repositioning of
the participant and imaged knee, two consecutive acquisitions of T1ρ- and T2-mapping were
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performed using the same pulse sequences as before repositioning (Figure 3.1a). During knee
repositioning, the participants removed their knee from the coil and sat up on the side of the
MR table. The coil was repositioned, followed by participant positioning. The time required
for repositioning and the continuation of the imaging protocol was approximately five minutes.

Group 2: Exercise and Recovery Study

A second group were used to assess the magnitude of effect that mild exercise has on T1ρ- and
T2-relaxation mapping of cartilage. The right knee of nine healthy participants (five men, four
women, mean age 31.6 ± 6.0 years) with no current knee pain symptoms, nor known history of
joint disorder was imaged. Imaged knees were unloaded for 15 minutes prior to the imaging
session to minimise short-term loading effects on the joint.

The study design consisted of a 3D- FS SPGR sequence, followed by T1ρ- and T2-relaxation
imaging before exercise, and at four time-points after exercise to assess cartilage compositional
recovery. The standardised exercise protocol involved five minutes of stepping onto a step-stool
(height ≈ 24cm) with one leg and stepping down onto the other side of the step-stool with the
leg to be imaged (Figure 3.1b). This resulted in approximately 20 stepping cycles per minute
in which the knee joint was repeatedly loaded.

The first post-exercise T1ρ- and T2-mapping sequences were acquired approximately at five
and ten minutes after patient positioning, respectively. The post-exercise imaging protocol took
approximately 45 minutes.

Figure 3.1: Summary of MR sessions performed. a: In vivo assessment of intra-sessional repeatability of car-
tilage T1ρ and T2 mapping. After having the participant sit and keep the imaged knee in an unloaded state for
approximately 15 minutes prior to imaging, initial T1ρ and T2 relaxation mapping was acquired. Following knee
repositioning, two successive T1ρ and T2 relaxation mapping measurements were acquired. b: In vivo assessment
of the change in cartilage composition following mild exercise. The imaged knee (green) was kept in an unloaded
state for approximately 15 minutes before acquiring the initial T1ρ and T2 relaxation measurements. Following
mild exercise, four repeats of T1ρ and T2 relaxation mapping measurements were acquired to evaluate cartilage
compositional change and recovery following exercise.
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3.2.2 Sequence Parameters

3D-FS SPGR

The sagittal 3D-FS SPGR sequence parameters were: acquisition time = 6:52 min; field-of-
view = 150 x 128 x 136 mm3, matrix size=512 x 380 x 136 zero-fill interpolated to 512 x 512 x
136, reconstructed voxel size = 0.29 x 0.29 x 1.00 mm3, TR = 25.8 ms, TE = 6.8 ms, flip angle
= 25°, coil acceleration factor (ASSET) = 2, number of excitations (NEX) = 0.7, bandwidth =
±11.9 kHz, with chemical shift selective fat-suppression.

T1ρ Mapping

T1ρ maps were obtained with a sagittal T1ρ-prepared pseudo-steady-state 3D fast spin echo
(PSS 3D-FSE) sequence using a rotary-echo spin-lock preparation to minimise B1 non-uniformity
effects [102, 116]. Images were acquired using the following parameters: acquisition time =
5:23 min; matrix = 320 x 256 interpolated to 512 x 512; FOV = 160 x 144 mm2; reconstructed
voxel size = 0.31 x 0.31 x 3.00 mm3; flip angle = 90°; TR = 1580 ms; spin lock time (TSL)
= 1, 10, 20, 35 ms; 72 slices per TSL; echo train length = 45; NEX = 0.5; and bandwidth =
±62.5 kHz. The T1ρ maps were created using a log-linearised least-squares algorithm to fit a
mono-exponential decay function to the signal intensities

S = S0 · e−
TSL
T1ρ . (3.2.1)

Where S(TSL) is the signal intensity of the T1ρ-weighted image at a specific TSL and S0 is
the initial magnetisation / signal intensity. T1ρ relaxation times > 130ms in T1ρ maps were
excluded from analysis to avoid partial volume effects with synovial fluid [82, 117].

T2 Mapping

T2 maps were obtained with a sagittal T2-prepared PSS 3D-FSE sequence using a composite
90x - 180y - 90x pulse train for T2-preparation [116, 118]. Images were acquired using the
following parameters: acquisition time = 5:25 min; matrix = 320 x 256 interpolated to 512 x
512; FOV = 160 x 144 mm2; reconstructed voxel size = 0.31 x 0.31 x 3.00 mm3; flip angle
= 90°; TR = 1580 ms; TEs = 6.5, 13.4, 27.0, 40.7 ms; 72 slices per TE; echo train length =
45; NEX = 0.5; and bandwidth = ±62.5 kHz. The T2 maps were created using a log-linearised
least-squares algorithm to fit a mono-exponential decay function to the signal intensities

S = S0 · e−
TE
T2 . (3.2.2)

where S(TE) is the signal intensity of the T2-weighted image at a specific TE and S0 is the
initial magnetisation / signal intensity. As with T1ρ, T2 relaxation times > 100ms in T2 maps
were excluded from analysis to avoid partial volume effects with synovial fluid [82, 117].
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3.2.3 Imaging Analysis

Phantom Repeatability

Mean relaxation times from all five vials of the phantoms were determined using rectangular
regions-of-interest (ROIs) placed on two central sequential slices of the sagittal T1ρ and T2

maps.

In Vivo Surface Analysis

All T1ρ- and T2-weighted images were rigidly registered to the high-resolution 3D-FS SPGR
images using the Elastix toolbox [119] before calculating the respective quantitative maps.

Surface-based analysis (3D Cartilage Surface Mapping, 3D-CaSM) of femoral, tibial and
patellar cartilage was performed using the freely available Stradwin software version 5.4a (Uni-
versity of Cambridge Department of Engineering, Cambridge, UK, now freely available as
‘StradView’ at http://mi.eng.cam.ac.uk/Main/StradView/) [3]. After creating sparse manual
cross-sections (on every 2nd – 4th sagittal slice) of the patella, tibia, and femur including their
surrounding cartilage on the 3D-FS SPGR datasets, a triangulated surface mesh object of each
segmented bone-cartilage structure was automatically generated using shape-based interpo-
lation and the regularised marching tetrahedra method [120]. Following cartilage thickness
calculation and the generation of inner and outer cartilage surfaces, these surfaces were used
to analyse the registered quantitative T1ρ and T2 maps. At each vertex, the T1ρ and T2 values
along a perpendicular line between inner and outer surface (surface normal) were sampled and
averaged.

Canonical (average) femoral, tibial and patellar meshes were created from all participants to
be able to compare the T1ρ and T2 value distributions between participants. Canonical surfaces
were calculated from all participants involved in the exercise and recovery imaging. All quan-
titative surface data from both the repeatability and exercise-recovery cohorts were mapped
onto the canonical surface following surface registration. Canonical surface generation and the
subsequent registration and mapping of the individual surfaces was performed using the freely
available wxRegSurf software version 18 (University of Cambridge Department of Engineer-
ing, Cambridge, UK, freely available at http://mi.eng.cam.ac.uk/ ahg/wxRegSurf/) [121]. The
full 3D-CaSM analysis pipeline is illustrated in Figure 3.2.

3.2.4 Statistical Analysis

Phantom Repeatability

Coefficients of variation (CVs) were calculated from the two successive repeatability scans on
each day (CVPhant,Day1, CVPhant,Day2) for all five vials using

CV =
σ

µ
(3.2.3)

with σ being the within-vial standard deviation and µ the within-vial mean of measurements.
The intra-phantom variability was evaluated by calculating the CV from the mean and standard
deviation of the relaxation values obtained from both days (CVPhant,All).

http://mi.eng.cam.ac.uk/Main/StradView/
http://mi.eng.cam.ac.uk/~ahg/wxRegSurf/
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Group 1: In Vivo Repeatability Study

The intra-sessional repeatability of T1ρ and T2 acquisitions was assessed by calculating root-
mean-square average coefficients of variation (RMS-CV) from the surface-averaged T1ρ and T2

measurements of all participants for femoral, medial tibial, lateral tibial and patellar cartilage
surfaces. The RMS-CV between repeatability measurements 1 (before repositioning) and 2
(first measurement following repositioning) were calculated (RMS-CVS1−S2) to evaluate the
effects of knee repositioning on repeatability. The RMS-CV between measurements 2 and 3
(with no repositioning between both measurements) were determined to assess repeatability
without knee repositioning (RMS-CVS2−S3).

The smallest detectable difference (SDD) [122] was calculated as the repeatability coeffi-
cient from the ±95% confidence intervals from a Bland-Altman analysis [123] of all surface
vertices of the repeatability data for all four cartilage surfaces and for both T1ρ and T2.

Figure 3.2: Summary of 3D-CaSM analysis pipeline illustrated for femoral cartilage surface. The 3D-FS SPGR
datasets (a) were used to creating sparse manual contouring (on every 2nd – 4th sagittal slice) of the patella (blue),
tibia (green), and femur (yellow) including their surrounding cartilage (b). Following the generation of unique
triangulated surface mesh objects of each cartilage surface (c) and for each participant, canonical cartilage surfaces
were calculated (d). All the quantitative surface data (T1ρ and T2) from both the repeatability and exercise-
recovery groups were mapped onto the canonical surface following surface registration (e).
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Group 2: Exercise and Recovery Study

To determine the effects of the dynamic joint-loading stepper activity on mean MR relaxation
times of entire cartilage surfaces, linear mixed-effects models with timepoint as a fixed effect
and participant as a random effect for each surface/parameter combination were created. For
all statistical analysis, a level of significance of 0.05 was used.

The upper (+1.96 · σ) and lower (-1.96 · σ) limits of agreement as determined from the
±95% confidence intervals of the Bland-Altman plots of the repeatability data were used to
establish thresholds.

Exercise-induced changes in vertex-wise T1ρ and T2 relaxation times greater than the SDD
signify variations which have a 95% probability of representing a true change rather than a
variation due to measurement error [124]. Thresholds were determined for all four cartilage
surfaces of interest. The determined thresholds were applied to the canonical surface data to
only present cartilage regions undergoing a statistically significant exercise-induced composi-
tional change at each surface vertex.

Vertex-wise percentage changes in T1ρ (%T1ρ change) and T2 (%T2 change) following ex-
ercise were calculated as the normalised change in cartilage relaxation time measurements

%Trelax = 100 · Trelax,post − Trelax,pre
Trelax,pre

(3.2.4)

where Trelax,post is the relaxation time measurement at a post exercise timepoint and Trelax,pre
is the relaxation time measurement prior to exercise.

The variability of T1ρ and T2 relaxation values during cartilage compositional recovery
following exposure to the mild stepping exercise was assessed only in the cartilage regions
determined as regions experiencing significant exercise responses.

3.3 Results

3.3.1 Phantom Imaging

The phantom test-retest repeatability on both days (CVPhant,Day1, CVPhant,Day2) was ≤2.29%
for T1ρ and≤0.74% for T2 relaxation time measurements for all five vials. The CVs for the two
phantoms having relaxation times comparable to cartilage were ≤0.64% for T1ρ and ≤0.21%
for T2. The inter-sessional repeatability (CVPhant,All) calculated from all phantom repeatability
scans over both days was ≤2.94% and ≤1.43% for T1ρ and T2 relaxation time measurements,
respectively. The measured relaxation times and determined CVs are listed in Table 3.1.

3.3.2 Group 1: In Vivo Repeatability Study

The intra-sessional repeatability RMS-CV for in vivo relaxation time measurements averaged
over the entire femoral, medial tibial, lateral tibial and patellar cartilage surfaces are listed in
Table 3.2. The determined mean ± standard deviation (SD) of T1ρ relaxation times of repeata-
bility scan 1 from all participants in group 1 for femoral, lateral tibial, medial tibial and patellar
cartilage surfaces were 50.1 ± 2.6 ms, 44.0 ± 3.3 ms, 44.0 ± 4.0 ms and 51.2 ± 3.5 ms. Mean ±
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Table 3.1: Coefficients of variation (CV) for phantom T1ρ and T2 repeatability measurements. The phantom
consisted of five vials with different T1ρ and T2 relaxation times. The phantom was scanned on two days with
two successive T1ρ and T2 measurements on each day (CVPhant,Day1, CVPhant,Day2). The inter-sessional CV
(CVPhant,All) was calculated from all measurements of both days.

Parameter Vial Day 1 Day 2 CVPhant,ALL [%]

Mean (SD) [ms] CVPhant,Day1 [%] Mean (SD) [ms] CVPhant,Day2 [%]

T1ρ

1 43.96 (0.02) 0.05 44.46 (0.28) 0.64 0.75

2 47.41 (0.20) 0.42 47.75 (0.16) 0.3 0.52

3 133.33 (1.13) 0.85 138.76 (3.17) 2.29 2.71

4 157.56 (1.32) 0.84 164.27 (3.44) 2.09 2.75

5 214.54 (4.29) 2.00 204.79 (0.74) 0.36 2.94

T2

1 41.11 (0.01) 0.04 41.02 (0.08) 0.21 0.18

2 45.40 (0.09) 0.19 45.24 (0.02) 0.05 0.24

3 130.32 (0.02) 0.01 133.52 (0.58) 0.43 1.43

4 144.63 (0.14) 0.10 144.01 (1.06) 0.74 0.49

5 179.31 (0.38) 0.21 181.88 (0.59) 0.32 0.85

SD of T2 relaxation times for femoral, lateral tibial, medial tibial and patellar cartilage surfaces
were 37.2 ± 1.6 ms, 32.0 ± 1.5 ms, 32.0 ± 2.3 ms and 35.5 ± 2.9 ms.

Table 3.2: Root-mean-squared coefficients of variation (RMS-CV) for in vivo T1ρ and T2 repeatability measure-
ments. For RMS-CV calculation, the vertex-wise T1ρ and T2 measurements were averaged over whole femoral,
lateral tibial, medial tibial and patellar cartilage surfaces. Between repeatability scans 1 and 2, the knee was repo-
sitioned (RMS-CVS1−S2). Repeatability scans 2 and 3 were obtained successively and without knee repositioning
(RMS-CVS2−S3).

Cartilage T1ρ T2

Surface RMS-CVS1−S2 [%] RMS-CVS2−S3 [%] RMS-CVS1−S2 [%] RMS-CVS2−S3 [%]

Femoral 0.15 0.24 0.99 0.10

Lateral Tibial 0.26 0.03 2.03 0.30

Medial Tibial 0.41 0.90 1.37 1.09

Patellar 4.81 0.05 1.39 0.22

Knee repositioning showed the greatest effect on the mean surfaced-averaged T1ρ relaxation
time values of the patellar cartilage (51.2 ms→ 54.8 ms, RMS-CVS1−S2 = 4.8%) and the mean
surfaced-averaged T2 relaxation times of the lateral tibial cartilage (32.0 ms→ 32.9 ms, RMS-
CVS1−S2 = 2.0%).

The Bland-Altman plots for vertex-wise T1ρ and T2 repeatability measurements with knee
repositioning of all four cartilage surfaces under investigation are shown in Figure 3.3a and
Figure 3.3b, respectively.

The determined SDD and 95% limits of agreement from the Bland-Altman plots of all four
cartilage surfaces and both compositional MRI methods are listed in Table 3.3.

3.3.3 Group 2: Exercise and Recovery Study

The T1ρ and T2 relaxation times averaged over whole femoral, lateral tibial, medial tibial and
patellar cartilage surfaces are illustrated in Figure 3.4. The determined mean baseline T1ρ



Results 41

Figure 3.3: a: Bland-Altman plots showing the difference in T1ρ measurements with knee repositioning between
repeatability acquisition 1 and 2 (blue circles) against their mean values. b: Bland-Altman plots showing the
difference in T2 measurements with knee repositioning between repeatability acquisition 1 and 2 against their
mean values. The dotted lines represent the 95% limits of agreement; the solid line is the overall mean difference
from all difference measurements.
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Table 3.3: Determined smallest detectable differences and ±95% limits of agreement from Bland-Altman analysis
for both T1ρ and T2 and for all cartilage surfaces. Abbreviations: LoA, limits of agreement; SDD, smallest
detectable difference.

Cartilage T1ρ T2

Surface SDD [ms] +/- 95% LoA [ms] SDD [ms] +/- 95% LoA [ms]

Femoral 3.4 +3.6 / -3.2 1.9 +2.5 / -1.4

Lateral Tibial 2.6 +2.4 / -2.9 1.5 +2.4 / -0.6

Medial Tibial 2.2 +2.4 / -2.0 2.5 +3.2 / -1.8

Patellar 4.8 +8.7 / -0.8 1.6 +2.3 / -0.8

relaxation times from the exercise-recovery cohort for femoral, lateral tibial, medial tibial and
patellar cartilage surfaces were 50.9 ± 3.6 ms, 44.3 ± 4.5 ms, 44.9 ± 3.7 ms and 51.2 ± 8.9 ms.
Mean baseline T2 relaxation times for femoral, lateral tibial, medial tibial and patellar cartilage
surfaces were 38.0 ± 2.0 ms, 34.4 ± 2.3 ms, 32.9 ± 3.0 ms and 34.6 ± 4.2 ms. There was
a statistically significant group-averaged change of T2 of the lateral tibia over time (b [95%
CI] = -0.43 [-0.83, -0.04], p < 0.05). No other surface/parameter combination demonstrated a
statistically significant change over time at the group level. There was significant variation in
change over time between participants for medial tibial T1ρ (SD [95% CI] = 1.04 [0.62,1.75], p
< 0.05). The results of the linear mixed-effects models for each region are provided in Table 3.4.

Table 3.4: Results of the linear mixed-effects models for each region with timepoint as a fixed effect and partic-
ipant as a random effect for each surface/parameter combination. *Variance in intercepts across participants was
highly significant (p < 0.001) in all cases. Only variance of slopes is presented here.

Parameter Surface Fixed Effect (Timepoint) Random Effect (Participant)*

b (95% CI) p Slope SD (95% CI) p

T1ρ

Femur -0.07 (-0.46, 0.31) 0.71 0.28 (0.03, 2.68) 0.76

Medial Tibia 0.34 (-0.42, 1.10) 0.39 1.04 (0.62, 1.75) 0.006

Lateral Tibia -0.15 (-0.71, 0.40) 0.59 0.48 (0.15, 1.55) 0.12

Patella -0.15 (-0.74,0.45) 0.62 0.27 (0.01, 5.41) 0.78

T2

Femur -0.15 (-0.38, 0.07) 0.19 0.27 (0.13, 0.56) 0.47

Medial Tibia 0.14 (-0.24, 0.53) 0.69 0.17 (0, 68.38) 0.99

Lateral Tibia -0.43 (-0.82, -0.04) 0.04 0.36 (0.12, 1.02) 0.28

Patella -0.11 (-0.48, 0.26) 0.55 0.28 (0.08, 0.94) 0.13

Figure 3.5 and Figure 3.7 highlight the cartilage regions experiencing statistically signifi-
cant changes in T1ρ and T2 relaxation times following the mild stepping exercise, respectively.
Correspondingly, Figure 3.6 and Figure 3.8 illustrate the alteration (‘recovery’) in participant-
averaged femoral, patellar, medial and lateral cartilage T1ρ and T2 percentage (%T1ρ and %T2)
changes determined from the four post-exercise measurements (scans 2 – 5) and the one pre-
exercise baseline measurement (scan 1).

