409 research outputs found

    Multi-Dimensional Model Based Engineering for Performance Critical Computer Systems Using the AADL

    Get PDF
    International audienceThe Architecture Analysis & Design Language, (AADL), Society of Automotive Engineers (SAE), AS5506, was developed to support quantitative analysis of the runtime architecture of the embedded software system in computer systems with multiple critical operational properties, such as responsiveness, safety-criticality, security, and reliability by allowing a model of the system to be annotated with information relevant to each of these quality concerns and AADL to be extended with analysis-specific properties. It supports modelling of the embedded software runtime architecture, the computer system hardware, and the interface to the physical environment of embedded computer systems and system of systems. It was designed to support a full Model Based Engineering lifecycle including system specification, analysis, system tuning, integration, and upgrade by supporting modelling and analysis at multiple levels of fidelity. A system can be automatically integrated from AADL models when fully specified and when source code is provided for the software components

    Model based code generation for distributed embedded systems

    Get PDF
    Embedded systems are becoming increasingly complex and more distributed. Cost and quality requirements necessitate reuse of the functional software components for multiple deployment architectures. An important step is the allocation of software components to hardware. During this process the differences between the hardware and application software architectures must be reconciled. In this paper we discuss an architecture driven approach involving model-based techniques to resolve these differences and integrate hardware and software components. The system architecture serves as the underpinning based on which distributed real-time components can be generated. Generation of various embedded system architectures using the same functional architecture is discussed. The approach leverages the following technologies – IME (Integrated Modeling Environment), the SAE AADL (Architecture Analysis and Design Language), and Ocarina. The approach is illustrated using the electronic throttle control system as a case study

    Platform-based Plug and Play of Automotive Safety Features - Challenges and Directions

    Get PDF
    Optional software-based features are increasingly becoming an important cost driver in automotive systems. These include features pertaining to active safety, infotainment, etc. Currently, these optional features are integrated into the vehicles at the factory during assembly. This severely restricts the flexibility of the customer to select and use features on-demand and therefore, the customer will either have to be satisfied with an available set of feature options or pre-order a car with the required features from the manufacturer resulting in considerable delay. In order to increase flexibility and reduce the delay, it is necessary to provide the option to configure the vehicle on-demand at the dealership or remotely. In this paper, we present our vision and challenges involved in developing a platform infrastructure that allows on-demand deployment of automotive safety features and ensures their correct execution

    The SAE Architecture Analysis & Design Language (AADL) A Standard for Engineering Performance Critical Systems

    Get PDF
    International audienceThe Society of Automotive Engineers (SAE) Architecture Analysis & Design Language, AS5506, provides a means for the formal specification of the hardware and software architecture of embedded computer systems and system of systems. It was designed to support a full Model Based Development lifecycle including system specification, analysis, system tuning, integration, and upgrade over the lifecycle. It was designed to support the integration of multiple forms of analyses and to be extensible in a standard way for additional analysis approaches. A system can be automatically integrated from AADL models when fully specified and when source code is provided for the software components. Analysis of large complex systems has been demonstrated in the avionics domain

    Translation Of AADL To PNML To Ensure The Utilization Of Petri Nets

    Get PDF
    Architecture Analysis and Design Language (AADL), which is used to design and analyze software and hardware architectures of embedded and real-time systems, has proven to be a very efficient way of expressing the non-functional properties of safety-critical systems and architectural modeling. Petri nets are the graphical and mathematical modeling tools used to describe and study information processing systems characterized as concurrent and distributed. As AADL lacks the formal semantics needed to show the functional properties of such systems, the objective of this research was to extend AADL to enable other Petri nets to be incorporated into Petri Net Markup Language (PNML), an interchange language for Petri nets. PNML makes it possible to incorporate different types of analysis using different types of Petri net. To this end, the interchange format Extensible Markup Language (XML) was selected and AADL converted to AADL-XML (the XML format of AADL) and Petri nets to PNML, the XML-format of Petri nets, via XSLT script. PNML was chosen as the transfer format for Petri nets due to its universality, which enables designers to easily map PNML to many different types of Petri nets. Manual conversion of AADL to PNML is error-prone and tedious and thus requires automation, so XSLT script was utilized for the conversion of the two languages in their XML format. Mapping rules were defined for the conversion from AADL to PNML and the translation to XSLT automated. Finally, a PNML plug-in was designed and incorporated into the Open Source AADL Tool Environment (OSATE)

    CONTREX: Design of embedded mixed-criticality CONTRol systems under consideration of EXtra-functional properties

    Get PDF
    The increasing processing power of today’s HW/SW platforms leads to the integration of more and more functions in a single device. Additional design challenges arise when these functions share computing resources and belong to different criticality levels. The paper presents the CONTREX European project and its preliminary results. CONTREX complements current activities in the area of predictable computing platforms and segregation mechanisms with techniques to consider the extra-functional properties, i.e., timing constraints, power, and temperature. CONTREX enables energy efficient and cost aware design through analysis and optimization of these properties with regard to application demands at different criticality levels

    Developing critical embedded systems on multicore architectures: the Prelude-SchedMCore toolset

    Get PDF
    International audienceIn this paper we present an end-to-end framework for the design and the implementation of embedded systems on a symmetric multicore. The developer first specifies the system using the \prelude language, a formal real-time architecture description language. The Prelude compiler then translates the program into a set of communicating periodic tasks that preserves the semantics of the original program. The schedulability analysis is performed by the SchedMCore analyzer. If the program is schedulable, it can finally be executed on the target multicore architecture using the \schedmcore execution environment

    Architecture-Centric Software Development for Cyber-Physical Systems

    Get PDF
    We discuss the problem of high-assurance development of cyber-physical systems. Specifically, we concentrate on the interaction between the development of the control system layer and platform-specific software engineering for system components. We argue that an architecture-centric approach allows us to streamline the development and increase the level of assurance for the resulting system. The case study of an unmanned ground vehicle illustrates the approach

    An Optimization Based Design for Integrated Dependable Real-Time Embedded Systems

    Get PDF
    Moving from the traditional federated design paradigm, integration of mixedcriticality software components onto common computing platforms is increasingly being adopted by automotive, avionics and the control industry. This method faces new challenges such as the integration of varied functionalities (dependability, responsiveness, power consumption, etc.) under platform resource constraints and the prevention of error propagation. Based on model driven architecture and platform based design’s principles, we present a systematic mapping process for such integration adhering a transformation based design methodology. Our aim is to convert/transform initial platform independent application specifications into post integration platform specific models. In this paper, a heuristic based resource allocation approach is depicted for the consolidated mapping of safety critical and non-safety critical applications onto a common computing platform meeting particularly dependability/fault-tolerance and real-time requirements. We develop a supporting tool suite for the proposed framework, where VIATRA (VIsual Automated model TRAnsformations) is used as a transformation tool at different design steps. We validate the process and provide experimental results to show the effectiveness, performance and robustness of the approach
    • …
    corecore