6,991 research outputs found

    A survey of visual preprocessing and shape representation techniques

    Get PDF
    Many recent theories and methods proposed for visual preprocessing and shape representation are summarized. The survey brings together research from the fields of biology, psychology, computer science, electrical engineering, and most recently, neural networks. It was motivated by the need to preprocess images for a sparse distributed memory (SDM), but the techniques presented may also prove useful for applying other associative memories to visual pattern recognition. The material of this survey is divided into three sections: an overview of biological visual processing; methods of preprocessing (extracting parts of shape, texture, motion, and depth); and shape representation and recognition (form invariance, primitives and structural descriptions, and theories of attention)

    Solid/FEM integration at SNLA

    Get PDF
    The effort at Sandia National Labs. on the methodologies and techniques being used to generate strict hexahedral finite element meshes from a solid model is described. The functionality of the modeler is used to decompose the solid into a set of nonintersecting meshable finite element primitives. The description of the decomposition is exported, via a Boundary Representative format, to the meshing program which uses the information for complete finite element model specification. Particular features of the program are discussed in some detail along with future plans for development which includes automation of the decomposition using artificial intelligence techniques

    Finite Boolean Algebras for Solid Geometry using Julia's Sparse Arrays

    Full text link
    The goal of this paper is to introduce a new method in computer-aided geometry of solid modeling. We put forth a novel algebraic technique to evaluate any variadic expression between polyhedral d-solids (d = 2, 3) with regularized operators of union, intersection, and difference, i.e., any CSG tree. The result is obtained in three steps: first, by computing an independent set of generators for the d-space partition induced by the input; then, by reducing the solid expression to an equivalent logical formula between Boolean terms made by zeros and ones; and, finally, by evaluating this expression using bitwise operators. This method is implemented in Julia using sparse arrays. The computational evaluation of every possible solid expression, usually denoted as CSG (Constructive Solid Geometry), is reduced to an equivalent logical expression of a finite set algebra over the cells of a space partition, and solved by native bitwise operators.Comment: revised version submitted to Computer-Aided Geometric Desig

    SMP: A solid modeling program

    Get PDF
    A prototype solid modeling program, SMP, developed by CSC for Langley Research Center (LaRC) is documented in this paper. The SMP software is employed by the System and Experiments Branch (SEB) of the Space Systems Division (SSD) for preliminary space station design, but is intended as a general purpose tool. The SMP document provides details concerning: the basic geometric modeling primitives and associated operators, the data representation scheme utilized to structure the geometric model, the available commands for both editing and displaying the solid model, the interactive user interface and the input/output interfaces to external software, and the utility of the package in the LaRC computing environment. The document is sufficiently detailed to serve both as a user's guide and reference manual

    Superquadrics for segmentation and modeling range data

    Get PDF
    We present a novel approach to reliable and efficient recovery of part-descriptions in terms of superquadric models from range data. We show that superquadrics can directly be recovered from unsegmented data, thus avoiding any presegmentation steps (e.g., in terms of surfaces). The approach is based on the recover-andselect paradigm. We present several experiments on real and synthetic range images, where we demonstrate the stability of the results with respect to viewpoint and noise

    Quantifying Geometric Changes in BIM-GIS Conversion

    Get PDF
    Abstract. A conversion process is often carried out to migrate data during BIM and GIS integration, often from the highly detailed BIM to the less detailed GIS environment. Due to the differences between the two systems, information loss occurs during conversion. While research has been focusing on addressing information loss on the semantics, it is also necessary to quantify geometric changes resulted from converting geometry representations used in the two systems. This paper describes a preliminary study which evaluates the geometric changes during conversion for a list of primitives. The outcome shows that the metrics are useful both to those carrying out the conversion to balance between potential information loss and resulting data complexity, and to end users of the converted information to assess the fitness for purpose and impact of the conversion results

    CAD-model-based vision for space applications

    Get PDF
    A pose acquisition system operating in space must be able to perform well in a variety of different applications including automated guidance and inspections tasks with many different, but known objects. Since the space station is being designed with automation in mind, there will be CAD models of all the objects, including the station itself. The construction of vision models and procedures directly from the CAD models is the goal of this project. The system that is being designed and implementing must convert CAD models to vision models, predict visible features from a given view point from the vision models, construct view classes representing views of the objects, and use the view class model thus derived to rapidly determine the pose of the object from single images and/or stereo pairs
    • …
    corecore