Table 3.5 shows the total number of vertices of each canonical cartilage surface and the
percentage of cartilage surface area covered in regions experiencing changes (increases and
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Figure 3.4: T1ρ (top) and T2 measurements (bottom) averaged over whole femoral, medial tibial, lateral tibial and
patellar cartilage surfaces for all exercise recovery scans. Each colour represents an individual participant with the
black curve representing the mean average trend (loess) of all participants with shaded 95% confidence intervals.
Between the baseline scan (timepoint 0) and the first post-exercise scan (timepoint 1), the participant performed
a stepping activity dynamically loading the imaged knee for 5 minutes. The first post-exercise T1ρ- and T2-
mapping sequences were acquired approximately five and ten minutes after patient positioning, respectively. The
last post-exercise T1ρ- and T2-mapping sequences (timepoint 4) were acquired approximately 35 and 40 minutes
after patient positioning, respectively. The acquisition of the post-exercise imaging protocol took approximately
45 minutes.

decreases) in T1ρ (T1ρ-%SC) and T2 (T2-%SC) relaxation time measurements above the deter-
mined measurement errors.

Table 3.5: The total number of canonical surface vertices from all four cartilage surfaces and the percentage
of surface covered by cartilage regions experiencing changes in T1ρ (T1ρ-%SC) and T22 (T2-%SC) above the
measurement error in response to exercise.

Cartilage Surface Total Number of Surface Vertices T1ρ-%SC T2-%SC

Femoral 3694 8.1 23.0

Lateral Tibial 916 11.4 76.7

Medial Tibial 999 44.0 3.0

Patellar 1093 39.5 36.2

Average %T1ρ change of -7.9 ± 5.5 % and %T2 change of +2.8 ± 8.6 % were determined
from all canonical patellar cartilage areas experiencing a significant change in relaxation times
immediately following exercise. For the canonical femoral cartilage surface, average %T1ρ and
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Figure 3.6: Plots showing the normalized change in participant-average femoral (top left), patellar (top right),
medial tibial (bottom left) and lateral tibial (bottom right) T1ρ (%T1ρ change) determined from the four post-
exercise measurements (scans 2 – 5) and the one pre-exercise baseline measurement (scan 1). %T1ρ change at
each vertex was calculated according to Equation 3.2.4 and then averaged. The black solid lines represents the
collective %T1ρ change from all areas experiencing a significant change (increase and decrease) between a post-
exercise time-point and pre-exercise measurement. Below the plot is a table containing %T1ρ change mean ± SD
(range) [%] from all vertex-wise calculated normalized changes in the areas experiencing significant variations.

%T2 changes of -8.0 ± 4.9 % and -5.3 ± 2.3 % were observed in response to exercise, respec-
tively. Average %T1ρ and %T2 changes determined from all canonical lateral tibial cartilage
regions displaying significant responses to exercise were -6.9 ± 3.2 % and -5.9 ± 2.8 %, respec-
tively. Average medial tibial cartilage %T1ρ change of +5.8 ± 5.2 % and %T2 change of +2.8 ±
9.5 % were determined.

The highest negative normalised change of -25.5% was observed in the patellar cartilage T1ρ

followed by -17.3% in femoral cartilage T1ρ and -15.0% in lateral tibial cartilage T2. The largest
positive normalised change of +28.4% was displayed in the patellar cartilage T2 followed by
+15.7% in medial tibial cartilage T2 and +12.1% in medial tibial cartilage T1ρ.

When looking at cartilage compositional recovery following exercise and comparing the
surface %T1ρ and %T2 changes calculated from first post exercise measurements with the %T1ρ

and %T2 changes determined from last post exercise measurements, patella cartilage %T1ρ

change recovered by 15% while the T2 ‘recovered’ by 171%. The overall femoral cartilage
%T1ρ change dropped by 13% and the %T2 change increased by 2% compared to the initial,
first post exercise percentage change. While the lateral tibial cartilage %T1ρ change decreased
by 15% of its initial value, the medial tibial %T1ρ change increased by 1%. The overall %T2

change of both lateral and medial tibial cartilage increased by 12% and 50% compared to their
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Figure 3.8: Plots showing the normalized change in participant-average femoral (top left), patellar (top right),
medial tibial (bottom left) and lateral tibial (bottom right) T2 (%T2 change) determined from the four post-exercise
measurements (scans 2–5) and the one pre-exercise baseline measurement (scan 1). %T2 change at each vertex
was calculated according to Equation 3.2.4 and then averaged. The black solid lines represents the collective %T2

change from all areas experiencing a significant change (increase and decrease) between a post-exercise time-point
and pre-exercise measurement. Below the plot is a table containing %T2 change mean ± SD (range) [%] from all
vertex-wise calculated normalized changes in the areas experiencing significant variations.

initial values, respectively.

3.4 Discussion

This work determined the effects of a mild dynamic stepping exercise on the MR relaxation
times of cartilage surfaces related to variation in biochemical composition.

The intra-sessional repeatability coefficients-of-variation for T1ρ and T2 in this study were
lower than or comparable to those determined in previous studies [41]. When looking at the
surface-averaged T1ρ and T2 repeatability measurements without knee repositioning, both T1ρ

and T2 were very repeatable on all surfaces. Repositioning of the knee had the greatest effect
on the T1ρ relaxation time measurements of patellar cartilage. During repositioning the knee
joint experienced bending which could lead to larger changes in cartilage composition at the
patellofemoral cartilage contact areas though friction than at the tibiofemoral areas. Averag-
ing of relaxation times over large surfaces could mask these effects on the femoral cartilage
surface due to its greater size in comparison to the smaller patellar surface. However, knee
repositioning did not show a similarly strong effect on the patellar T2 relaxation time measure-
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ments. This could be a consequence from the time delay (≈10 minutes) required for patient
positioning, localisation and T1ρ data acquisition before the T2 acquisition started and therefore
allowing compositional recovery during this time period.

In this study, 3D surface analysis was performed to help gain a better insight into how dif-
ferent cartilage regions respond to and recover from exercise. When averaging the T1ρ and T2

measurements over the entire femoral, lateral tibial, medial tibial and patellar cartilage surfaces,
no statistically significant exercise-related changes were determined when comparing the pre-
exercise scan with the first post-exercise scan. As a previous study has also reported, determin-
ing mean relaxation time changes from individual slices or across large regions-of-interest may
mask significant focal changes [47]. When the individual vertex-wise relaxation times mea-
surements in this study were re-gridded onto a canonical surface, significant exercise-related
focal changes in T1ρ and T2 were observed. Although individual participants showed differ-
ent cartilage compositional response to the exercise performed, cartilage regions experiencing
compositional responses consistent across all participants became evident. By thresholding the
exercise-related changes in MR relaxation time measurements with the predetermined thresh-
old limits from the repeatability measurements, cartilage regions undergoing significant re-
sponses to the mild dynamic joint-loading activity were highlighted.

Since greater overall normalised changes were seen with T1ρ than with T2 relaxation time
measurements, T1ρ may be a more sensitive biomarker for detecting compositional cartilage
responses to joint-loading activities. The %T1ρ changes of patellar (-7.9%), femoral (-8.0%)
and lateral tibial (-6.9%) cartilage and the %T2 changes of femoral (-5.3%) and lateral tibial
(-5.9%) cartilage observed in this study are comparable with those seen in previous studies.
Mosher et al showed a %T2 change of approximately -2.5% to -3.2% in femoral and -1.3%
to -3.6% in lateral tibial cartilage following a 30-minute running activity [61]. Similarly, Sub-
buraj et al demonstrated a %T1ρ change of -4.1% to -14.3% and a %T2 change of -3.0% to
-9.3% in femoral, tibial and patellar cartilage following running for 30 minutes [107]. The
joint movements during the stepping activity performed in this study are comparable to the
movements during the stair activity carried out in the study by Chen et al [71]. Similarly, the
5-minute stepping activity performed in this study showed a greater effect on patellofemoral
cartilage T1ρ relaxation times than on those of femorotibial cartilage, especially in the region
of patellofemoral cartilage contact.

We not only observed regions experiencing significant decreases but also significant in-
creases in relaxation time measurements immediately following exercise, especially in medial
tibial T1ρ and T2, and patellar T2. Farrokhi et al also demonstrated a slightly increased %T2

relaxation time change of 0.3% of healthy patellar cartilage following 50 deep knee bends [62].
Gatti et al showed an increased medial femoral %T2 change after participants bicycled for ap-
proximately 45 minutes [110]. Areas of increased normalised change could result from water
redistribution rather than expulsion, increasing the water content and decreasing collagen and
proteoglycan concentrations in these regions.

Various compositional ‘recovery’ time-courses were determined for the four different car-
tilage surfaces. While patellar cartilage volume has been shown to recover in an almost linear
fashion following 100 knee bends, we did not observe this linear recovery pattern in patellar
cartilage composition [54]. Overall, we only observed a drop in compositional normalised
change in four instances (%T1ρ change of patellar, femoral and lateral tibial cartilage; %T2

change of patellar cartilage) while in the other four instances (%T1ρ change of medial tibial
cartilage; %T2 change of femoral, medial and lateral tibial cartilage) an increase in normalised
change was observed during the recovery period (post-exercise scan 2 → scan 5). Cartilage
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morphology (thickness, volume), independent of cartilage health state, has been shown to re-
cover almost fully in about 45-90 minutes following 30 [65] and 100 knee bends [54] and a 30
minute [112] and 20 km run [60]. Based on our results, the focal compositional changes appear
to require more time to return to baseline. More cartilage surfaces experienced some degree of
compositional recovery in T1ρ compared to T2, suggesting that the proteoglycan concentration
is recovering faster due to water uptake than the changes in the collagen network after cessation
of dynamic joint-loading.

The stepping exercise performed in this study is mild and of short duration. This exercise
type was chosen as it is thought to be feasible and extendable for use in patients with early
stage knee joint disease and minimal accompanying pain. Knowledge of the effects that de-
formational loads have on cartilage structure and biochemical composition are important when
evaluating clinical imaging studies aiming at determining differences in healthy and diseased
cartilage. Differences in cartilage compositional MR relaxation time measurements between
healthy and osteoarthritic cartilage have been shown to be in the range of 2% - 13% for T1ρ

and 1% - 12% for T2 for large regional analysis [82, 114, 125]. As the disease-induced com-
positional changes in cartilage reflected in T1ρ and T2 measurements can be of the same order,
and appear in similar cartilage regions, as exercise-induced changes, it is important to mitigate
these effects when conducting clinical OA trials. A 3D surface analysis provides the possibility
of spatially localising the deformational and compositional effects of joint loading on articu-
lar cartilage and could also assist in determining the regions most prone to exhibit cartilage
degeneration [3].

3.4.1 Limitations

As the number of participants in the repeatability and exercise-recovery groups was limited,
a larger sample size would increase the precision of the study results. A major limitation
to in vivo studies assessing cartilage response to different joint-loading activities is that the
compositional behaviour of cartilage cannot be determined immediately after cessation of the
exercise but only some short time after as time is required to position the participant back
in the MRI system and for acquiring the data. Additionally, the T1ρ and T2 relaxation time
mapping data were not acquired simultaneously but sequentially. Although both sequences
are fast spin-echo based sequences, the T2 mapping was always performed about six minutes
after T1ρ during which time further compositional recovery could take place preventing an
exact comparison between T1ρ and T2 results. A sequence capable of simultaneous T1ρ and T2

acquisition, such as the sequence proposed by Li et al [48], could help address this issue.

3.5 Conclusion

We have shown that exercise-related changes in cartilage T1ρ and T2 relaxation times exceed
measurement error and can reliably be determined when using the described 3D-CaSM analysis
approach. Based on the results presented here, we hypothesise that mapping of cartilage T1ρ

and T2 relaxation times are measuring dissimilar compositional features as similar cartilage
regions showed different T1ρ and T2 responses to exercise. This lack of correlation between
the exercise-induced responses in T1ρ and T2 warrants further investigation. While complete
morphological recovery has previously been shown, the question of when, whether and how
the different cartilage regions recover completely from compositional variations following joint
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loading activities persists.



Chapter 4

The Optimisation of Deep Neural
Networks for Segmenting Multiple Knee
Joint Tissues from MRIs

Published as Research Article in Computerized Medical Imaging and Graphics, 86; December
2020.

4.1 Introduction

Osteoarthritis (OA) is a degenerative disease involving the entire synovial joint [9, 14, 126].
Important risk factors for the development of OA include age, muscle weakness, abnormal
joint loading due to joint malalignment or overloading (obesity, high impact sport), and injury
to the menisci and ligaments [14, 15, 22]. Distinctive hallmarks of OA include the progres-
sive destruction of articular cartilage structure and alterations in the surrounding joint tissues,
including bone, meniscus, ligament and peri-articular muscle. Magnetic Resonance Imaging
(MRI) is a commonly used tool to evaluate clinical abnormalities of the knee [127]. Morpho-
logical changes due to OA are well demonstrated with MRI [128–132]. Tissue specific masks
of the knee joint can be useful for the analysis of OA, especially as automated tools continue to
be developed and validated [70, 133–143].

For both clinical and research usage, a significant amount of time is spent manually seg-
menting images to designate tissue-specific regional masks, also known as regions-of-interest
(ROIs). Image masking remains a very significant challenge within medical imaging due to
heterogeneity in organ appearance and disease progression and presentation. The segmentation
of neighbouring soft tissues such as the cruciate ligaments, cartilages and muscles in the knee
joint which have similar image intensities (and therefore poor contrast resolution) is an espe-
cially demanding task. ROIs can be generated through manual or semi-manual delineation by
a trained reader, or they may be generated automatically using signal thresholding [141], shape
[133, 138], atlas [135, 139], or derived from region based [136, 137, 140] approaches, as well
as with machine learning approaches [70, 134, 142, 143]. Machine learning methods include
unsupervised learning, such as k-means clustering, which segments based on spatial clusters
of similar signal intensities in an image [136, 137, 140], or supervised learning by training the
algorithm on image masks that have been obtained from any previous masking technique [70,
134, 142, 143]. The number of high-quality label maps for supervised learning is typically
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very small, and the performance of a machine learning network trained on a low number of
data is limited due to the lack of heterogeneity of images presented during training. Transfer
learning may be used to mitigate this by pretraining a network on a large dataset with different
but related similarities to the actual task, followed by network refinement on the small dataset
[144].

Convolutional neural networks (CNNs), in particular U-Nets [93], have demonstrated their
capability to automate the segmentation of musculoskeletal MRIs [70, 145]. Nevertheless, a
drawback of this approach with CNNs is that they usually use pixel-wise measures such as
the absolute (L1) or square (L2) error loss which can be non-optimal for image data, and, in
the case of L2, result in blurry boundaries [146]. In contrast, generative adversarial networks
(GANs) [96] learn a similarity measure (feature-wise metric) that adapts to the training task
by implementing two competing, or adversarial, neural networks. During adversarial training,
one network focusses on image discrimination and guides a second network which focusses on
image generation to create “real” images that have a data distribution indistinguishable from
the training data distribution. The generator and discriminator are trained simultaneously and
competitively in a mini-max game while convergence is achieved when the Nash equilibrium is
reached, i.e. no network can improve through further training if one remains unchanged [147].

Conditional GANs (cGANs) modify the GAN approach to learn image-to-image mappings
[96, 97]. In comparison to traditional GANs that learn a mapping from random noise to a
generated output, cGANs learn a mapping from an observed variable, for example an image
to generate an output, such as a label map [96, 97]. cGANs have been used to produce image
labels for neurological [148], cardiac [149], abdominal [150], respiratory [151] and muscu-
loskeletal imaging [94, 95]. Liu et al used unpaired image-to-image translation with a method
called cycle-consistent generative adversarial network (CycleGAN) to perform semantic image
segmentation of femorotibial cartilage and bone of the knee joint of unlabelled MRI datasets
[95]. The “pix2pix” framework is one cGAN approach that has demonstrated segmentation
capability [97]. Semantic segmentation with cGANs, particularly those combining U-Net gen-
erators and Markov Random Field discriminators (patch-based discriminators), is relatively
unexplored. The method has previously been performed for semantic segmentation of the brain
[148]. In Gaj et al, a cGAN was used for semantic segmentation of knee cartilage and meniscus
but with an image-wise discriminator rather than a patch-wise discriminator [94].

The aim of this study was to implement and evaluate a cGAN for automated semantic
segmentation of multiple joint tissues from MR images: the femoral, tibial and patellar bones
and cartilage surfaces; the cruciate ligaments; and two selective muscles, the medial vastus and
gastrocnemius. Our essential contributions are summarised as followed:

1. Implementation of a cGAN based on the “pix2pix” framework introduced by Isola et al
using a U-Net generator and a patch-based discriminator for automatic segmentation of
multiple knee joint tissues [97]. As far as we know, cGANs have not previously been
used for semantic segmentation of the patellar bone and cruciate ligaments, as well as
muscles of the knee joint.

2. Evaluating the segmentation performance of the cGAN with different objective functions
by combining the cGAN loss with different pixel-wise error losses and modifying the
weighting hyperparameter between the cGAN loss and pixel-wise error loss.

3. Assessing the choice of the generator depth and discriminator receptive field size on the
performance of the cGAN for multi-tissue segmentation.
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4. Quantitative comparison of the cGAN approach with the well-known U-Net approach.

5. Exploring the use of transfer learning for improved segmentation performance of both
cGAN and U-Net.

4.2 Methods

4.2.1 Image Datasets

Three image datasets were used for network training and testing; the publicly available SKI10
and OAI ZIB datasets, consisting of 100 and 507 labelled knee MRs, respectively, and a lo-
cally acquired dataset of ten segmented knee MRs (Advanced MRI of Osteoarthritis (AMROA)
study) [3].

SKI10

The “Segmentation of Knee Images 2010” (SKI10) dataset, consists of approximately 90%
1.5T and 10% 3.0T sagittal MR images using multiple system vendors – GE , Siemens, Philips,
Toshiba, and Hitachi [152]. The sequences were varied and included both gradient echo and
spoiled gradient echo sequences, commonly with fat suppression. The images were segmented
on a slice-by-slice basis by experts from Biomet, Inc., initially through intensity thresholds and
thereafter with manual editing. One hundred 3D image datasets of the SKI10 challenge were
provided with semi-manual masks of femoral and tibial cartilage and bone. In our study, 70
datasets were used for network training and 30 for network testing.

OAI ZIB

The OAI ZIB dataset is comprised of segmentations of femoral and tibial cartilage and bone
of 507 MR imaging volumes from the publicly available Osteoarthritis Initiative dataset (“The
Osteoarthritis Initiative,” n.d.) [153, 154]. The MR images were acquired on Siemens 3T Trio
systems using a 3D double echo steady state (DESS) sequence with water excitation. Outlines
of femoral and tibial bone and cartilage were generated using a statistical shape model [138]
with manual adjustments performed by experts at Zuse Institute Berlin. The OAI ZIB data
covers all degrees of OA (KL 0 – 4), with more cases having severe OA (KL ≥ 3) [153]. As
with the SKI10 dataset, we split the dataset in 70% (355) for network training and 30% (152)
for testing.

AMROA

The locally acquired participant cohort consisted of ten subjects: five healthy volunteers and
five patients with mild-to-moderate OA. The patients followed at least one subset of American
College of Rheumatology criteria for OA and were recruited between April 2017 to April 2018
(Table 4.1). The healthy volunteers were approximately matched to OA patients for age, sex,
and body mass. Network training was performed on data from four subjects with OA and four
healthy subjects. Two individuals (one with OA and one healthy) were used as a unique set
for test measurements. The number of test individuals was chosen such that roughly 80% of
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the data could be used for training. Ethical approval was obtained from the National Research
Ethics Service, and all subjects provided written informed consent before participation.

