1,350 research outputs found

    Disjoint NP-pairs from propositional proof systems

    Get PDF
    For a proof system P we introduce the complexity class DNPP(P) of all disjoint NP-pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make the previously defined canonical NP-pairs of these proof systems hard or complete for DNPP(P). Moreover we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for DNPP(P) and the reductions between the canonical pairs exist

    Tuples of disjoint NP-sets

    Get PDF
    Disjoint NP-pairs are a well studied complexity theoretic concept with important applications in cryptography and propositional proof complexity. In this paper we introduce a natural generalization of the notion of disjoint NP-pairs to disjoint k-tuples of NP-sets for k ≥ 2. We define subclasses of the class of all disjoint k-tuples of NP-sets. These subclasses are associated with a propositional proof system and possess complete tuples which are defined from the proof system. In our main result we show that complete disjoint NP-pairs exist if and only if complete disjoint k-tuples of NP-sets exist for all k ≥ 2. Further, this is equivalent to the existence of a propositional proof system in which the disjointness of all k-tuples is shortly provable. We also show that a strengthening of this conditions characterizes the existence of optimal proof systems

    Classes of representable disjoint NP-pairs

    Get PDF
    For a propositional proof system P we introduce the complexity class of all disjoint -pairs for which the disjointness of the pair is efficiently provable in the proof system P. We exhibit structural properties of proof systems which make canonical -pairs associated with these proof systems hard or complete for . Moreover, we demonstrate that non-equivalent proof systems can have equivalent canonical pairs and that depending on the properties of the proof systems different scenarios for and the reductions between the canonical pairs exist

    Tuples of disjoint NP-sets

    Get PDF
    Disjoint NPUnknown control sequence '\mathsf' -pairs are a well studied complexity-theoretic concept with important applications in cryptography and propositional proof complexity. In this paper we introduce a natural generalization of the notion of disjoint NPUnknown control sequence '\mathsf' -pairs to disjoint k-tuples of NPUnknown control sequence '\mathsf' -sets for k≥2. We define subclasses of the class of all disjoint k-tuples of NPUnknown control sequence '\mathsf' -sets. These subclasses are associated with a propositional proof system and possess complete tuples which are defined from the proof system. In our main result we show that complete disjoint NPUnknown control sequence '\mathsf' -pairs exist if and only if complete disjoint k-tuples of NPUnknown control sequence '\mathsf' -sets exist for all k≥2. Further, this is equivalent to the existence of a propositional proof system in which the disjointness of all k-tuples is shortly provable. We also show that a strengthening of this conditions characterizes the existence of optimal proof systems

    Making proofs without Modus Ponens: An introduction to the combinatorics and complexity of cut elimination

    Full text link
    This paper is intended to provide an introduction to cut elimination which is accessible to a broad mathematical audience. Gentzen's cut elimination theorem is not as well known as it deserves to be, and it is tied to a lot of interesting mathematical structure. In particular we try to indicate some dynamical and combinatorial aspects of cut elimination, as well as its connections to complexity theory. We discuss two concrete examples where one can see the structure of short proofs with cuts, one concerning feasible numbers and the other concerning "bounded mean oscillation" from real analysis

    On the existence of complete disjoint NP-pairs

    Get PDF
    Disjoint NP-pairs are an interesting model of computation with important applications in cryptography and proof complexity. The question whether there exists a complete disjoint NP-pair was posed by Razborov in 1994 and is one of the most important problems in the field. In this paper we prove that there exists a many-one hard disjoint NP-pair which is computed with access to a very weak oracle (a tally NP-oracle). In addition, we exhibit candidates for complete NP-pairs and apply our results to a recent line of research on the construction of hard tautologies from pseudorandom generators

    Resolution over Linear Equations and Multilinear Proofs

    Get PDF
    We develop and study the complexity of propositional proof systems of varying strength extending resolution by allowing it to operate with disjunctions of linear equations instead of clauses. We demonstrate polynomial-size refutations for hard tautologies like the pigeonhole principle, Tseitin graph tautologies and the clique-coloring tautologies in these proof systems. Using the (monotone) interpolation by a communication game technique we establish an exponential-size lower bound on refutations in a certain, considerably strong, fragment of resolution over linear equations, as well as a general polynomial upper bound on (non-monotone) interpolants in this fragment. We then apply these results to extend and improve previous results on multilinear proofs (over fields of characteristic 0), as studied in [RazTzameret06]. Specifically, we show the following: 1. Proofs operating with depth-3 multilinear formulas polynomially simulate a certain, considerably strong, fragment of resolution over linear equations. 2. Proofs operating with depth-3 multilinear formulas admit polynomial-size refutations of the pigeonhole principle and Tseitin graph tautologies. The former improve over a previous result that established small multilinear proofs only for the \emph{functional} pigeonhole principle. The latter are different than previous proofs, and apply to multilinear proofs of Tseitin mod p graph tautologies over any field of characteristic 0. We conclude by connecting resolution over linear equations with extensions of the cutting planes proof system.Comment: 44 page

    Circuit complexity, proof complexity, and polynomial identity testing

    Full text link
    We introduce a new algebraic proof system, which has tight connections to (algebraic) circuit complexity. In particular, we show that any super-polynomial lower bound on any Boolean tautology in our proof system implies that the permanent does not have polynomial-size algebraic circuits (VNP is not equal to VP). As a corollary to the proof, we also show that super-polynomial lower bounds on the number of lines in Polynomial Calculus proofs (as opposed to the usual measure of number of monomials) imply the Permanent versus Determinant Conjecture. Note that, prior to our work, there was no proof system for which lower bounds on an arbitrary tautology implied any computational lower bound. Our proof system helps clarify the relationships between previous algebraic proof systems, and begins to shed light on why proof complexity lower bounds for various proof systems have been so much harder than lower bounds on the corresponding circuit classes. In doing so, we highlight the importance of polynomial identity testing (PIT) for understanding proof complexity. More specifically, we introduce certain propositional axioms satisfied by any Boolean circuit computing PIT. We use these PIT axioms to shed light on AC^0[p]-Frege lower bounds, which have been open for nearly 30 years, with no satisfactory explanation as to their apparent difficulty. We show that either: a) Proving super-polynomial lower bounds on AC^0[p]-Frege implies VNP does not have polynomial-size circuits of depth d - a notoriously open question for d at least 4 - thus explaining the difficulty of lower bounds on AC^0[p]-Frege, or b) AC^0[p]-Frege cannot efficiently prove the depth d PIT axioms, and hence we have a lower bound on AC^0[p]-Frege. Using the algebraic structure of our proof system, we propose a novel way to extend techniques from algebraic circuit complexity to prove lower bounds in proof complexity
    corecore