Table 4.1: Participant characteristics showing the mean age, number of males/females (M/F), average body-mass-
index (BMI), Kellgren-Lawrence (KL) osteoarthritis score and the number of training/testing set images of the
locally acquired dataset. Additionally, the number of participants (N) and training/testing set images of the SKI10
and OAI ZIB datasets are given.

Dataset Variable Training Set Testing Set

Local

N 8 2

Images 806 171

Mean Age (years) 53 52

Sex (M/F) 5/3 0/2

Mean BMI (kg/m2) 27.8 27.7

KL (0/2/3) 4/1/3 1/1/0

SKI10
N 70 30

Images 6133 2626

OAI ZIB
N 355 152

Images 43814 18517

The source images (Fig. 2A) for each subject were 3D fat-saturated spoiled gradient
recalled-echo (3D-FS SPGR) images and were acquired on a 3.0T MRI system (MR750,
GE Healthcare, Waukesha, WI, USA) using an 8-channel transmit/receive knee coil (InVivo,
Gainesville, FL, USA). The 3D-FS SPGR sequence parameters were: field-of-view=150 x 128
x 136 mm3, matrix size=512 x 380 x 136 zero-fill interpolated to 512 x 512 x 136, voxel
size=0.29 x 0.29 x 1.0 mm3, TR = 12.5 ms, TE = 2.4 ms, flip angle = 25°, coil acceleration
factor (ASSET) = 2, partial Fourier phase encoding = 0.5 (half-NEX), bandwidth = ±11.9 kHz,
with fat-suppression.

Semi-manual segmented masks (Fig. 2A) of the patella, tibia, and femur bones as well
as of their respective surrounding patellar, tibial and femoral cartilages (Fig. 2b) were cre-
ated from the 3D-FS SPGR images by a musculoskeletal radiologist with 8 years’ experience,
using the Stradwin software v5.4a (University of Cambridge Department of Engineering, Cam-
bridge, UK, now freely available as ‘StradView’ at http://mi.eng.cam.ac.uk/Main/StradView/)
[3]. Additionally, masks of the vastus medialis and medial head of gastrocnemius muscles were
created. This semi-manual segmentation pipeline consists of sparse manual contour generation
(every 2nd-5th sagittal image/2-5 mm) followed by automatic surface triangulation using the
regularised marching tetrahedra method. Volume preserving surface smoothing allows creation
of an accurate segmentation from relatively sparse manual contours [120]. Manual segmen-
tations of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) were
created on the 3D-FS SPGR images using ITK SNAP [155] by a radiologist with 3 years’
experience.

http://mi.eng.cam.ac.uk/Main/StradView/
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4.2.2 Training Data and Masking

Each of the major structures were given a separate image value, i.e., colour, in the segmenta-
tion mask, such that the network determined the unique weights to generate a similar regional
colour-value from an MR image. On a 256-bit colour-scale, the three bones were stored in the
blue colour channel where the femur colour code was 50, tibia was 100, and patella was 150.
The cartilages were stored in the green colour channel where the femoral cartilage colour code
was 50, the tibial was 100 and the patellar was 150. Additionally, for the AMROA dataset, the
muscles were stored in the red colour channel with the medial vastus muscle code set to 100
and the medial gastrocnemius muscle colour code set to 200. The ACL mask was stored in the
blue colour channel and the PCL in the green colour channel with both colour codes set to 200.

The MRIs and image masks were converted from the DICOM and NIFTI formats [156],
respectively, to a common image format (Portable Network Graphics, PNG) before training.
Noise-only images were not used for training or testing, as training a network to fit against
zero-valued masks results in a poor constraint. After network training, a tissue- / region-specific
Boolean mask was created on the predicted test images by removing prediction values outside
of ±20 colour scale units of the tissue specific value. 3D mask predictions were obtained by
iterating over the 2D segmented slices.

4.2.3 Network Specifications

This work uses the “pix2pix” framework of a conditional GAN (cGAN) described by Nvidia
[97]. The cGAN consists of two deep neural networks, a generator (G) and a discriminator (D).
For our task, G learns to translate sagittal MR images of the knee joint (source images x) to se-
mantic segmentation maps (G(x)), whileD aims to differentiate between the real segmentation
map (y) and the synthetically generated.

Figure 4.1: Conditional GAN structure. The generator is a U-Net that progressively down-samples / encodes
and then up-samples / decodes an input by a series of convolutional layers, with additional skip-connections
between each major layer. The generated, ’fake’ segmentation image is then fed together with the ground truth
segmentation image into a discriminator network (PatchGAN (Isola et al., 2017)) that gives its prediction of
whether the generated image is a ‘real’ representation of the ground truth image, or not. A detailed description of
the network architecture can be found in the Appendix.

The structure of a cGAN is illustrated in Figure 4.1. The loss function for this cGAN is
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LcGAN(G,D) = Ex,y [logD(x, y)] + Ex [log(1−D(x,G(x)))] (4.2.1)

The loss function describes how G is minimized against a maximised D. Since both opti-
misation processes are dependent on each other, convergence is achieved by reaching a saddle
point (simultaneously minimum / maximum for both networks’ cost) rather than a minimum.
The loss also incorporates a L1 distance to reduce image blurring and ensure that the generated
image from G(x) are not significantly different from the target image y [97, 157]. This L1 loss
is given by

LL1(G) = Ex,y [‖y −G(x)‖1] (4.2.2)

The overall objective of the cGAN is to find the optimal solution to

G∗ = arg min
G

max
D
LcGAN(G,D) + λLL1(G) (4.2.3)

with λ being a hyper-parameter used for balancing the two losses (Regmi and Borji, 2018).
The cGAN used in this work utilises the U-Net encoder-decoder architecture for the gen-

erator, which is frequently used for image segmentation problems [93]. The generator was
trained to generate images that are indistinguishable from a target image (i.e., the segmented
map). Spatial consistency of the data is not guaranteed with a U-Net segmented map, which
can cause inaccurate boundaries [93]. However, adversarial losses in the discriminator regulate
and therefore increase the accuracy to higher order shapes [158].

We modified the U-Net generator from the “pix2pix” network by increasing the input
layer to be able to train on 512 x 512 resolution images. For this an additional Convolution-
BatchNorm-leakyReLU layer was inserted in the encoding and a Convolution-BatchNorm-
ReLU layer in the decoding network part.

The discriminator is a patch-based fully convolutional neural network, PatchGAN [159,
160], which models the image as a Markov random field. It performs a convolutional patch-
wise (N x N) classification with all the outputs in the patch averaged and taken as the output of
D. D is therefore less dependent on distant pixels/voxels beyond a “patch diameter” and is a
form of neighbouring texture loss. The PatchGAN can be applied to arbitrarily large images,
due to a fixed size of the patch.

To analyse the cGANs performance we compared it to the performance of a U-Net network,
which is widely used for image segmentation processes. We used the cGAN generator network
as the U-Net network to maintain an effective comparison.

The networks were implemented using PyTorch (Torch v1.0.1) and all training was per-
formed on a Nvidia P6000 GPU card (3840 CUDA cores, 24 GB GDDR5X). The training
phase of optimisation was performed as described by the “pix2pix” network, using stochastic
gradient descent to minimise D(x,y) and stochastic gradient ascent to maximise D(x,G(x)). The
Adam solver was used with a learning rate 0.0002 and momentum parameters, β1 = 0.5, β2 =
0.999. We introduced random noise (jitter) during training by resizing the input images to 542
x 542 using bi-cubic interpolation followed by random cropping back to 512 x 512.

A detailed description of the network architectures can be found in the Appendix.
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4.2.4 Segmentation Evaluation Metrics

The Sørensen–Dice Similarity Coefficient (DSC) [89, 161] was used to evaluate the overlap
between the generated segmentation and the manual segmentation. The DSC ranges between
0 and 1, with 0 representing no overlap and 1 complete overlap between the two sets. DSC is
defined as twice the size of the intersect divided by the sum of the sizes of two sample sets,
given as

DSC =
2 |X ∩ Y |
|X|+ |Y |

(4.2.4)

for Boolean metrics. For the experiments involving the SKI10 and OAI ZIB datasets, the volu-
metric overlap error (VOE) and the boundary distance-based metric average surfaces distance
(ASSD) were determined to assess segmentation accuracy and allow an appropriate comparison
with previous studies using these datasets. The VOE can be calculated as

V OE = 1− |X ∩ Y |
|X ∪ Y |

(4.2.5)

with small values for VOE expressing greater accuracy. The ASSD is expressed in mm and is
defined as

ASSD =
1

NX +NY

(
NX∑
i=1

DX(y) +

NY∑
i=1

DY (x)

)
(4.2.6)

where DX(y) = min
x∈X
‖y − x‖ is the distance of a voxel y to a surface X and ‖·‖ denotes the

Euclidean norm.

4.2.5 Evaluation of Network Characteristics

This section aims at evaluating and adjusting specific network characteristics towards improv-
ing overall network performance, for both cGAN and U-Net. All networks in this section were
trained for 100 epochs and all cGANs with a 70 x 70 PatchGAN discriminator unless otherwise
stated.

Evaluation of Network Objective Function:

We evaluated the cGANs performance with different objective functions by combining the
cGAN loss with different pixel-wise error losses. In this work the cGAN is tasked to output a
segmentation map of multiple tissues having different features and locations in the input MR
image. We assessed the shortcomings and strengths of including the LL1, LL2 and Smooth L1
(LSmL1) [162] loss functions in the cGAN objective. The LL2 loss and LSmL1 loss are given by

LL2(G) = Ex,y
[
‖y −G(x)‖22

]
(4.2.7)

LSmL1(G) =

{
0.5 · Ex,y

[
‖y −G(x)‖22

]
, if |y −G(x)| < 1

Ex,y [‖y −G(x))‖1 − 0.5] , otherwise
(4.2.8)
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Furthermore, the weighting hyperparameter λ between the cGAN loss and pixel-wise er-
ror loss was changed to vary the balance between the two task losses. λ = 0.01, 1, 100 and
10000 were investigated. Network training with the cGAN loss alone (λ = 0) was additionally
performed and evaluated.

We also trained the U-Net with the same three different pixel-wise error losses (LL1, LL2
and LSmL1) as the cGAN to maintain an effective comparison.

Evaluation of Altering the Loss Objective during Training:

After obtaining initial results, we observed that the cGAN was unable to segment muscle
tissues, independent of the objective function trained on. Therefore, we decided to explore
the effect of varying the loss objective during training. For this, we trained a cGAN with
LcGAN + λLL2 loss and a U-Net with LL2 loss for 50 epochs and then changed the loss func-
tions for the ensuing 50 epochs to LcGAN + λLL1 and LL1, respectively.

Evaluation of the Generator Depth:

We analysed the effect of changing the depth of the generator network on the cGANs and U-
Nets quantitative performance. In addition to the generator down-sampling the input through
nine convolutional networks, we tested a generator consisting of seven and five convolutions
during down-sampling. Furthermore, we assessed the quantitative performance of the generator
network with different numbers feature channels. We compared networks starting with different
minimum number of feature channels (16, 32, 64 and 128) and thus end at different maximum
numbers of feature channels (128, 256, 512 and 1024). All cGANs were trained with LcGAN +
λLL1 loss with λ = 100 and all U-Nets with the LL1 loss. Detailed descriptions of the generator
network architectures can be found in the Appendix.

Evaluation of the PatchGAN Receptive Field Size:

We evaluated the effect of changing the PatchGAN receptive field size on the cGANs qualitative
(artefact emergence) and quantitative (segmentation accuracy) performance. In addition to the
70 x 70 PatchGAN, we tested a 1 x 1 (PixelGAN), 34 x 34 and 286 x 286 PatchGAN. All
cGANs were trained with LcGAN + λLL1 loss with λ = 100. Detailed descriptions of the
discriminator network architectures can be found in the Appendix.

Evaluation of Transfer Learning:

Since the AMROA dataset only comprises of a low number of subjects (N=8) for training,
we assess the influence of transfer learning on network performance, by initially training both
a cGAN (LcGAN + λLL1) and a U-Net (LL1) for 20 epochs on the larger SKI10 and OAI
ZIB training datasets separately followed by network fine-tuning for 80 epochs on the smaller
AMROA training set. Additionally, a cGAN and a U-Net were trained for 20 epochs on the
AMROA training dataset followed by network refinement training for 80 epochs on either the
SKI10 or OAI ZIB training set to analyse the potential segmentation improvement of SKI10
and OAI ZIB. Network performance evaluations were performed using AMROA, SKI10 and
OAI ZIB testing datasets. As determined from the previous sections, the cGAN trained with
the LcGAN + λLL1 loss objective (λ = 100) and a 1 x 1 PixelGAN as well as the U-Net trained
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with the LL1 loss objective achieved the highest segmentation accuracies for most knee joint
tissues segmented in the AMROA dataset and were used in this section.

4.3 Results and Discussion

4.3.1 Network Training and Testing

Semi-manual segmentation of the AMROA images by the reader required ≈30 minutes per
subject-volume. cGAN training was performed in 80 seconds/epoch for the AMROA training
dataset, and 390 seconds/epoch for the SKI10 dataset. U-Net training was performed in 45
seconds/epoch for the AMROA training dataset, and 185 seconds/epoch for the SKI10 dataset.
Segmentation post-training on a single slice was processed in u0.13s. The highlights of the
upcoming sections are:

• Section 4.3.2: The U-Net trained with LL1 loss objective outperformed the cGANs and
the U-Nets trained with different loss objectives in the segmentation performance of most
knee joint tissues.

• Section 4.3.3: Altering the network objective function midway through cGAN and U-
Net training lead to unanticipated but advantageous results. This variation resulted in
improved segmentation performances of several tissues and the cGANs capability to seg-
ment muscle tissue, which previously had not been possible with non-altered objective
function training.

• Section 4.3.4: The cGAN and U-Net trained with nine convolutions/transpose convolu-
tions in the networks encoding/decoding parts and a minimum feature channel change of
64 achieved the highest segmentation accuracies for most knee joint tissues annotated.

• Section 4.3.5: The greatest improvements in segmentation performance of the cGAN was
achieved by reducing the receptive field size of the discriminator network. This resulted
in segmentation accuracies equivalent to those of the U-Net.

• Section 4.3.6: Transfer learning not only increased segmentation accuracy of some tis-
sues of the fine-tuned dataset, but also increased the network’s capacity to maintain seg-
mentation capabilities for the pretrained dataset.

• Section 4.3.7: Overall, the cGAN trained with the LcGAN + λLL1 loss objective (λ =
100) and a 1 x 1 PixelGAN as well as the U-Net trained with the LL1 loss objective
achieved comparable and the highest segmentation accuracies for most knee joint tissues
segmented.

4.3.2 Evaluation of Network Objective Function

The quantitative results of assessing the impact of combining the cGAN objective with three
different pixel error losses with varying weightings λ on the cGANs segmentation performance
are in Table 4.2, with the qualitative results depicted in Figure 4.2B. The cGANs trained with
larger values for λ (λ = 100 and 10000) achieved the highest segmentation performance for all
tissues and the produced segmentation maps were less affected by artefacts compared to the
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cGANs trained with λ = 0.01 and 1. For instance, the images from the networks trained with
LcGAN + λLL1 (λ = 0.01), LcGAN + λLL2 (λ = 1) and LcGAN + λLSmL1 (λ = 1) had artefacts
where the networks seem to detect bone or cartilage structures where there were none in the
original MR input image. By increasing the weighting hyperparameter λ, more emphasis is put
on the pixel error losses to guide the network to produce more accurate representations of the
ground truth segmentation map and reduces these artefacts. However, the influence of GAN
loss diminishes with very large values for λ with the discriminator having minimal effect on
generator training.

The qualitative results of training a U-Net with different pixel error losses are presented in
Figure 4.2C while the quantitative results are listed in Table 4.3. The U-Net trained with LL1
loss objective achieves the highest accuracy for all tissues compared to LL2 and LSmL1 loss
except for the muscle tissues. Muscle tissues appeared on the majority of 2D MR knee images
seen by the network during training, however we only segmented two selective medial muscles
in the AMROA dataset due to time constraints. It is interesting to note that although the U-Net
trained with LL1 was not able to capture the medial head of gastrocnemius and vastus medialis
muscles, the cGAN trained with the LcGAN +λLL1 objective (λ = 10000) was. Simple absolute
difference (LL1) was not capable of differentiating lateral muscle textures from medial. The U-
Nets trained with LL2 and LSmL1 losses were capable of segmenting the selective muscles with
high accuracies as they are penalised more by the squaring term in their loss objectives when
the difference between ground truth and model predictions are large. Interestingly, although
the patella bone and cartilage only appear on very few slices in a 3D dataset, and ACL and
PCL on even fewer, the U-Net with LL1 segmented these tissues better than the LL2 and LSmL1
(LL2: DSCPBone < 0.2%, DSCPCartilage < 5.3%, DSCACL < 15.2%, DSCPCL < 21.3%; LSmL1:
DSCPBone < 0.4%, DSCPCartilage < 6.0%, DSCACL < 6.9%, DSCPCL < 17.8%). This could
be explained by the cruciate ligament and patellar tissues either being present or not on a
2D training image and the network is not being constrained to only segment medial tissues.
Overall, the U-Net with LL1 produced sharper boundaries, especially for the smaller ligament
structures, as compared to the segmentation maps produced by U-Nets trained with LL2 and
LSmL1, in which the boundaries are more diffused.

We decided to assess the model’s performance when including noise-only images in the
testing dataset as we excluded them during model training, and this might limit the models’ use
in a clinical setting. This effect was only evaluated for a the cGAN trained with the LcGAN +
λLL1 (λ = 100) objective function and the U-Net trained with the LL1 loss objective. The
quantitative results are listed in Table 4.4 with qualitative results displayed in Figure 4.3. Both
networks showed comparable segmentation performances after testing with noise-only images
with percentage differences (%-Diff) of the DSC for all segmented tissues ≤ 2.3%. Including
noise-only images into the testing set had greater effects on the cGAN DSC of the medial vastus
muscle (VM muscle) (%-Diff = 1.5%), the ACL (%-Diff = 1.6%) and the PCL (%-Diff = 1.9%)
as well as on the U-Net DSC of the ACL (%-Diff = 2.3%). These higher differences could be
explained by the lower segmentation capability of these structures by the cGAN and U-Net
models to begin with (cGAN: DSCVM muscle: 0.113 vs 0.098, DSCACL: 0.577 vs 0.593;
DSCPCL: 0.073 vs 0.092; U-Net: DSCACL: 0.643 vs 0.620). Furthermore, the larger %-Diff in
the DSC of the VM muscle is caused by the cGAN model irregularly segmenting VM muscle
tissues on noise only images (Figure 4.3B).
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Figure 4.2: Results of Network Objective Function. Qualitative results of B) training a cGAN with different
objective functions by combining the cGAN loss with different pixel-wise error losses with varying weightings
and C) training a U-Net with different pixel-wise error losses.
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Figure 4.3: Results of testing on noise only images. Assessing the segmentation performance of a cGAN trained
with LcGAN + λLL1 (λ = 100) loss objective and a U-Net trained with LL1 objective and tested on noise only
images. Training was performed on the AMROA training dataset without noise only images. A) and B) are two
example results of testing the models on noise only source images and comparing to ground truth segmentation
maps.

4.3.3 Evaluation of Altering Loss Objective during Training

Figure 4.4 compares the qualitative results and Table 4.5 compares the DSCs obtained from a
cGAN and a U-Net, in which the objective functions were changed midway through training
to the cGANs and U-Nets trained with non-altered objective functions. Training a cGAN with
varied loss objective (LcGAN + λLL2→LcGAN + λLL1) notably reduced its ability to segment
the ACL, however considerably improved its segmentation performance on the medial vastus
and gastrocnemius muscles, as well as PCL, compared to the other cGANs (LcGAN + λLL1
and LcGAN + λLL2). The images in Figure 4.4B show the improvements in muscle segmenta-
tion with the cGAN trained with varied loss objective. This was a surprising result as neither
the cGAN trained with LcGAN + λLL1 nor with LcGAN + λLL2 alone were able to segment
muscle. Looking at the different training epochs of the cGAN trained with varied loss, during
LcGAN + λLL2 no muscle tissue was being semantically segmented. However, when chang-
ing to LcGAN + λLL1 and between training epochs 50 and 60, the network started segmenting
muscle tissue (Figure 4.5). After the initial 50 epochs of LcGAN + λLL2 training, the cGANs
weights must have been favourable for continuing training with LcGAN + λLL1 to additionally
semantically segment muscle tissue.

The U-Net trained with altered objective function (LL2 → LL1) also showed notable im-
provements in the segmentation performance of the medial vastus and gastrocnemius muscles
while the segmentation scores of the other knee tissues remained comparable with those of the
other U-Nets (LL1 and LL2). Figure 4.4C qualitatively compares the results of a U-Net trained
with altered loss objective to those of the U-Nets trained with a single, non-altered loss objec-
tive. As mentioned in the corresponding method section, this idea came after reviewing a few
initial training results. While the U-Net trained with the LL1 objective was not able to segment
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Figure 4.4: Results of Altering the Loss Objective during Training. Assessing the influence of varying the ob-
jective function halfway during cGAN and U-Net training on their segmentation performance with comparison to
the respective cGANs and U-Nets trained with constant loss function.

the medial vastus and gastrocnemius muscles after training, the U-Net with the LL2 loss ob-
jective was. However, these images were slightly blurrier, and the segmentation accuracy of
the remaining tissues was poorer than compared to LL1. By varying the loss objective during
training, the strengths of LL2 and LL1 were combined. We decided to first train the network
with LL2 loss to capture all tissues and then to change to LL1 halfway through training to make
the images sharper and increase segmentation accuracy. This method created a more proficient
network capable of segmenting all tissues with higher or comparable accuracies to the networks
trained with non-altered loss objectives.
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Figure 4.5: Influence of altering the loss objective during cGAN training on the segmentation performance of the
medial gastrocnemius and vastus muscles. The cGAN was trained with a LcGAN + λLL2 loss objective for 50
epochs followed by a further 50 epochs training with LcGAN + λLL1. Abbreviations: VMM - vastus medialis
muscle, GMM – medial head of gastrocnemius muscle, DSC – Dice Similarity Coefficient.

4.3.4 Evaluation of the Generator Depth

The quantitative results of assessing the impact of generator network depth on the cGANs and
U-Nets segmentation performances are in Table 4.6 and Table 4.7.

The cGAN with a generator down-sampling the input through nine convolutional networks
achieved the highest DSC scores for tibial and patellar bone, as well as for femoral and patellar
cartilage. Femoral bone and tibial cartilage were best segmented by the cGAN with five convo-
lutions / transpose convolutions in the generator encoding / decoding parts. The medial vastus
and gastrocnemius muscles, as well as ACL and PCL were best segmented by the cGAN with
seven convolutions. Training the cGAN with a minimum feature channel change of 64 resulted
in the highest segmentation scores for most tissues except for femoral bone, tibial cartilage and
the medial vastus muscle.

The U-Net trained with nine convolutions/transpose convolutions in the networks encod-
ing/decoding parts achieved the highest segmentation accuracies for all but one tissue (femoral
cartilage), which was slightly better segmented by the U-Net with five convolutions/transpose
convolutions. Training the U-Net with a minimum feature channel change of 64 resulted in
the highest DSC scores for most tissues apart from patella cartilage and ACL which were seg-
mented best by the U-Net trained with a minimum feature channel change of 128.

It is important to note for this section that increasing the number of convolutions and feature
channels in the generator network substantially increases the overall number of parameters in
the network and the time per epoch required to train the network (see network architectures
in the Appendix for details). A considered decision between increase in learning time and
significant improvement in segmentation accuracy has to be made.
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4.3.5 Evaluation of PatchGAN Receptive Field Size

Figure 4.6 shows the qualitative comparison of the effect of using different patch sizes in the
discriminator network, while the corresponding DSCs are listed in Table 4.8. The cGAN trained
with the 1 x 1 PatchGAN (PixelGAN) achieved the highest segmentation accuracy for most tis-
sues except for femoral and tibial cartilage and both muscle tissues, which were best segmented
by the 34 x 34 PatchGAN. Increasing the receptive field size increases the number of parame-
ters in the discriminator network and therefore may be more difficult to train.

Figure 4.6: Results of PatchGAN Receptive Field Size. Assessing the influence of varying the discriminator
receptive field size on segmentation performance of cGAN when trained and tested on the AMROA dataset.

Figure 4.7: Image Artefact due to the choice of PatchGAN Receptive Field Size. Influence of discriminator
receptive field size on checkerboard artefact emergence of a cGAN trained and tested on the AMROA dataset.
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Additionally, as in the ‘pix2pix’ paper [97], we also noticed the repetitive tiling / checker-
board artefact (Figure 4.7). However, in our instance, the artefacts become more pronounced
with every increase in patch size instead of the inverse tendency as seen by Isola et al [97]. This
could be a result of us assigning the cGANs with the reverse task (image to label) compared to
the one performed by Isola et al (label to image) [97].

Figure 4.8 depicts the loss evolution during network training of the cGAN trained with the
1 x 1 PatchGAN discriminator. The loss evolutions of the cGAN generator (LcGAN and LL1)
and discriminator (Lreal and Lfake) are shown in Figure 4.8A and Figure 4.8B, respectively.
Figure 4.8B highlights how the Nash equilibrium was reached for the discriminator network
during cGAN training.

Figure 4.8: Loss Evolution during cGAN Training. The loss evolutions of the a) generator (LcGAN and LL1) and
b) discriminator (Lreal and Lfake) are shown for a cGAN trained with a U-Net generator and a 1 x 1 PatchGAN
discriminator for 100 epochs.
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4.3.6 Evaluation of Transfer Learning

The quantitative results of this section are presented in Table 4.9 and Table 4.10 with quali-
tative comparisons between single step (one dataset) and two step training (transfer learning)
displayed in Figure 4.9 and Figure 4.10.

When comparing the segmentation performances of the proposed cGAN and U-Net without
and with transfer learning and testing on the SKI10 testing dataset (Table 9, Figure 4.9A-C),
the AMROA-pretrained / SKI10-retrained (AMROA→ SKI10) U-Net showed the highest DSC
scores for femoral and tibial bone and the highest boundary accuracy (i.e. smallest ASDs) for
femoral bone, while the SKI10-only trained U-Net segmented the tibial bone with the highest
boundary accuracy. Femoral cartilage was best segmented by the AMROA-pretrained / SKI10-
retrained (AMROA→ SKI10) cGAN and tibial cartilage by the SKI10-only trained cGAN.

Testing the OAI ZIB testing dataset on the proposed cGAN and U-Net without and with
transfer learning (Table 9, Figure 4.9D-F), the AMROA-pretrained / OAI ZIB-retrained (AM-
ROA→ OAI ZIB) cGAN showed the highest accuracies for tibial bone and femoral cartilage,
while the OAI ZIB-only trained cGAN segmented the femoral bone and tibial cartilage with
the highest accuracies.

When testing the cGANs and U-Nets on the AMROA testing dataset (Table 10, Figure 4.10),
the SKI10-pretrained / AMROA-retrained (SKI10 → AMROA) U-Net had the highest DSCs
for femoral and tibial bone as well as the ACL. Femoral cartilage as well as patellar bone and
cartilage was segmented most accurately by the OAI ZIB-pretrained / AMROA-retrained (OAI
ZIB→ AMROA) U-Net. The AMROA only trained U-Net showed the best segmentation ac-
curacy for tibial cartilages. The SKI10-pretrained / AMROA-retrained (SKI10 → AMROA)
cGAN provided the highest segmentation score for the vastus medialis muscle while the me-
dial head of gastrocnemius muscle and the PCL was best segmented by the OAI ZIB-pretrained
/ AMROA-retrained (OAI ZIB→ AMROA) cGAN. Compared to the U-Net, the cGAN could
successfully segment both medial muscles which could promote a strength of the cGAN. A
further note is that, although the SKI10 and OAI ZIB datasets only comprised of segmentations
of femoral and tibial bone and cartilage, the cGANs and U-Nets initialised with the respective
SKI10- and OAI ZIB-pretrained network weights and retrained on the AMROA dataset were
able to recuperate and capture patellar, ligament and muscle tissues.

A challenge of any machine learning technique is obtaining a training set that optimises
the amount of variation from the rare morphology of pathological conditions or image arte-
facts. The AMROA dataset was highly controlled, with the patients and imaging occurring
with a single imaging protocol on a single MRI system. The images showed a clear bone-
cartilage separation and enabled better cartilage segmentation scores after training than the
SKI10 dataset. The OAI ZIB dataset highlights the benefits of training on a very large number
of images with the cGAN and U-Net (OAI ZIB-only trained) achieving DSC ≥ 0.984 for bone
and DSC ≥ 0.837 for cartilage segmentations.

The ability for the network to be used under variable conditions was simulated by using
three knee datasets (AMROA, SKI10 and OAI ZIB). Even without transfer learning, the AM-
ROA training enabled SKI10 and OAI ZIB segmentation and vice versa, albeit not with high
accuracy, but nonetheless indicating the robustness of deep learning methods. Transfer learning
not only improved the segmentation accuracy for some tissues of the local dataset but also en-
hanced the networks ability to segment the SKI10 / OIA ZIB test dataset by introducing more
heterogeneity into the model. Even though the SKI10- and OAI ZIB-pretrained networks were
then fine-tuned to segment the local AMROA dataset, it could segment the SKI10 and OAI ZIB
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Figure 4.9: Results of Transfer Learning: SKI10 and OAI ZIB. Assessing the influence of transfer learning on
segmentation performance of cGAN and U-Net when tested on the SKI10 and OAI ZIB test datasets.
SKI10 / OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10 / OAI ZIB training dataset
followed by network fine-tuning for 80 epochs on the AMROA training dataset.
AMROA→ SKI10 / OAI ZIB: Pretraining the network for 20 epochs on the AMROA training dataset followed
by network fine-tuning for 80 epochs on the SKI10 / OAI ZIB training dataset.
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Figure 4.10: Results of Transfer Learning: AMROA. Assessing the influence of transfer learning on segmentation
performance of cGAN and U-Net when tested on the AMROA test datasets.
SKI10 / OAI ZIB → AMROA: Pretraining the network for 20 epochs on the SKI10 / OAI ZIB training dataset
followed by network fine-tuning for 80 epochs on the AMROA training dataset.
AMROA→ SKI10 / OAI ZIB: Pretraining the network for 20 epochs on the AMROA training dataset followed
by network fine-tuning for 80 epochs on the SKI10 / OAI ZIB training dataset.
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testing dataset with an improved performance compared to the AMROA-only trained network
without pretraining. This effect was seen for both cGANs and U-Nets.

4.3.7 AMROA: Comparison to Previous Studies

In this subsection, the results obtained for the different tissues semantically segmented in this
study are compared to those of previous studies. The cGAN and U-Net achieving the highest
segmentation accuracy on the AMROA dataset for each respective tissue is chosen for this
purpose.

Bone

While cartilage has been traditionally studied for OA, bone shape has been under increasing
investigations [153, 163]. Bone shape has been linked to radiographic OA [129, 131, 132] and
associated with longitudinal pain progression [129]. Segmented bone can be used to separate
out bone-specific diseases, such as osteochondral defects.

The OAI ZIB-pretrained / AMROA-retrained cGAN trained with the LcGAN + λLL1 loss
objective (λ = 100) and a 1 x 1 PixelGAN generated segmentations of femoral (DSC = 0.972),
tibial (DSC = 0.962) and patellar (DSC = 0.947) bone with the highest accuracy. The SKI10-
pretrained / AMROA-retrained U-Net (LL1 loss objective) achieved slightly higher segmenta-
tion accuracies for femoral and tibial bone tissues (femoral: DSC = 0.974; tibial: DSC = 0.965)
and the OAI ZIB-pretrained / AMROA-retrained U-Net for patellar bone (DSC = 0.948), com-
pared to the cGANs. The boundaries of the images, near the top and bottom of any 2D slice,
did not always segment all bone, which is where the MRI radiofrequency (RF) transmit and
receive uniformity was poor due to characteristics of the MRI coil. Traditional semi-automatic
approaches involving signal threshold, region-based or clustering segmentation can be simi-
larly sensitive to image non-uniformities [141]. These non-uniformities are shown as a change
in signal-to-noise or darkening of the surrounding muscle tissues (see lower regions of Figure
2). These effects from RF transmit or receive non-uniformity could be mitigated with a larger
training population, as more complex modelling of data is possible. Nevertheless, segmentation
of the patella achieved the lowest accuracy. The patella has the widest range of inter-subject
variability when compared to the larger tibial and femoral bones. The patella bone can vary in
both shape and position, shifting due to the orientation and bend of the knee. Additionally, due
to its smaller volume, fewer training images are used for the patella segmentation.

The cGAN and U-Net bone segmentation scores achieved in this study are similar to those
achieved by a CycleGAN method using unannotated knee MR images for femoral (DSC = 0.95
– 0.97) and tibial (DSC = 0.93 – 0.95) bone segmentation ([95], and a convolutional encoder-
decoder network combined with a 3D fully connected conditional random field and simplex
deformable modelling for femoral (DSC = 0.970), tibial (DSC = 0.962) and patellar (DSC =
0.898) bone segmentation [164].

Cartilage

For a long time, OA was considered a disease primarily involving variations in articular carti-
lage composition and morphology. Therefore, the attention was predominantly placed on the
extraction of OA biomarkers from quantitative MR imaging techniques using manual or semi-
manual segmentation techniques that suffer from intra- and inter-observer variability [165].
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Deep learning methods can provide a fast and repeatable alternative to overcome these time-
consuming and operator-dependent procedures.

The OAI ZIB-pretrained / AMROA-retrained cGAN trained with the LcGAN + λLL1 loss
objective (λ = 100) and a 1 x 1 PixelGAN generated segmentations of femoral (DSC = 0.875),
tibial (DSC = 0.811) and patellar (DSC = 0.879) cartilage with the highest accuracy from
all cGAN trainings. The OAI ZIB-pretrained / AMROA-retrained U-Net (LL1 loss objective)
achieved marginally higher accuracies for femoral (DSC = 0.893) and patellar (DSC = 0.898)
cartilage segmentations and the AMROA-only trained U-Net (LL1 loss objective) achieved a
slightly higher segmentation accuracy for tibial cartilage (DSC = 0.834) compared to the cGAN
results.

The cartilage segmentation performances of both cGAN and U-Net are comparable to those
attained by a 2D U-Net for femoral, tibial and patellar cartilage segmentations on T1ρ-weighted
(DSC = 0.632 - 0.702) and DESS MR images (DSC = 0.767 - 0.878) [145], a CycleGAN
method for femoral and tibial cartilage segmentation on PD-weighted (DSC = 0.65 - 0.66) and
T2-weighted FSE images (DSC = 0.81 - 0.75) [95], as well as the recently investigated cGAN
for femoral, tibial and patellar segmentation on DESS MR images (DSC = 0.843 - 0.918) [94].

Muscle

As muscle weakness and atrophy can be regarded as preceding risk factors and resulting pain-
related consequences for the development and progression of OA, studying morphological
changes in knee joint muscles has become increasingly important [166, 167].

The SKI10-pretrained / AMROA-retrained cGAN and the OAI ZIB-pretrained / AMROA-
retrained cGAN trained with the LcGAN +λLL1 loss objective (λ = 100) and a 1 x 1 PixelGAN
segmented the medial gastrocnemius muscle (DSC = 0.909) and medial vastus muscle (DSC =
0.922) with the highest accuracies, respectively. The U-Net trained with altered loss objective
(LL2 → LL1) achieved the highest segmentation accuracies for both the medial gastrocnemius
(DSC = 0.933) and vastus (DSC = 0.914) muscles.

Our results are comparatively lower compared to those of a semi-automatic single-atlas
(DSC = 0.95 - 0.96) and fully-automatic multi-atlas (DSC = 0.91 – 0.94) based approach for
medial vastus segmentation [168], and a 2D U-Net for quadriceps (DSC = 0.98) segmentation
[169]. A crucial difference between these studies and ours is the plane in which segmentation
was performed. While muscles are typically segmented on axial images as this provides a more
straightforward task with clearer separation between different muscles, our multi-class tissue
segmentation approach was performed on sagittal images. Segmenting different muscles in the
sagittal plane is a demanding task, especially in areas of the calf muscles where the two-headed
gastrocnemius muscle overlaps (medial and lateral) while also overlaying the soleus muscle.

Cruciate Ligament

There has been a growing interest in investigating and understanding the mechanism respon-
sible for the post-traumatic development of OA following injury to the cruciate ligaments, es-
pecially the ACL [170–172]. Although ACL reconstruction and rehabilitation can help restore
patients to normal life and previous activities, it cannot prevent the long-term risk of developing
OA [173]. Accurate and repeatable segmentations of the cruciate ligaments are required when
aiming at evaluating longitudinal changes in the cruciate ligaments following reconstructive
surgery.
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In our study, the OAI ZIB-pretrained / AMROA-retrained cGAN trained with the 1 x 1 Pix-
elGAN andLcGAN+λLL1 loss objective (λ = 100) achieved the highest accuracy for ACL (DSC
= 0.664) and PCL segmentation (DSC = 0.652). The SKI10-pretrained / AMROA-retrained U-
Net (LL1 loss objective) achieved a similar accuracy for ACL segmentation (DSC = 0.665) and
the AMROA-only trained U-Net (LL1 loss objective) achieved a marginally lower accuracy for
PCL segmentation (DSC = 0.641), compared to the best performing cGANs.

Lee et al [174] proposed a graph cut method for automatic ACL segmentation and attained a
DSC score of 0.672, while Paproki et al [175] used a patch-based method for PCL segmentation
to achieve a DSC score of 0.744. Using a 3D convolutional neural network (CNN), Mallya et
al achieved DSC scores of 0.40 and 0.61 for ACL and PCL segmentations, respectively [176].
When combining their 3D CNN with a deformable atlas-based segmentation method, their ACL
(DSC = 0.84) and PCL (0.85) segmentation accuracies increased substantially. In general, 3D
networks could provide higher segmentation accuracies especially for fine structures such as
the cruciate ligaments that only appear on a few 2D slices in a 3D dataset. However, 2D
segmentation techniques are useful for broader applicability, as 2D imaging is often faster and
currently still more clinically employed than 3D imaging.

The lower similarity scores achieved in our study compared to the other studies could arise
from the use of 3D-FS SPGR images as source images during training as these are non-optimal
for the segmentation of the cruciate ligaments due to their less than ideal soft tissue separation
with surrounding structures and fluid. Fat-saturated proton-density-weighted fast spin echo or
T2-weighted fast spin echo images are more suitable for segmentation purposes as shown by
Mallya et al and Paproki et al, respectively [175, 176]. These sequences are clinically used for
cruciate ligament assessment due to their dark appearance and clear separation from fluid and
other surrounding tissues.

4.3.8 SKI10 and OAI ZIB: Comparison to Previous Studies

In this subsection, the segmentation results of the SKI10 and OAI ZIB datasets in this study are
compared to those of previous studies. The cGAN and U-Net achieving the highest segmenta-
tion accuracy on these datasets is chosen for this purpose.

SKI10

The AMROA-pretrained / SKI10-retrained U-Net (LL1 loss objective) achieved a comparable
ASSD score for femoral bone (ASSD = 0.44 mm) and an improved ASSD score for tibial bone
(ASSD = 0.26 mm) to those reported by Liu et al and Ambellan et al [70, 153]. However,
the segmentation accuracies for femoral (VOE ≥ 42.2%) and tibial (VOE ≥ 47.6%) cartilage
achieved by our models were substantially lower.

OAI ZIB

The OAI ZIB-only trained cGAN trained with the LcGAN + λLL1 loss objective (λ=100) and
a 1 x 1 PixelGAN generated segmentations of femoral bone (DSC = 0.985) and tibial carti-
lage (DSC = 0.839) with the highest accuracy. AMROA-pretrained / OAI ZIB-retrained cGAN
trained with the 1 x 1 PixelGAN and LcGAN + λLL1 loss objective (λ=100) achieved the high-
est accuracy for tibial bone (DSC = 0.985) and femoral cartilage (DSC = 0.897) segmentation.
The ASSD of both the femoral (ASSD = 0.33 mm) and tibial (ASSD = 0.29 mm) bones were
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smaller than image resolution of the OAI DESS images (0.36 × 0.36 × 0.7 mm3). Although we
achieve similar DSC scores for all tissues on the OAI ZIB dataset compared to those presented
in Ambellan et al our ASSD scores were larger [153]. The pixel-wise error losses (LL1, LL2
and LSmL1) used to train the networks in our work were chosen to maintain an effective com-
parison between the cGAN and the U-Net. However, training our models with loss functions
more traditionally used for segmentation purposes such as multi-class Dice similarity or cross
entropy might lead to more comparable results for boundary-distance-based metrics.

4.3.9 Limitations

The network performances are depended on the accuracy of the ground truth segmentations.
Inaccuracies or errors in the segmentation maps could result in a less accurate network, espe-
cially when trained on a low number of image volumes, as done in this study. Additionally,
training a network on a low number of high-quality images restricts the networks applicability
to only highly controlled studies with homogeneous data. Therefore, the networks trained in
this study might be limited in their application in clinical settings where high image quality is
not always achievable due to patient conditions and operator variabilities.

Network training on 2D MR image slices is considerably less computationally demanding
than on 3D volumes. For the purposes of this study such as investigating the effects of training
with different loss objectives and cGAN discriminator networks, it was sufficient to train on
2D images. Nevertheless, the segmentation of small knee joint structures, such as the cruciate
ligaments, could benefit from 3D networks that should add spatial continuity along the slice
dimension.

Furthermore, the segmentation results presented in this study are from standalone networks
without further processing within a pipeline. Therefore, the obtained results, especially for car-
tilage segmentation, are not comparable to those from current state-of-the-art pipeline methods
such as described by Liu et al [70] and Ambellan et al [153] that initially perform automated
segmentation using a CNN followed by further refinement using deformable or statistical shape
models, respectively.

Lastly, additional investigations into varying the network architectures and optimisation
strategies are warranted, with ever more loss functions as well as layer combination and opti-
misation strategies continuously being developed.

4.4 Conclusion

This work demonstrated the usage of a cGAN, using a U-Net generator with a PatchGAN
discriminator, for the purpose of automatically segmenting multiple knee joint tissues on MR
images. While DSC> 0.9 were achieved for all segmented bone structures and DSC> 0.75 for
cartilage and muscle tissues, DSC of only u0.64 were achieved for cruciate ligament segmen-
tations. Nevertheless, this segmentation performance was attained despite the low number of
subjects (N=8) for training on the local dataset. Although the U-Net outperformed the cGAN
in most knee joint tissue segmentations, this study provides an optimal platform for future
technical developments for utilising cGANs for segmentation tasks. By enabling automated
and simultaneous segmentation of multiple tissues we hope to increase the accuracy and time
efficiency for evaluating joint health in osteoarthritis.
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4.5 Appendix

Generator: The encoding part of the generator network consists of the repeated application
of nine 4x4 convolutions with stride 2, down-sampling the input by a factor of 2 at each layer.
Each convolution is followed by a batch normalisation layer (except the first layer) and a leaky
rectified linear unit (leaky ReLU) with slope 0.2. During the first encoding step the number of
feature channels is changed from 3 to 64. At the subsequent three encoding steps, the number
of feature channels is doubled (64 – 512), while the following five are kept at 512. In the en-
suing decoding part, the input is repeatedly up-sampled by a factor of 2 by nine 4x4 transpose
convolutional layers with stride 2 and additional skip connections (concatenations) between
each layer i and 9-i, changing the number of feature channels at each step. The first four de-
coder convolutions are followed by batch normalisation, dropout (50%) and a ReLU. The next
four decoder convolutions are followed by batch normalisation and a ReLU without dropout.
After the final layer a convolution followed by a Tanh activation layer is applied to generate the
segmentation map.
Total number of parameters: 66.999 M

Training time (s/epoch): AMROA: 135 (cGAN with 1x1 PixelGAN)

130 (cGAN with 70x70 PatchGAN)

100 (U-Net)

SKI10: 380 (cGAN with 1x1 PixelGAN)

210 (U-Net)

OAI ZIB: 2710 (cGAN with 1x1 PixelGAN)

1530 (U-Net)

Generator with five convolutions in encoder/decoder: In this generator network, the en-
coding part consists of the repeated application of five 4x4 convolutions with stride 2, down-
sampling the input by a factor of 2 at each layer. In the ensuing decoding part, the input is
repeatedly up-sampled by a factor of 2 by five 4x4 transpose convolutional layers with stride 2
and additional skip connections between each layer i and 5-i.
Total number of parameters: 16.659 M

Training time (s/epoch): AMROA: 110 (cGAN with 70x70 PatchGAN)

90 (U-Net)

Generator with seven convolutions in encoder/decoder: The encoding part consists of the
repeated application of seven 4x4 convolutions with stride 2, down-sampling the input by a
factor of 2 at each layer. In the subsequent decoding part, the input is repeatedly up-sampled
by a factor of 2 by seven 4x4 transpose convolutional layers with stride 2 and additional skip
connections between each layer i and 7-i.
Total number of parameters: 41.829 M

Generator with 16 as minimum number of feature channels: In this network, the number of
feature channels is changed from 3 to 16 during the first encoding step. During the following
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Training time (s/epoch): AMROA: 120 (cGAN with 70x70 PatchGAN)

100 (U-Net)

three encoding steps, the number of feature channels is doubled (16 – 128), while the subse-
quent five are kept at 128. Total number of parameters: 4.191 M

Training time (s/epoch): AMROA: 105 (cGAN with 70x70 PatchGAN)

70 (U-Net)

Generator with 32 as minimum number of feature channels: The number of feature chan-
nels is changed from 3 to 32 during the first encoding step. In the following three encoding
steps, the number of feature channels is doubled (32 – 256), while the subsequent five are kept
at 256. Total number of parameters: 16.755 M

Training time (s/epoch): AMROA: 100 (cGAN with 70x70 PatchGAN)

75 (U-Net)

Generator with 128 as minimum number of feature channels: In the first encoding step the
number of feature channels is changed from 3 to 128. In the following three encoding steps,
the number of feature channels is doubled (128– 1024), while the subsequent five are kept at
1024. Total number of parameters: 267.953 M

Training time (s/epoch): AMROA: 245 (cGAN with 70x70 PatchGAN)

220 (U-Net)

Discriminator:
70 x 70 PatchGAN: The discriminator network repeatedly down-samples the input by apply-
ing three 4x4 convolutions with stride 2 followed by two 4x4 convolutions with stride 1. Each
convolution during down-sampling is followed by a batch normalisation layer (except the first
and last layer) and a leaky ReLU (slope 0.2) (except for the last layer). The number of feature
channels are doubled (64 – 512) during the first four convolutional steps. The final convolu-
tional layer is proceeded by a Sigmoid activation layer. Total number of parameters: 2.769 M

1 x 1 PatchGAN (PixelGAN): This PixelGAN discriminator network applies three 1 x 1 con-
volutions with stride 1, where the first convolution is followed by a leaky ReLU (slope 0.2) , the
second convolution by a batch normalisation layer and a leaky ReLU (slope 0.2) and the final
convolution by a Sigmoid activation function. The number of feature channels are doubled (64
– 128) during the first two convolutions. Total number of parameters: 0.009 M

34 x 34 PatchGAN: This network repetitively down-samples the input by using two 4x4 con-
volutions with stride 2 followed by two 4x4 convolutions with stride 1. Each convolution is
followed by a batch normalisation layer (except the first and last layer) and a leaky ReLU
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(slope 0.2) (except for the last layer). The number of feature channels are doubled (64 – 256)
during the first three convolutional steps. The final layer is ensued by a Sigmoid activation
layer. Total number of parameters: 0.666 M

286 x 286 PatchGAN: This discriminator network consists of eight convolutional layers with
4x4 spatial filters. The first 6 convolutions have stride 2 while the last two have stride 1. Each
convolutional layer is followed by a batch normalisation layer (except the first and last layer)
and a leaky ReLU (slope 0.2) (except for the last layer). The number of feature channels are
doubled (64 – 512) during the first four convolutions and kept at 512 for the ensuing layers. A
Sigmoid activation layer succeeds the final convolution. Total number of parameters: 11.159
M
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Chapter 5

Automated Segmentation of Knee MRI
Data with Convolutional Neural Networks
for Three-Dimensional Surface-Based
Analysis of Cartilage Morphology and
Composition

Submitted for publication.

5.1 Introduction

Osteoarthritis (OA) is the most common functionally disabling joint disorder. It is characterised
by the progressive deterioration of articular cartilage, subchondral bone and other tissues of
diarthrotic joints [177, 178]. A full understanding of all effects that contribute to OA develop-
ment is lacking, hindering the development of effective interventions at early stages of disease.
Quantitative magnetic resonance imaging (qMRI) methods can assist in the non-invasive detec-
tion and quantification of morphological and compositional changes present in diseases such
as OA. Although several promising techniques have been validated, to date, no qMRI method
has yet been regulatorily qualified as a sensitive and reliable disease biomarker . Potential
qMRI biomarkers include measurement of cartilage volume and thickness, as well as the spin
lattice relaxation time in the rotating frame (T1ρ) and the transverse relaxation time (T2) [37,
39, 40]. However, their clinical translation has been affected by the laborious post-processing
required which almost always includes some form of image segmentation for detailed region-
or tissue-specific analysis, limiting their use to primarily early-phase clinical trials [3, 42, 108].

Traditionally, compartmental measurements of cartilage morphology and composition have
been performed in studies aimed at determining biomarkers for early OA detection and pro-
gression. Nevertheless, such measurements over large regions-of-interest could mask hetero-
geneous focal changes and are prone to inter- and intra-observer errors [41, 165]. More recent
studies have advanced to perform analysis on multiple smaller cartilage subregions and layers
aimed at avoiding the masking of important focal variations, however measurements extracted
from these sub-regional compartments are even more prone to observer error [41]. As a result,
cartilage surface-based analysis techniques have progressively gained more interest over recent
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years as these methods can determine and visualise the heterogeneity and bidirectionality of
morphological and compositional changes occurring during OA progression [3, 172, 179]. A
surface-based method termed 3D cartilage surface mapping (3D-CaSM) was recently described
and validated for analysing cartilage thickness and composition on MRI [3]. However, its utility
for analysing large imaging cohorts is limited by requiring manually segmented bone-cartilage
structures from which cartilage patches are determined and correspondent cartilage thickness
maps calculated.

While manual tissue segmentation continues to be the gold-standard method for analysing
qMRI data, it is very time-consuming. Therefore, interest has grown for the development of
consistent automated methods for multi-tissue segmentation of MR images [165, 180]. Prior
to the recent advent of machine learning, most proposed methods have been shape-, region- or
atlas-based which require a priori knowledge of the image structures. Developments in deep
learning (DL) using convolutional neural networks have shown great promise in overcoming
the repetitive and laborious nature of manual tissue segmentation. The convolutional encoder-
decoder network U-Net [93], and its 3-dimensional (3D) analogues, 3D U-Net [181] and V-Net
[182], are currently regarded as state-of-the-art methods, showing high segmentation accuracy
in musculoskeletal segmentation tasks [70, 94, 145, 183].

Increasingly, studies are investigating the utility of DL methods for the segmentation of
musculoskeletal MR images. However very few have assessed the efficacy of the segmen-
tations for extracting accurate qMRI values. In a study by Paproki et al, measurements of
tissue volume and T2 relaxation times, extracted from automated posterior cruciate ligament
segmentations using a patch-based method, achieved high correlations with those from manual
segmentations [175]. Similarly, Norman et al achieved high correlations between manual and
automatic quantifications of cartilage and menisci morphology (volume, thickness) and com-
position (T1ρ, T2) using a U-Net [145]. Liu et al showed no significant difference between the
T2 relaxation times extracted from manual and automated segmentations using SegNet [184]
in combination with a 3D deformable model of femoral, tibial and patellar cartilage [70]. A
recent study by Wirth et al evaluated the use of U-Net generated segmentations of femorotibial
cartilage from two different MR image contrast for deriving accurate and longitudinally repro-
ducible measures of cartilage morphology such as thickness, volume and surface area [185].
However, these studies have used compartmental rather than surface-based analysis which may
have masked the heterogeneity in segmentation accuracy for different cartilage regions.

The purpose of this study was to analyse the usage of 2D and 3D U-Net generated seg-
mentations of knee MR images within the 3D-CaSM method for extracting accurate regional
measurements of cartilage morphology and relaxometry. We investigate if these networks can
provide a fast and accurate method for the segmentation of knee MRIs that overcomes the limi-
tations of manual segmentation. By comparing the extracted morphological and compositional
cartilage measures from manual and automated segmentations we expect to be able to identify
those focal regions where the networks segmentations deviate from manual.

5.2 Methods

5.2.1 Image Datasets

The cross-sectional MRI dataset used was OAI ZIB consisting of multi-class tissue segmenta-
tions of femoral and tibial cartilage and bone from 507 patients from the publicly available Os-
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teoarthritis Initiative (OAI) baseline dataset [153, 154]. All images were acquired on Siemens
3T Trio systems using a 3D double echo steady state (DESS) sequence with water excitation.
After automatically generating outlines of femoral and tibial bone and cartilage using a sta-
tistical shape model, manual adjustments were performed by experts at Zuse Institute Berlin
(ZIB) [138]. The OAI ZIB cohort consisted of patients with various degrees of OA progression
(Kellgren-Lawrence (KL) 0 – 4), with a greater amount having moderate-to-severe OA (KL ≥
3). Detailed characteristics of the OAI ZIB cohort are in Ambellan et al [153].

The MRI dataset used was OAI ZIB consisting of multi-class tissue segmentations of
femoral and tibial cartilage and bone from 507 patients from the publicly available Osteoarthri-
tis Initiative (OAI) dataset [153, 154]. All images were acquired on Siemens 3T Trio systems
using a 3D double echo steady state (DESS) sequence with water excitation. After automati-
cally generating outlines of femoral and tibial bone and cartilage using a statistical shape mode,
manual adjustments were performed by experts at Zuse Institute Berlin (ZIB) [138]. The OAI
ZIB cohort consisted of patients with various degrees of OA progression (Kellgren-Lawrence
(KL) 0 – 4), with a greater amount having moderate-to-severe OA (KL ≥ 3). Detailed charac-
teristics of the OAI ZIB cohort are in Ambellan et al [153].

OAI T2 Mapping

T2-weighted images from the OAI dataset were acquired with a sagittal 2D multi-slice, multi-
echo (MSME) spin echo (SE) sequence. Sequence parameters were as followed: acquisition
time = 10.6 min; FOV = 120 mm; matrix = 384 x 269 interpolated to 384 x 384; slice thickness
= 3 mm; approximately 27 slices per TE; TR = 2700 ms; TEs = 10, 20, 30, 40, 50, 60, 70 ms;
bandwidth = 250 Hz/pixel.

For the analysis of cartilage T2 relaxation times , all T2-weighted images were rigidly reg-
istered to the 3D DESS images using the Elastix registration toolbox before calculating the
quantitative T2 maps.

T2 maps were calculated using a log-linearised least-squares algorithm to fit a mono-exponential
decay function to the signal intensities:

S = S0 · e−
TE
T2 . (5.2.1)

T2 relaxation times > 100ms in T2 maps were excluded from analysis to avoid including partial
volume artefacts with synovial fluid [82, 117, 186].

5.2.2 2D and 3D U-Net Model Specifications

The 2D U-Net adapted a previously described model used for multi-tissue segmentation of knee
MR images [183]. To overcome the memory constraints when training the 3D U-Net, while
maintaining an effective comparison between both networks, we modified the input layer of the
U-Net to an input size of 256 x 256.

The 3D U-Net used a similar architecture to the 2D U-Net, except that all 2D operations
were replaced with their 3D counterparts. The detailed architectures of both networks are
shown in Figure 5.1.
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Figure 5.1: A) The 2D U-Net architecture. The encoding part of the network consists of the repeated application
of eight 4x4 convolutions with stride 2 and padding 1, downsampling the input by a factor of 2 at each layer.
With exception of the first layer, each convolution is followed by a batch normalisation layer (BatchNorm) and
a leaky rectified linear unit (leaky ReLU) with slope 0.2. After the first encoding step, the number of feature
channels is doubled during the next three convolutions (64 – 512), while the ensuring four are kept at 512. In the
subsequent decoding part, the input is repeatedly up sampled by a factor of 2 by eight 4x4 convolutional layers
with stride 2 and padding 1, and additional skip connections (concatenations) between each major layer, changing
the number of feature channels at each step. The first transpose convolution is followed by BatchNorm and ReLU
without dropout while the succeeding three transpose convolutions are followed by BatchNorm, dropout (50%)
and a ReLU. The next three decoder up-convolutions are followed by BatchNorm and a ReLU without dropout.
The final up-convolution is only followed by a Sigmoid activation layer to generate the label map. Total number
of parameters: 66.999 M. B) The 3D U-Net architecture is very similar to that of the 2D U-Net in which all 2D
operations are replaced by their 3D counterparts, i.e. 4x4x4 convolutions with 1x2x2 stride and 1x1x1 padding as
well as 3D BatchNorm. Total number of parameters: 217.614 M
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Table 5.1: Summary of testing dataset used to evaluate networks and to perform quantitative cartilage surface
analysis.

Testing

Number of Subjects 20

Sex [Female / Male] 12 / 8

Age (years) 66.8 ± 9.0

Subjects per KL Grade [0 / 1 / 2 / 3 / 4] 2 / 4 / 6 / 6 / 2

5.2.3 Data Preparation and Network Training

The MRIs and image masks of the OAI ZIB data were converted from their respective DICOM
and ITK MetaImage Header (MHD) formats [156, 187] to a MAT-file format (binary MATLAB
files) before training. Each major structure was stored in a separate channel in the segmentation
map. To allow a simple downstream integration within the 3D cartilage surface mapping (3D-
CaSM) method described below, the OAI ZIB femoral bone and cartilage segmentations were
combined into one structure, given a value code of 1 and stored in the first channel. Similarly,
the tibial bone-cartilage combination was given a value code of 1 and stored in the second
channel of the volume. The two-channel input to the networks had identical DESS image
slices stored in both channels. While the 2D U-Nets were trained on individual slices, for 3D
network training, each dataset was split into 256 x 256 x 10 sub-volumes of overlapping slices.
For instance, a single OAI 3D DESS dataset consisting of 160 slices was divided into 31 sub-
volumes with each sub-volume overlapping the previous by 5 slices (except for the first and
last sub-volumes, that started at slice 1 and ended at slice 160, respectively). We divided the
OAI ZIB dataset into 467 cases for training, 20 cases for validation and 20 cases for testing, on
which the 3D-CaSM analysis would be performed. The validation and testing sets consisted of
patients covering all degrees of OA progression (KL 0 – 4), with the majority having minimal-
to-moderate OA (KL 1-3). Characteristics of the testing set cohort are in Table 5.1.

Both networks were implemented using PyTorch (Torch v1.0.1) and all training was per-
formed on a Nvidia P6000 GPU card (3840 CUDA cores, 24 GB GDDR5X). All models were
trained for 100 epochs with the Adam solver [188] being used for network optimisation with
a learning rate 0.0002 and momentum parameters, γ1 = 0.5, γ2 = 0.999. To avoid overfitting,
we employed early stopping once the networks performances did not improve over 20 epochs
assessed with the validation set. Batch sizes of 50 and 5 were used for 2D and 3D network
training, respectively. We introduced random noise (jitter) during training by using bi-cubic
interpolation to resize the input DESS images from their original size (384 x 384) to 286 x 286
and then randomly cropping the images to 256 x 256 to resemble the input layer size of the
networks.

We evaluated the 2D and 3D U-Net performances by training with different loss functions.
We trained the networks with binary cross entropy loss (BCE),Dice loss, as well as a weighted
combination of the cross entropy (CE) and Dice loss within the Combo loss (β · CE − (1 −
β) ·Dice) [189]. The weighting hyperparameter β between the CE and Dice loss was altered
to vary the balance between the two losses. We investigated values for β = 0.25, 0.5 and 0.75.
The segmentations from the best-scoring 2D and 3D networks were chosen to perform the
3D-CaSM analysis described below.
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5.2.4 Evaluation Metrics

After network training, a tissue-specific Boolean mask was created on the predicted test images.
We evaluated the network segmentation performances with the widely used Sørensen–Dice

Similarity Coefficient (DSC) [89, 161], Volumetric Overlap Error (V OE) and the boundary
distance-based metric Average Symmetric Surfaces Distance (ASSD). The DSC ranges be-
tween 0 and 1, higher DSC values representing greater overlap between the manual (X) and
network generated (Y ) segmentations. The DSC is given as

DSC =
2 |X ∩ Y |
|X|+ |Y |

(5.2.2)

for Boolean metrics. The V OE also ranges between 0 and 1, however with small values for
V OE expressing greater segmentation accuracy. It can be calculated as

V OE = 1− |X ∩ Y |
|X ∪ Y |

(5.2.3)

The ASSD calculates the average of all distances from each pixel on the boundary of the
manual segmentation X to the boundary of the automated segmentation Y and vice versa. It is
expressed in mm and is defined as

ASSD =
1

NX +NY

(
NX∑
i=1

DX(y) +

NY∑
i=1

DY (x)

)
(5.2.4)

where DX(y) = min
x∈X
‖y − x‖ and DY (x) = min

y∈Y
‖x− y‖.

5.2.5 Postprocessing and Cartilage Surface-based Analysis

3D Cartilage Surface Mapping

Contours from the 2D and 3D U-Net generated masks of femoral and tibial bone-cartilage
structures were extracted and converted into tissue-specific polygons within Python (v3.7.6,
Python Software Foundation, Wilmington, Delaware, United States). Detailed surface-based
analysis (3D Cartilage Surface Mapping, 3D-CaSM) of the contours generated from man-
ual and network-automated segmentations of femoral and tibial bone-cartilage structures was
performed on the OAI DESS images using the StradView software v6.1 (freely available at
http://mi.eng.cam.ac.uk/Main/StradView/) [3, 186]. The full 3D-CaSM pipeline is illustrated
in Figure 2. The femoral and tibial bone-cartilage contours are first used to generate 3D trian-
gulated mesh surface objects (Figure 5.2, Step 1). By displaying the signal intensities along
surface normal towards the inside of the mesh objects onto the objects surface, the cartilage
surfaces can be visualised. Triangulated femoral, lateral tibial and medial tibial cartilage sur-
face patches can then be manually extracted, taking approximately two minutes for all three
cartilage surfaces (Figure 5.2, Step 2). These patches are then used to calculate the cartilage
thickness at each surface vertex by generating inner and outer cartilage surfaces and sampling
the length of the perpendicular line between the two surfaces (Figure 5.2, Step 3). The deter-
mined thickness measurements can then be displayed onto the surface (Figure 5.2, Step 4).

http://mi.eng.cam.ac.uk/Main/StradView/
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Figure 5.2: 3D Cartilage Surface Mapping (3D-CaSM) pipeline used for quantitative measurements of carti-
lage thickness and T2 relaxation time determined from manual and network-generated segmentations. Femoral
cartilage measurements used for demonstration purposes; same process used for tibial cartilages. Following the
conversion of the manual and automated segmentation maps into tissue-specific polygon contours, 3D triangu-
lated surface mesh objects were generated from the bone-cartilage structures (step 1). Through data compounding
(displaying mean image intensities within 10 pixels from the 3D object onto its surface), cartilage patches were
identified and manually extracted (step 2). Inner and outer cartilage surfaces were determined by calculating the
cartilage thickness across the patch (step 3). These vertex-wise thickness measurements can then be displayed
onto the cartilage surface patch (step 4). The same inner and outer cartilage surfaces can then be used to sample
the registered T2 maps and obtain vertex-wise measurements of cartilage T2 relaxation times (steps 5 and 6). After
registering individual patches to a canonical surface, we can visually compare the measurements obtained from
manual and network-generated contours and calculate vertex-wise thickness and T2 differences (step not shown).
The focus of this study is highlighted in blue in which we compare the 3D-CaSM pipeline using contours from
manual segmentations with the 3D-CaSM pipeline using contours determined from automated segmentations. The
successive steps are kept identical for an effective comparison.

Analysis of Cartilage T2

Following the generation of inner and outer cartilage surfaces through the thickness measure-
ment procedure using the 3D-CaSM method, these surfaces were used to analyse the registered
quantitative T2 maps. At each triangulated surface vertex, the T2 relaxation time values along
a perpendicular line (surface normal) between inner and outer surface were sampled and aver-
aged (Figure 5.2, Steps 5 and 6).

Cohort Analysis

For an effective comparison, each participants unique triangulated femoral, medial tibial and
lateral tibial cartilage surface mesh was registered to a canonical (average) femoral, medial
tibial and lateral tibial mesh. Subsequently, the individual thickness and T2 data were mapped
onto the canonical surface. Both surface registration and mapping of the individual surface
data to the canonical surfaces was performed using the freely available wxRegSurf software
v20 (http://mi.eng.cam.ac.uk/ ahg/wxRegSurf). Since all data were registered to a canonical

http://mi.eng.cam.ac.uk/~ahg/wxRegSurf
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surface, vertex-wise cohort-averaged analysis was performed by calculating the root-mean-
squared (RMS) thickness and T2 at each canonical surface vertex from the individual cartilage
thickness and T2 measurements of the 20 OAI ZIB testing datasets.

5.2.6 Statistical Analysis

Two-sample t-tests were used to determine whether differences in segmentation scores between
2D U-Nets and 3D U-Nets trained with equivalent loss functions were significant. For all t-test
analyses, a significant level of 0.05 was used.

The RMS thickness and T2 measurements at each vertex from cartilage surfaces extracted
from manual segmentations were compared to the matching vertex measurements on the corre-
sponding cartilage surfaces extracted from automated segmentations. Scatterplots and Pearson
correlation coefficients were determined to evaluate any related differences. Bland-Altman
analysis was performed to determine the mean bias and the 95% limits of agreement between
manual and automated RMS thickness and T2 measurements.

5.3 Results

5.3.1 Network Training and Testing

Training of the 2D and 3D U-Nets on the OAI ZIB dataset required approximately 500 s/epoch
and 2500 s/epoch, respectively. Segmenting an entire OAI 3D DESS volume took approxi-
mately 3.2 s with 2D U-Net and 4.6 s with 3D U-Net.

5.3.2 Segmentation Performance

Average scores on the OAI ZIB testing dataset from all networks trained with different loss
objectives are shown in Table 5.2. Both 2D and 3D networks achieve high segmentation per-
formance for femoral and tibial bone-cartilage structures compared to manual segmentations.
All segmentation scores between 2D and 3D U-Nets trained with the same loss functions dif-
fered significantly (p < 0.05). The 2D U-Net and the 3D U-Net trained with Combo loss (β
= 0.25) achieved the highest segmentation performance for the femoral bone-cartilage struc-
ture. The 2D U-Net trained with Combo loss (β = 0.75) and the 3D U-Net trained with Dice
loss-only achieved the highest segmentation performance for the tibial bone-cartilage structure.
The 3D U-Net achieved higher overall segmentation performance compared to the 2D U-Net
for both femoral (DSC: 0.980 vs 0.971; ASSD: 0.314 mm vs 0.543 mm) and tibial (DSC:
0.982 vs 0.974; ASSD: 0.282 mm vs 0.412 mm) bone-cartilage structures. The segmenta-
tions from the 2D U-Net and the 3D U-Net trained with Combo loss (β = 0.25) were used to
perform the 3D-CaSM.

5.3.3 Cartilage Surface-based Analysis

Results from the Pearson correlation and Bland-Altman analysis of thickness and T2 mea-
surements are listed in Table 5.3 as well as visualised in Figure 5.3 and Figure 5.4 for cartilage
thickness, and Figure 5.6 and Figure 5.7 for cartilage T2 measurements. Bland-Altman analysis
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Table 5.3: Results of Pearson correlation (R) and Bland-Altman analysis. Vertex-wise thickness and T2 measure-
ments from manual segmentations were compared to the respective vertex-wise measurements from automated
segmentations of both networks. *Mean bias and 95% limits of agreement (LoA) are in mm. ** Mean bias and
95% LoA are in ms

Parameter Network Cartilage Surface R-Value Mean Bias [95% LoA]

Thickness*

2D U-Net
Femoral 0.75 0.33 [-0.28; 0.96]

Lateral Tibial 0.89 -0.03 [-0.21; 0.15]

Medial Tibial 0.74 0.12 [-0.16; 0.40]

3D U-Net
Femoral 0.98 0.07 [-0.11; 0.25]

Lateral Tibial 0.83 0.11 [-0.14; 0.36]

Medial Tibial 0.85 0.14 [-0.10; 0.39]

T2**

2D U-Net
Femoral 0.94 -0.16 [-4.71; 4.40]

Lateral Tibial 0.97 0.47 [-2.68; 3.62]

Medial Tibial 0.96 1.32 [-2.19; 4.83]

3D U-Net
Femoral 0.99 -0.05 [-2.06; 1.95]

Lateral Tibial 0.98 0.38 [-2.12; 2.87]

Medial Tibial 0.97 0.46 [-2.47; 3.39]

showed that the mean bias [95% limits of agreement] for femoral cartilage thickness measure-
ments was 0.33 [-0.28; 0.96] with 2D U-Net, however only 0.07 [-0.11; 0.25] mm with 3D
U-Net. The 2D U-Net lateral tibial thickness measurement demonstrated a very small under-
estimation while those from 3D U-Net a slightly larger overestimation (Table 5.3, Figure 5.4).
Both 2D and 3D U-Net demonstrated a similarly small systematic overestimation of medial
tibial cartilage thickness. The mean biases and 95% limits of agreement for femoral and tibial
T2 measurements showed similar trends between 2D and 3D U-Net but were generally lower
for 3D U-Net (Table 5.3, Figure 5.7).

Vertex-wise root-mean-squared (RMS) thickness measurements extracted from all carti-
lage surfaces generated from 2D U-Net segmentations of the OAI ZIB testing set demonstrated
moderate-to-high linear correlations (range: R = 0.74 - 0.89, Figure 5.3), while those extracted
from 3D U-Net segmentations demonstrated high correlations (range: R = 0.83 - 0.98, Fig-
ure 5.3).

Vertex-wise RMS T2 measurements extracted from all cartilage surfaces generated from
2D U-Net (range: R = 0.94 - 0.97, Figure 5.6) and 3D U-Net (range: R = 0.97 - 0.99, Fig-
ure 5.6) segmentations demonstrated high linear correlations with the measurements obtained
from manual segmentations.

Surface-averaged RMS thickness and T2 measurements of all cartilage surfaces extracted
from manual and automatic segmentations of the OAI ZIB testing set using 3D-CaSM are listed
in Table 5.4. Vertex-wise RMS thickness measurements and T2 relaxation times extracted from
manual and automated segmentations displayed on the canonical femoral, medial tibial and
lateral tibial cartilage surfaces are shown in Figure 5.5 and Figure 5.8, respectively. Difference
(∆) maps between data extracted from manual and 2D and 3D U-Net automated segmentations
are also shown.
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Table 5.4: Results of thickness and T2 analysis of the baseline OAI ZIB testing dataset. Cartilage surface means
(standard deviations) are calculated from all vertex-wise RMS thickness and T2 measurements. *Measurements
are in mm. **Measurements are in ms.

Parameter Cartilage Surface Manual Surface Automated Surface Absolute Difference
Mean (SD) Mean (SD)

2D U-Net 3D U-Net 2D U-Net 3D U-Net

Thickness*
Femoral 1.97 (0.47) 2.30 (0.41) 2.04 (0.46) 0.33 0.07

Lateral Tibial 1.71 (0.19) 1.68 (0.20) 1.82 (0.23) 0.03 0.11

Medial Tibial 1.43 (0.13) 1.54 (0.21) 1.57 (0.21) 0.11 0.14

T2**
Femoral 59.07 (5.95) 58.91 (6.70) 59.02 (6.30) 0.16 0.05

Lateral Tibial 51.10 (6.55) 51.57 (6.63) 51.48 (6.25) 0.47 0.38

Medial Tibial 52.63 (6.25) 53.95 (5.44) 53.09 (5.71) 1.33 0.46

Figure 5.3: Scatterplots show comparison of vertex-wise thickness measurements determined from cartilage sur-
faces extracted from manual and automatic segmentations (A: 2D U-Net, B: 3D U-Net).

5.4 Discussion

This study aimed to evaluate the use of fully automated segmentations of femoral and tibial
bone-cartilage structures for accurate and quantitative cartilage surface-based analysis using
the 3D cartilage surface mapping (3D-CaSM) technique.

Compared to an expert human reader requiring 3-4 hours to manually delineate cartilage for
a single knee joint, both the 2D and 3D U-Net showed substantially increased time-efficiency
by segmenting a complete sagittal 3D DESS volume from the OAI dataset in under 5 s [3].
While both networks showed high agreement with manual segmentation (DSC > 0.966), the
best performing 3D U-Net (DSC ≥ 0.980, ASSD ≤ 0.314 mm) showed a slightly higher ac-
curacy than the best performing 2D network (DSC ≥ 0.971, ASSD ≤ 0.543 mm). Therefore,
although the training duration for 3D U-Net was substantially larger than that of the 2D U-Nets
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Figure 5.4: Bland-Altman plots show comparison of vertex-wise thickness measurements determined from carti-
lage surfaces extracted from manual and automatic segmentations (A: 2D U-Net, B: 3D U-Net).

Figure 5.5: Vertex-wise RMS thickness data extracted from manual and automated segmentations from the OAI
ZIB test set displayed on the canonical femoral, medial tibial and lateral tibial cartilage surfaces. Difference maps
between data extracted from manual and 2D U-Net-automated (2D U-Net ∆) / 3D U-Net-automated (3D U-Net
∆) segmentations highlight spatial regions where the networks experience segmentation difficulties.

due to training on a ten-fold larger volume, applying this fully trained 3D U-Net in practice
achieves high performance with only a minor increase in segmentation time. The 3D U-Net
used here achieved similarDSCs for both the femoral and tibial bone-cartilage structures com-
pared with those presented by Ambellan et al for femoral and tibial bone-only segmentations
of the OAI DESS images [153]. However, lower ASSD scores were achieved in this study
compared to Ambellan et al, which could stem from the more challenging task of segmenting
both bone and cartilage in one volume and both tissues having very different contrasts on the
DESS images.

We performed 3D cartilage surface mapping (3D-CaSM) to determine cartilage regions
where the networks might experience segmentation difficulties compared to manual. When
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Figure 5.6: Scatterplots show comparison of vertex-wise T2 measurements determined from cartilage surfaces
extracted from manual and automatic segmentations (A: 2D U-Net, B: 3D U-Net).

Figure 5.7: Bland-Altman plots show comparison of vertex-wise T2 measurements determined from cartilage
surfaces extracted from manual and automatic segmentations (A: 2D U-Net, B: 3D U-Net).

averaging the thickness measurements across the whole femoral, lateral tibial and medial tibial
cartilage surfaces, the determined average femoral cartilage thickness from 2D U-Net segmen-
tations was shown to be substantially larger than the average thickness determined from expert
defined manual segmentations (difference = +0.33 mm). By using the 3D-CaSM technique,
this average over-estimation of cartilage thickness by the 2D U-Net was regionally localised to
the lateral and medial femoral condyle as well as the patellofemoral groove and where these
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Figure 5.8: Vertex-wise RMS T2 data extracted from manual and automated segmentations from the OAI ZIB
test set displayed on the canonical femoral, medial tibial and lateral tibial cartilage surfaces. Difference maps
between data extracted from manual and 2D U-Net-automated (2D U-Net ∆) / 3D U-Net-automated (3D U-Net
∆) segmentations highlight focal regions of T2 discrepancies.

regions transition into the intercondylar notch. These areas are particularly difficult to segment
with different tissues of similar contrast on the DESS images having direct contact to each other
such as femorotibial cartilage-cartilage contact and cartilage-meniscus contact. Previous stud-
ies have also shown a similar cartilage thickness over-estimation in these regions when using
2D U-Net generated segmentations18,24. However, this regional over-estimation of femoral
cartilage thickness was not observed with the 3D U-Net. This could be explained by the 3D
network being more volumetrically consistent by training on a larger sub-volume of adjacent
image slices instead of individual slices as with 2D networks.

When averaging the T2 measurements over the entire femoral, lateral tibial and medial
tibial cartilage surfaces, differences between manual and 3D U-Net determined T2 measure-
ments were slightly less than those observed between manual and 2D U-Net. However, when
looking at vertex-wise T2 difference maps between data extracted from manual and automated
segmentations, the T2 2D U-Net difference maps shows higher focal disagreements (T2 under-
estimations at the medial and lateral femoral condyles; T2 over-estimation at the patellofemoral
groove) than the T2 difference maps with 3D U-Net. While the T2 3D U-Net difference maps of
femoral, medial tibial and lateral tibial cartilage show similar patterns to the corresponding T2

2D U-Net difference maps, the overall vertex-wise T2 differences with manual segmentations
are substantially less pronounced.

While segmentation networks are usually trained on a large amount of imaging data to
achieve a sense of generalisability, the networks remain sensitive to small distributional shifts
between training and testing data and could produce inaccurate segmentations. Although auto-
mated methods lead to more repeatable segmentation results, the proposed method could also
be used interactively. Following the automated generation of the structure polygons, they could
be manually adjusted by a user to fine-tune and correct the network-generated results. This
could not only increase segmentation accuracy, but also substantially reduce the time required
by a user to fully delineate structures manually. This could allow the models to be employed
by clinical end users and enable the analysis of large medical imaging datasets in an acceptable
time.

Although we automated the segmentation of the bone-cartilage structures from which tri-
angulated surface mesh objects were generated, the 3D-CaSM technique used in this work still
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required manual outlining of cartilage surface patches. Although this step only required approx-
imately 2 minutes to extract all cartilage patches, future work could focus on fully automating
the 3D-CaSM pipeline. Another limitation is the lack of longitudinal validation of 3D-CaSM
using contours generated from both manual and network-automated segmentations. This study
only assessed the segmentation performance of 2D and 3D U-Net on the OAI baseline dataset as
the OAI ZIB dataset only consists of segmentations from baseline OAI scans. Generating man-
ual segmentations from multiple OAI follow-up imaging data could facilitate this limitation in
future. Furthermore, the networks were trained, validated and tested on imaging data from the
highly controlled OAI observational study. Although the OAI is a multi-centre study, images
were acquired on MR systems from a single manufacturer. Additionally, the chosen sample
size for testing was relatively small, mainly attributed to limited availability in resources. Fu-
ture work would aim to expand towards larger and more clinically representational datasets and
evaluate clinical significance of imaging biomarkers.

5.5 Conclusion

In the current study we evaluate the use of automated femoral and tibial bone-cartilage segmen-
tations in combination with 3D-CaSM for fast and accurate quantification of cartilage thickness
and T2 relaxation time measurements in comparison with manual segmentation. This method
allowed us to highlight localized cartilage regions in which both 2D and 3D U-Nets experienced
segmentation difficulties. The presented results demonstrate the validity of using automated
segmentations within the 3D-CaSM pipeline to improve the time-efficiency for the MRI-based
evaluation of knee joint health.
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Chapter 6

Towards Automated Cortical Bone
Mapping using Knee MRI and CT Data:
Explorative Analysis in the
IMI-APPROACH Cohort

6.1 Introduction

Osteoarthritis (OA) is the leading cause of disability in the elderly population and considered
a disease encompassing all joint tissues [14]. Understanding the interaction between articular
cartilage and the underlying periarticular bone in OA is of fundamental interest in research
[190, 191]. Articular cartilage and bone are separated by a layer of calcified cartilage, with
the tidemark at the interface. The periarticular bone consists of the cortical bone, the compact
subchondral bone closer to the bone surface which transitions into cancellous trabecular bone
away from the joint. During the development of OA and disease progression, all these layers
undergo structural and compositional changes mainly attributed to alterations in biomechani-
cal effects of loading resulting in bone remodelling [192]. Computed tomography (CT) allows
an insight into the OA-induced alterations in cortical and subchondral bone thickness and tra-
becular bone density triggered by an increased bone remodelling rate in early disease stages.
With magnetic resonance imaging (MRI), a direct visualisation of OA-induced cartilage loss,
meniscal degeneration, and formation of bone marrow lesions and osteophytes is possible.

Recent research studies evaluating the longitudinal progression of knee OA have incorpo-
rated imaging with different modalities to validate OA imaging biomarkers [154, 193]. How-
ever, to facilitate the extensive amount of time required to manually analyse these large cohort
imaging studies, automated analysis pipelines need to be established. Automating the seg-
mentation process of different parts of the knee joint, especially that of bone and cartilage from
MRIs, is an active area of research [153, 164, 183]. The International Workshop on Osteoarthri-
tis Imaging (IWOAI) Knee MRI Segmentation Challenge showed promising results for carti-
lage segmentations with networks achieving Dice scores of approximately 0.81 – 0.90, with all
teams using deep neural network–based models [194]. To achieve a segmentation model with
high generalisability through supervised learning, typically a large dataset containing a diverse
range of disease representations and high-quality segmentation maps are required. However,
when only a small amount of labelled data is present, transfer learning has been introduced as
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a means of still achieving a sense of generalisability on that dataset by fine-tuning a pretraining
model on a larger dataset with a related task [144, 195].

Surface-based approaches have recently been shown to be particularly efficient in their
ability to accurately measure cortical bone thickness from hip CTs as well as joint space width
from knee and ankle CTs [196, 197]. A similar approach was also used for measuring cartilage
thickness from knee MRIs [3]. A 3D CT analysis technique termed cortical bone mapping
has previously been shown to provide accurate and reliable quantitative measures of cortical
bone thickness of the hip bone at different OA disease stages [198, 199]. This method could
therefore also be applied to the morphological evaluation of the periarticular structures of the
knee joint and allow a characterisation of the structural changes occurring at the cartilage-bone
interface during OA disease progression. However, the periarticular bone surface cannot be
directly delineated from CTs of the knee joint. Nevertheless, it is well definable on MRIs due
to a greater soft tissue contrast of articular cartilage.

Using these recently developed strategies, the aim of this study was to assess the feasibility
of using an automated pipeline for subchondral cortical bone thickness measurements from
CTs of the knee joint. The pipeline is based on automated bone and cartilage segmentations
from knee MRIs using a deep neural network from which a 3D periarticular bone surface is
extracted and used for cortical bone mapping of corresponding CTs.

6.2 Methods

6.2.1 Image Datasets

OAI-ZIB

This dataset comprises of 507 patients from the publicly accessible Osteoarthritis Initiative
(OAI) cohort [153, 154]. The OAI was approved by the Committee on Human Research, the
Institutional Review Board for the University of California, San Francisco (UCSF) with all
participants providing written informed consent. The OAI-ZIB cohort involved participants
with all degrees of OA progression (Kellgren-Lawrence (KL) 0 – 4), with a larger shift towards
participants with moderate-to-severe OA (KL ≥ 3). Detailed characteristics of the OAI-ZIB
cohort are in Ambellan et al [153]. MRIs from the OAI cohort were acquired on 3.0 T Siemens
Magnetom Trio systems using a sagittal 3D double echo in steady state (DESS) sequence with
water excitation. Sequence parameters were: FOV = 140 mm2, reconstructed matrix size =
384 x 384, reconstructed in-plane resolution = 0.36 x 0.36 mm2, slice thickness = 0.7 mm,
repetition time = 16.3 ms, echo time = 4.7 ms, flip angle = 25◦.

APPROACH

The Applied Public-Private Research enabling OsteoArthritis Clinical Headway (APPROACH)
study is a multi-centre observational cohort study with 2-year follow-up clinical, biomechan-
ical, biochemical and imaging data of 297 knee OA patients [193]. Multiple follow-up MRI
and CT data were acquired across five different European sites. MRIs were acquired on 3.0 T
MR systems from different vendors (Siemens and Philips) using sagittal 3D spoiled gradient
echo (3D GRE) based sequences with closely-matching acquisition parameters at the various
sites. Equally, CTs were acquired on CT systems from different vendors (Siemens, Philips and
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GE) with comparable acquisition parameters between sites. Details on MRI and CT acquisition
parameters are in Tables 1 and 2, respectively.

Table 6.1: MRI pulse sequence parameters of training, validation and testing datasets.

Paris Utrecht Leiden Oslo A Coruña

MR System Siemens Skyra Philips Achieva Philips Ingenia Siemens Aera Philips Ingenia CX

3D Spoiled GE Sequence FLASH FFE FFE VIBE FFE

Repetition Time (ms) 17 17 17 17 17

Echo Time (ms) 7 7 7 7 7

Flip Angle (°) 12 12 12 15 15

Field-of-View (mm2) 160 160 150 160 160

Reconstructed Matrix 512 x 512 512 x 512 512 x 512 512 x 512 560 x 560

In-Plane Resolution (mm) 0.31 x 0.31 0.31 x 0.31 0.29 x 0.29 0.31 x 0.31 0.29 x 0.29

Slice Thickness (mm) 1.5 1.5 1.5 1.5 1.5

6.2.2 Data Preparation

OAI-ZIB

Segmentations were performed by specialists at Zuse Institute Berlin (ZIB) by first generat-
ing outlines of femoral and tibial bone and cartilage using a statistical shape model, followed
by manual adjustments. Only segmentations of femoral bone and cartilage were used in this
work, primarily to pre-train the networks used for segmentation of the APPROACH dataset
described below. Consequently, the dataset was only split into 487 for network training and 20
for network validation.

APPROACH

The analysis in this work focussed solely on the baseline MRI and CT data. Manual segmenta-
tions of femoral bone and cartilage of 35 randomly chosen APPROACH 3D GRE datasets were
performed by a single observer. The dataset was split into 15 for training, 5 for validation and

Table 6.2: CT acquisition parameters of testing dataset.

Paris Utrecht Leiden Oslo A Coruña

CT System
Siemens Somatom

Philips IQon
Canon; Toshiba Philips Brilliance GE LightSpeed

Definition Edge Aquilion ONE 16 VCT

Reconstruction Diameter 400 400 400 313 400

Reconstructed Matrix 512 x 512 512 x 512 512 x 512 512 x 512 512 x 512

In-Plane Resolution (mm) 0.78 x 0.78 0.78 x 0.78 0.78 x 0.78 0.61 x 0.61 0.78 x 0.78

Slice Thickness (mm) 0.75 0.80 1.0 0.80 0.63

Peak Output (kV) 120 120 120 120 120

X-Ray Tube Current (mA) 23 - 25 17 - 19 24 - 43 97 25

Volume CT Dose
0.65 - 0.70 1.26 – 1.43 1.50 – 5.00 17.10 -

Index (mGy)

Convolution Kernel I40f\3 C FC09 B Standard
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Table 6.3: Summary of the APPRAOCH dataset characteristics used for training, validation and testing. * Values
are means ± standard deviations. Abbreviations: KL, Kellgren–Lawrence grade; P, Paris; U, Utrecht; L, Leiden;
O, Oslo; AC, A Coruña

Training

Number of Subjects 15

Sex [Female / Male] 11 / 4

Age (years)* 65.7 ± 7.5

BMI (kg/cm2)* 29.4 ± 5.3

Subjects per KL Grade [0 / 1 / 2 / 3 / 4] 1 / 1 / 9 / 2 / 1

Subjects per site [P / U / L / O / AC] 2 / 5 / 4 / 2 / 2

Validation

Number of Subjects 5

Sex [Female / Male] 5 / 0

Age (years)* 63.8 ± 5.2

BMI (kg/cm2)* 30.4 ± 6.5

Subjects per KL Grade [0 / 1 / 2 / 3 / 4] 1 / 1 / 1 / 1 / 1

Subjects per site [P / U / L / O / AC] 1 / 1 / 1 / 1 / 1

Testing

Number of Subjects 15

Sex [Female / Male] 10 / 5

Age (years)* 66.9 ± 9.9

BMI (kg/cm2)* 30.9 ± 5.8

Subjects per KL Grade [0 / 1 / 2 / 3 / 4] 2 / 3 / 3 / 5 / 2

Subjects per site [P / U / L / O / AC] 2 / 5 / 4 / 2 / 2

15 for testing. The validation set was chosen to include all five KL grades and imaging sites
while the training and testing sets were selected to have equal distribution of imaging site (im-
age contrast) however random distribution of KL grades. Semi-automatic segmentations of the
femur bone were created from the corresponding CT data of the 15 testing set cases. After gen-
erating threshold-based outlines of the femur on the axial CT slices, manual adjustments were
performed. Both MRI and CT segmentations were completed using the StradView software
v6.1 (https://mi.eng.cam.ac.uk/Main/StradView). Detailed characteristics of the APPROACH
training, validation and testing cohorts are in Table 6.3.

6.2.3 Model Architecture and Training

The CNN used here was the same 3D U-Net used in Chapter 5 for segmenting femoral and
tibial bone-cartilage structures from knee MRIs.

For network training, each individual dataset was resampled and split into 256 x 256 x
10 sub-volumes of five overlapping slices. This resulted in each OAI 3D DESS dataset being
divided into 31 sub-volumes and each APPROACH dataset into 11 – 23 sub-volumes, depend-
ing on the number of slices acquired at the different imaging sites. The bone and cartilage
segmentations were each stored in a separate channel in the segmentation map.

Networks were trained with a binary cross entropy loss (BCE) and optimised with the Adam

https://mi.eng.cam.ac.uk/Main/StradView


Methods 107

solver with a learning rate of 0.0002 and momentum parameters, β1=0.5, β2=0.999. Within
PyTorch, the images were converted to tensors and normalized with the sub-volumes mean
signal intensity and standard deviation. The networks and optimisation were implemented
using PyTorch (Torch v1.0.1) with all network trainings performed on a Nvidia P6000 GPU
card (3840 CUDA cores, 24 GB GDDR5X).

As the APPROACH training data only consisted of 15 subjects, we evaluated the use of
transfer learning to improve segmentation accuracy on the APPROACH testing data. We as-
sessed the influence of the pre-training / fine-tuning ratio on the segmentation performance by
varying the amount of pre-training on the OAI-ZIB dataset between 10 to 90 epochs, followed
by network fine-tuning on the APPROACH dataset for 90 to 10 epochs. The results were also
compared to the APPROACH testing set evaluated on OAI-ZIB-only and APPROACH-only
training with random weight initialisation where early stopping was used as soon as the net-
works performance did not improve over a period of 20 epochs measured on their respective
validation sets.

6.2.4 Postprocessing and 3D Surface Analysis

Periarticular Bone Surface Extraction and Reconstruction

To extract the periarticular bone surface, i.e. the bone surface covered by articular cartilage,
we first combined the segmentation masks of bone and cartilage into one structure (Figure 6.1,
step 2). Next, contours of the cartilage-only segmentation and the created bone-cartilage seg-
mentation were calculated and subtracted to acquire the mask of the periarticular bone surface
(blue line in step 3, Figure 6.1). A point cloud was calculated by transforming the determined
periarticular bone mask voxels into the individual patient-based coordinate system correspond-
ing to the DICOM reference coordinate system. Triangulated surfaces were reconstructed from
the generated point cloud using the screened Poisson surface reconstruction algorithm imple-
mented in the Open3D package (Figure 6.1, step 4) [200, 201]. The surfaces were reconstructed
with a maximum tree depth of 8. Following simple neighbour average smoothing for 5 iter-
ations, the total number of vertices were decreased by downsampling into a voxel size of 1.5
mm (= slice thickness of MRIs). The average number of vertices in a periarticular bone patch
reconstructed from the APPROACH testing cohort was 5500 (range: 4800 - 6700) depending
on the extent of individual periarticular bone surfaces. This surface extraction and reconstruc-
tion pipeline was processed within Python (v3.7.6, Python Software Foundation, Wilmington,
Delaware, United States).

Figure 6.1: Flowchart of periarticular bone surface estimation. Manual or 3D U-Net automated bone and cartilage
segmentations are combined to form a single bone-cartilage structure. The periarticular bone surface points are
then calculated by subtracting the contours from cartilage-only and bone-cartilage structures. A 3D triangulated
periarticular surface patch is then generated from a point cloud determined from all periarticular mask voxels.
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Registration to CT Bone Surface

Triangulated surface meshes for the whole femur bone were created within StradView from the
threshold-based semi-automated segmentations of femoral bone from CT data as well as man-
ual and automated segmentations of femoral bone from MRI data. In the case of the automated
MRI bone segmentation, contours from 3D U-Net generated masks of femoral bone structures
were extracted and converted into tissue-specific polygons within Python and stored in a Strad-
View readable file prior to surface reconstruction. For each individual in the APPROACH test-
ing cohort, the femoral bone MR surfaces were registered to the corresponding femoral bone
CT surface using a similarity transformation with an iterative closest point (ICP) registration
algorithm. Surface registrations were completed using the freely available wxRegSurf software
v20 (http://mi.eng.cam.ac.uk/ ahg/wxRegSurf). The resulting similarity transformation matrix
for registering whole bone surface was subsequently applied to the corresponding periarticular
bone patch determined from the MRI data. The registered periarticular bone surfaces were
then used to perform subchondral cortical bone thickness measurements from CT data. The
described pipeline is illustrated in Figure 6.2.

Figure 6.2: Flowchart of cortical bone mapping pipeline. Following the acquisition of MR and CT imaging
data, bone is segmented manually or automatically from MRIs and threshold-based semi-automatically from CTs.
Whole bone surfaces are generated from the MRI and CT bone segmentations and registered to each other. Using
the similarity transformation matrix from the bone registrations, the periarticular bone surface patch is brought
into the correct CT space. The last step consisted of automatic cortical thickness measurement at each surface
vertex.

Cortical Bone Mapping and Analysis

The next step in the workflow is to perform cortical bone mapping from the periarticular bone
surfaces created from manual and automated segmentations for each individual. Cortical bone
mapping uses clinical CT imaging data to create 3D surface maps of subchondral cortical thick-
ness. Cortical thickness is measured at each vertex in the triangulated periarticular bone sur-
face patch by sampling the interpolated CT data along a line in the image plane normal to
the surface. A normalised Gaussian function is then fitted to the sampled CT data using a
Levenberg-Marquardt optimisation method [121, 202].

For each participant, the unique femoral periarticular bone surface mesh was registered to
an average (canonical) femoral surface to achieve vertexwise correspondence across individu-
als. This canonical surface contains roughly 3700 vertices and was calculated from extracted

http://mi.eng.cam.ac.uk/~ahg/wxRegSurf
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femoral cartilage surfaces of ten young, healthy participants in a study assessing surface-based
changes in articular cartilage composition following a mild exercise regime [186]. Registra-
tion was performed by first using a similarity transform (ICP), followed by a thin plate spline
transformation in which the rims of the two surface objects are matched [203, 204]. Individ-
ual vertexwise cortical thickness measurements were then mapped onto the average surface at
the respective closest neighbouring vertices. Both surface registration and mapping of thick-
ness measurements was performed using wxRegSurf software. Vertexwise root-mean-squared
(RMS) thickness was calculated from the mapped individual cortical thickness measurements
of the 15 APPROACH testing cases.

6.2.5 Model Evaluation and Statistical Analysis

Performance evaluation was assessed in network segmentation accuracy and subchondral corti-
cal thickness measures. For accuracy assessment between manual and 3D U-Net generated seg-
mentations, the Sørensen–Dice Similarity Coefficient (DSC) as well as the boundary distance-
based metric Average Symmetric Surfaces Distance (ASSD) were computed [89, 161].

Surfacewise and vertexwise scatterplot and Bland-Altman analysis were performed to eval-
uate any related differences between cortical thickness measurements from manual and auto-
mated segmentations. For surface-wise analysis, a surface-averaged thickness measurement is
used, while for vertexwise analyses, the RMS cortical thickness measurements at each canon-
ical surface vertex from the periarticular bone surfaces extracted from manual segmentations
were compared to the matching vertexwise measurements on the periarticular bone surfaces
determined from automated segmentations.

6.3 Results

6.3.1 Segmentation Performance Comparison

Bone and cartilage segmentation results (DSC and ASSD) of networks trained without and with
different intervals of transfer learning on the OAI ZIB are shown in page 110 and Figure 6.4,
respectively. The best performing network on both bone and cartilage was the 3D U-Net pre-
trained on OAI-ZIB for 40 epochs and fine-tuned for 60 epochs on the APPROACH dataset.
The mean DSC of bone and cartilage segmentations between manual ground truth and 3D U-
Net was 0.978 ± 0.002 and 0.833 ± 0.033. The mean ASSD of bone and cartilage segmentations
between manual and 3D U-Net was 0.325 ± 0.047 mm and 0.324 ± 0.067 mm. For both bone
and cartilage, the ASSD was comparable to the in-plane resolution of the training images.

6.3.2 Cortical Bone Mapping

Surfacewise cortical thickness measurements using periarticular bone surfaces were similar be-
tween those determined from manual and 3D U-Net automated segmentations. Bland-Altman
analysis (Figure 6.5) demonstrated a small positive mean bias [95% limits of agreement] of
0.004 [-0.110; 0.119] mm indicating a minor systematic overestimation of surface-averaged
cortical thickness using the automated segmentation approach. The surface-averaged RMS
cortical thickness determined with periarticular bone surfaces generated with manual segmen-
tations was 2.04 ± 0.29 mm and 2.04 ± 0.27 mm with 3D U-Net segmentations.



110 Towards Automated Cortical Bone Mapping using Knee MRI and CT Data

Figure 6.3: Bone segmentation accuracy of the APPROACH testing dataset with different pretraining / fine-tuning
ratios. Accuracies were measured with the Sørensen–Dice similarity coefficient (DSC) and average symmetric
surface distance (ASSD).

Figure 6.4: Cartilage segmentation accuracy of the APPROACH testing dataset with different pretraining / fine-
tuning ratios. Accuracies were measured with the Sørensen–Dice similarity coefficient (DSC) and average sym-
metric surface distance (ASSD).

Vertexwise cortical thickness measurements extracted from the manual and automated seg-
mentation approaches displayed on a canonical femoral surface are shown in Figure 6.6. Cor-
tical thickness difference maps are also shown. Scatter- and Bland-Altman-plots in Figure 6.7
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Figure 6.5: Scatterplot and Bland-Altman plot showing the comparison of surfacewise average cortical thickness
measurements determined from periarticular bone surfaces extracted from manual and automatic segmentations.

compare vertexwise RMS cortical thickness measurements from manual and automated seg-
mentations. These demonstrate a minor underestimation of femoral subchondral cortical thick-
ness measured with the periarticular bone surfaces determined from 3D U-Net segmentations
with a small negative mean bias [95% limits of agreement] of -0.002 [-0.210; 0.205] mm.

Figure 6.6: Vertexwise RMS cortical thickness data determined from periarticular bone surfaces extracted from
manual and 3D U-Net automated segmentations from the APPROACH test set displayed on the canonical femoral
surface. Difference maps highlight spatial discrepancies between the manual and automated approaches.

6.4 Discussion

This feasibility study presented a deep neural network–based pipeline for automated bone and
cartilage segmentation from knee MRIs which were used to determine a periarticular bone
surface applied to cortical bone thickness mapping on corresponding CTs.

This study used 3.0 T MRI data from five MR systems at five different imaging sites to train
and test a 3D U-Net. Although we only used 20 APPROACH datasets for training / validation,
the performance of bone and cartilage segmentations using a 3D U-Net demonstrated high
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Figure 6.7: Scatterplot and Bland-Altman plot showing the comparison of vertexwise cortical thickness measure-
ments determined from periarticular bone surfaces extracted from manual and automatic segmentations.

accuracy with manually performed segmentations. We showed that with network pretraining
on the much larger OAI ZIB dataset, segmentation performance on the APPROACH dataset
was considerably improved. We used a binary cross entropy loss function in this study which
resulted in high segmentation performance. Although there are many other loss function alter-
natives used for segmentation purposes, a complete analysis to determine the best loss function
for our task was beyond the scope of this feasibility study.

Surfacewise and vertexwise cortical bone thickness measurements using periarticular bone
surfaces determined from automated segmentations were similar to those determined from
manual segmentations indicated by the small biases from Bland-Altman analysis. Addition-
ally, the 95% limits of agreement were substantially lower than the voxel resolution of the CT
data for both surfacewise and vertexwise analysis. A strength of this study is the use of two
heterogeneous datasets, the OAI ZIB and APPROACH, for network training, with both con-
sisting of MRI scans of variable image quality and contrast. This could potentially allow the
networks to achieve high segmentation quality in a clinical setting. This would however re-
quire a more comprehensive validation. A next step could be to apply this method to analyse
the entire APPROACH dataset and evaluate its longitudinal and clinical efficacy. This would
allow an evaluation of the relationship between femoral periarticular cortical bone thickness
and radiological knee OA, similar to what has previously been performed at the hip [199].

The proposed method could additionally be used to characterise the effects of different OA
management and treatment approaches on cortical bone remodelling. While a clear beneficial
response of exercise programs on cartilage restoration in patients with OA has not yet been de-
termined, one study has shown an improvement of cartilage composition in an asymptomatic,
untrained female cohort following a 10-week running program using quantitative MRI [205]. A
recent study determined a significant increase in femorotibial cartilage after two years follow-
ing intra-articular administration of a disease modifying OA drug every six to twelve months
[206]. A more invasive approach known as knee joint distraction has shown significant clin-
ical improvements and cartilage regeneration in an end-stage knee OA cohort up to ten years
following treatment [207]. Using the proposed method to additionally study the remodelling
response of the periarticular cortical bone to various therapeutic approaches in individuals with
knee OA could assist in understanding their potential benefits on the cartilage-bone unit as
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a whole. It would allow insight into the temporal and spatial relationship between cartilage
damage and changes in underlying bone. Such analysis would however require CT and MRI
data at spatially corresponding resolutions and ideally at more granular scales to allow greater
precision than previously achievable.

We recognise that this study has limitations. The feasibility of our cortical thickness mea-
suring pipeline was only assessed at the femoral periarticular bone surface. An evaluation of
using the proposed automated pipeline for tibial and patellar periarticular cortical bone map-
ping would be the next step to enable a full knee joint assessment. A further limitation of this
study was that only a single observer was used for manual data segmentation. We did not assess
intra- or interobserver reliability of this method at this point as the aim was to make the entire
pipeline operator independent.

6.5 Conclusion

This work demonstrates the feasibility of an automated analysis pipeline for accurate subchon-
dral cortical bone thickness measurement at the femoral periarticular bone surface. Deep learn-
ing enabled automated bone and cartilage segmentations which allowed the estimation of the
periarticular bone surface from knee MRIs. Subsequently, this surface could be applied to
corresponding knee CTs for accurate cortical thickness measurement making the analysis pro-
cess of large clinical datasets such as APPROACH feasible, operator independent and faster by
reducing manual burden.
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Chapter 7

Future Developments and Conclusions

7.1 Contributions to Knowledge

This thesis has investigated the role of quantitative magnetic resonance imaging (MRI) and
medical image analysis techniques for evaluating the knee joint tissues with a focus on cartilage
and osteoarthritis. The primary contributions of this thesis include the detection of changes in
cartilage composition following exercise-induced joint loading, an evaluation of the use of
convolutional neural networks (CNN) for segmenting multiple knee joint tissues simultaneous
from MRIs, and assessments of the performance of CNNs for automated and time-efficient
analysis of cartilage morphology and composition as well as cortical bone thickness.

Measuring the compositional response of the femoral, tibial, and patellar articular cartilage
after a mild stepping activity and comparing these changes to the intrasessional repeatability of
T1ρ and T2 relaxation time mapping allowed the detection and localisation of focal changes in
cartilage composition greater than measurement error (Chapter 3). By measuring the intrases-
sional repeatability of T1ρ and T2 relaxation mapping, this work has provided the smallest
detectable differences in T1ρ and T2 relaxation time for use in future studies. Imaging the com-
positional recovery after exercise has shown slightly greater recovery of T1ρ compared to T2,
demonstrating a possibly faster recovery of the proteoglycan content compared to the collagen
organisation within cartilage. This work provides an important step towards understanding the
immediate effects on and recovery of articular cartilage following an acute joint loading activity
and could be informative for establishing appropriate exercise programs for the management
of OA.

The optimisation and validation of various CNNs for segmenting several knee joint tissues
from MRIs in Chapter 4 has provided technical information required to improve our under-
standing of the functionality and implementation of these networks. This work has shown
that, with meticulous optimisation, conditional generative adversarial networks (cGANs) can
achieve equivalent segmentation performance to the well-known U-Net technique. This is an
important step for future developments of cGANs and U-Nets and lays a foundation for utilising
these networks for segmentation purposes.

The development and assessment of the automated segmentation pipeline presented in
Chapter 5 highlighted the importance of understanding in which knee joint regions CNNs
perform well and in which regions they experience segmentation difficulties. Knowledge of
the limitations can avoid misinterpreting under- or overestimation of cartilage thickness by a
CNN as cartilage de- or regeneration, respectively. The major benefit of the developed analysis
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pipeline lies within the greatly improved time-efficiency for analysing cartilage morphology
and composition allowing it to next be applied to the Applied Private-Public partneRship en-
abling OsteoArthritis Clinical Headway (APPROACH) cohort and potentially establish clini-
cally meaningful imaging outcomes.

The automated pipeline for cortical bone thickness measurement developed in Chapter 6
has set an initial step in making the analysis of large-scale longitudinal OA imaging datasets
feasible. This analysis pipeline could in future help towards improving our understanding of
the associated changes in the bone-cartilage unit during OA progression. Although the network
was trained, validated and tested on a limited number of subjects in the APPROACH dataset,
high agreement was achieved between the cortical thickness measurements determined from
the periarticular bone patch extracted from manual and automated segmentations, indicating a
robust CNN and pipeline.

7.2 Future Developments

The work presented in Chapter 3 was part of the protocol and analysis development for a
prospective exploratory OA imaging study termed Functional Exercise Response on osteoArthri-
tis Relaxation Imaging (FERARI). The main purpose of the study is to develop and determine
a sensitive MR imaging biomarker that differentiates between participants with healthy knee
cartilage and patients with early osteoarthritis (OA). Additionally, the magnitude of changes
in compositional MRI values will be determined over 1 year, in the absence of any disease-
modifying intervention. The study consists of imaging each participant prior to exercise, during
mechanical loading of the knee joint using an MR compatible loading device (Diagnostic Pedal
from Ergospect GmbH), and after the stepping exercise proposed in Chapter 3. Similarly, after
exercise, multiple time points will be collected in the following hour to measure joint recovery
Figure 7.1.

Figure 7.1: FERARI study protocol (a): After an initial rest period, clinical and pre-loading research imaging is
performed. While still in the MRI scanner, the knee joints of the participant are mechanically loaded with an MR
compatible loading device (b) for approximately 10 minutes followed by post-loading research imaging. After a
30-minute rest period to mitigate the effects of the mechanical loading on the knee joint, participants perform a
5-minute stepping activity followed by post-exercise recovery imaging.



Future Developments 117

Additional information, such as gender, age, weight, height, and weekly exercise activity, will
be collected to observe correlations beyond OA severity. Participants (12 OA, 6 normal volun-
teers) were selected according to the following main inclusion criteria: (1) aged 40 - 65 years;
(2) body mass index ≤35 kg/m2; (3) imaged knee able to fit within the knee MRI coil (ap-
proximately 18 cm diameter); and (4) able to perform exercise component of the examination.
Additional inclusion criteria for OA participants were a clinical diagnosis of OA per Ameri-
can College of Rheumatology criteria and mild medial tibiofemoral predominant disease with
a Kellgren–Lawrence (KL) system grade 2 assessed on an existing knee radiograph acquired
within the previous 12 months. Normal volunteers are matched (1:2 ratio) to OA participants
for age, sex and body mass index who do not have knee pain. This study will provide test-retest
reliability measurements of quantitative MRI methods promising for assessing early degen-
erative changes in cartilage composition associated with osteoarthritis as determined from a
1-month repeatability visit. Additionally, the study will provide knowledge of effect sizes for
sample size calculations for the use of imaging endpoints in future longitudinal or interven-
tional studies using MR imaging outcome measures.

The quantitative MR relaxation time mapping techniques studied in this thesis can pro-
vide more repeatable results with a closer insight into the relationship between the underly-
ing biology and the related MRI-derived values than conventional contrast-weighted imaging.
Rather than acquiring a single MR image with only contrast information, quantitative MRI
techniques aim at determining quantitative tissue-based MR characteristics. Mapping of quan-
titative MR relaxation times is promising for improving disease diagnosis at early stages, mon-
itoring progression, and assessing treatment response beyond simple qualitative assessments
[23]. However, quantitative imaging is often slow and inefficient as it involves the serial ac-
quisitions of multiple contrast-weighted images. A mathematical model is then fitted to these
time-series images from which a single quantitative map can be derived to provide information
of a single parameter. Sequential measurement of multiple MR parameters is almost always
time-consuming and prone to movement artefacts. MR Fingerprinting (MRF) was recently in-
troduced, as a novel acquisition and reconstruction strategy to overcome these challenges and
time-constraints of quantitative imaging techniques [208]. MRF has the potential to be used
for clinical imaging as it enables fast, simultaneous, and efficient multi-parametric mapping
by exploiting the transient signals produced from the pseudo-random variation of sequence pa-
rameters such as repetition time (TR) and flip angle (FA). These generated signal evolutions or
‘fingerprints’ are unique for different tissues and are dependent on the various MR properties of
the tissue, such as proton density or T1 and T2 relaxation. After data acquisition, the signals are
matched to a simulated dictionary including (but not limited to) T1 and T2 to create quantitative
maps. The dictionary is generated based on the MRF sequence set-up used and the simulation
of the spin development that may be observed during acquisition. MRF uses a relatively sim-
ple pattern recognition algorithm to identify the tissue and its corresponding properties in each
voxel. The inner products between the normalised measured signal evolution of each voxel and
each normalised dictionary entry are calculated. The dictionary entry returning the maximum
value of the inner product is taken as the best representation of the acquired signal evolution.
The respective T1 and T2 values are consequently assigned to the voxel. The proton density
(PD) is calculated as the scaling factor used to match the dictionary simulation with the mea-
sured signal evolution. Figure 7.2 shows an example of MRF-acquired PD, T1 and T2 maps as
well as a generated synthetic SPGR FS images of the knee joint. By incorporating MRF in the
FERARI study introduced above, future work has the potential to validate MRF as a fast and re-
liable alternative to the time-consuming, gold-standard relaxation time mapping methods. The
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overall long-term objective is to achieve early detection and characterisation of OA by bringing
the quantitative MRI techniques studied in this dissertation into more prevalent clinical use.
However, for these methods to make this next step, reliability and multicentre reproducibility
need to be demonstrated as well as their potential to impact patient management and follow-on
treatment.

The quantitative MR relaxation time mapping techniques studied in this thesis can pro-
vide more repeatable results with a closer insight into the relationship between the underlying
biology and the related MRI-derived values. Rather than acquiring a single MR image with
only contrast information, quantitative MRI techniques aim at determining tissue specific MR
characteristics. Mapping of quantitative MR relaxation times is promising for improving dis-
ease diagnosis at early stages, monitoring progression, and assessing treatment response be-
yond simple qualitative assessments [23]. However, quantitative imaging is often slow and
inefficient as it involves the serial acquisitions of multiple contrast-weighted images. A math-
ematical model is then fitted to these time-series images from which a single quantitative map
can be derived to provide information of a single parameter. A simultaneous measurement of
multiple MR parameters is almost always time-consuming and prone to movement artefacts.
MR Fingerprinting (MRF) was recently introduced, as a novel acquisition and reconstruction
strategy to overcome these challenges and time-constraints of quantitative imaging techniques
[208]. MRF has the potential to be used for clinical imaging as it enables fast, simultaneous
and efficient multi-parametric mapping by exploiting the transient signals produced from the
pseudo-random variation of sequence parameters such as repetition time (TR) and flip angle
(FA). These generated signal evolutions or ‘fingerprints’ are unique for different tissues and are
dependent on the various magnetic resonance properties of the tissue. After data acquisition,
the signals are matched to a simulated dictionary including (but not limited to) T1 and T2 to
create quantitative maps. The dictionary is generated based on the MRF sequence set-up used
and the simulation of the spin development that may be observed during acquisition. MRF uses
a relatively simple pattern recognition algorithm to identify the tissue and its corresponding
properties in each voxel. The inner products between the normalised measured signal evolu-
tion of each voxel and each normalised dictionary entry are calculated. The dictionary entry
returning the maximum value of the inner product is taken as the best representation of the
acquired signal evolution. The respective T1 and T2 values are consequently assigned to the
voxel. The proton density (PD) is calculated as the scaling factor used to match the dictionary
simulation with the measured signal evolution. Figure 7.2 shows an example of MRF-acquired
PD, T1 and T2 maps as well as a generated synthetic SPGR FS images of the knee joint. By
incorporating MRF in the FERARI study introduced above, future work has the potential to
validate MRF as a fast and reliable alternative to the time-consuming, gold-standard relaxation
time mapping methods. The overall long-term objective is to bring the quantitative MRI tech-
niques studied in this thesis and other potential candidates such as MRF into more prevalent
clinical use. However, for these methods to make this next step, reliability and multicentre re-
producibility need to be demonstrated as well as their potential to impact patient management
and follow-on treatment.

Similarly, deep learning (DL) algorithms, such as the ones studied in this thesis for reducing
the time to perform accurate medical image analysis, have not yet achieved widespread imple-
mentations in clinical settings. One reason for this is that there is no established regulatory
pathway for these algorithms to receive approval for clinical use. Additionally, since training,
validation and testing are generally performed on the same dataset at a single institution, the
reproducibility and generalisability of the DL-based algorithms are rarely established. Specif-
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Figure 7.2: Magnetic resonance fingerprinting (MRF) maps of the knee joint from a patient with radiographic
knee OA of KL grade 2. a) Proton density, b) T1, and c) T2 maps. d) is a synthetic SPGR FS image obtained from
the three quantitative MRF maps.

ically to the knee segmentation tasks performed in this thesis, generalisability is difficult to
achieve if the datasets trained on are from highly controlled OA imaging studies. Although the
Osteoarthritis Initiative is a multi-centre collaboration, all MR imaging was performed on simi-
lar MR systems from an individual manufacturer. The APPROACH study incorporates imaging
data acquired at five different European sites from various MR systems of two manufacturers
allowing an expansion of training deep neural networks on data of more clinical representation.
Future work should therefore focus on setting up OA imaging studies with the aim of acquiring
international multi-centre, multi-vendor data to achieve not only a more generalisable clinical
OA outcome measure but additionally, training of DL algorithms with inherent heterogeneity
and widespread applicability. This would allow demonstration of the DL algorithms repro-
ducibility through federated learning across multiple distributed institutions having hold-out
local data for testing and potential fine-tune training of the algorithm.

7.3 Conclusions

1. T1ρ and T2 relaxation time mapping techniques are repeatable in ex-vivo phantoms and
in-vivo knee joints.

2. 3D Cartilage Surface Mapping (3D-CaSM) allowed a detection of significant focal changes
in cartilage T1ρ and T2 relaxation times after a uni-lateral stepping activity in a young co-
hort without knee pain symptoms.

3. With thorough optimisation, conditional generative adversarial networks (cGANs) and
U-Nets can achieve comparable segmentation performances for segmenting multiple
knee joint structures from various MRI datasets.

4. Both 2D and 3D U-Nets demonstrate the efficiency of using convolutional neural net-
works (CNNs) for generating accurate segmentations of femoral and tibial bone-cartilage
structures. Furthermore, these segmentations can be used to perform surface-based anal-
ysis using 3D-CaSM to extract accurate cartilage morphological and compositional fea-
tures.

5. Using an automated pipeline based on CNN-generated bone and cartilage segmentations
from knee MRI data to extract a 3D periarticular bone surface, accurate measurements
of cortical bone thickness are achievable on corresponding knee CT data.
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