19 research outputs found

    Triagem robusta de melanoma : em defesa dos descritores aprimorados de nível médio

    Get PDF
    Orientadores: Eduardo Alves do Valle Junior, Sandra Eliza Fontes de AvilaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Melanoma é o tipo de câncer de pele que mais leva à morte, mesmo sendo o mais curável, se detectado precocemente. Considerando que a presença de um dermatologista em tempo integral não é economicamente viável para muitas cidades e especialmente em comunidades carentes, ferramentas de auxílio ao diagnóstico para a triagem do melanoma têm sido um tópico de pesquisa ativo. Muitos trabalhos existentes são baseados no modelo Bag-of-Visual-Words (BoVW), combinando descritores de cor e textura. No entanto, o modelo BoVW vem se aprimorando e hoje existem várias extensões que levam a melhores taxas de acerto em tarefas gerais de classificação de imagens. Estes modelos avançados ainda não foram explorados para rastreio de melanoma, motivando assim este trabalho. Aqui nós apresentamos uma nova abordagem para rastreio de melanoma baseado nos descritores BossaNova, que são estado-da-arte, mostrando resultados muito promissores, com uma AUC de 93,7%. Este trabalho também propõe uma nova estratégia de pooling espacial especialmente desenhada para rastreio de melanoma. Outra contribuição dessa pesquisa é o uso inédito do BossaNova na classificação de melanoma. Isso abre oportunidades de exploração deste descritor em outros contextos médicosAbstract: Melanoma is the type of skin cancer that most leads to death, even being the most curable, if detected early. Since the presence of a full time dermatologist is not economical feasible for many small cities and specially in underserved communities, computer-aided diagnosis for melanoma screening has been a topic of active research. Much of the existing art is based on the Bag-of-Visual-Words (BoVW) model, combining color and texture descriptors. However, the BoVW model has been improving and nowadays there are several extensions that perform better classification rates in general image classification tasks. These enhanced models were not explored yet for melanoma screening, thus motivating our work. Here we present a new approach for melanoma screening, based upon the state-of-the-art BossaNova descriptors, showing very promising results for screening, reaching an AUC of up to 93.7%. This work also proposes a new spatial pooling strategy specially designed for melanoma screening. Other contribution of this research is the unprecedented use of BossaNova in melanoma classification. This opens the opportunity to explore this enhanced mid-level descriptors in other medical contextsMestradoEngenharia de ComputaçãoMestre em Engenharia Elétric

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Deep Learning in Medical Image Analysis

    Get PDF
    The accelerating power of deep learning in diagnosing diseases will empower physicians and speed up decision making in clinical environments. Applications of modern medical instruments and digitalization of medical care have generated enormous amounts of medical images in recent years. In this big data arena, new deep learning methods and computational models for efficient data processing, analysis, and modeling of the generated data are crucially important for clinical applications and understanding the underlying biological process. This book presents and highlights novel algorithms, architectures, techniques, and applications of deep learning for medical image analysis

    AI in Medical Imaging Informatics: Current Challenges and Future Directions

    Get PDF
    This paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine

    The skin microbiopsy

    Get PDF

    On Improving Generalization of CNN-Based Image Classification with Delineation Maps Using the CORF Push-Pull Inhibition Operator

    Get PDF
    Deployed image classification pipelines are typically dependent on the images captured in real-world environments. This means that images might be affected by different sources of perturbations (e.g. sensor noise in low-light environments). The main challenge arises by the fact that image quality directly impacts the reliability and consistency of classification tasks. This challenge has, hence, attracted wide interest within the computer vision communities. We propose a transformation step that attempts to enhance the generalization ability of CNN models in the presence of unseen noise in the test set. Concretely, the delineation maps of given images are determined using the CORF push-pull inhibition operator. Such an operation transforms an input image into a space that is more robust to noise before being processed by a CNN. We evaluated our approach on the Fashion MNIST data set with an AlexNet model. It turned out that the proposed CORF-augmented pipeline achieved comparable results on noise-free images to those of a conventional AlexNet classification model without CORF delineation maps, but it consistently achieved significantly superior performance on test images perturbed with different levels of Gaussian and uniform noise

    Medical image synthesis using generative adversarial networks: towards photo-realistic image synthesis

    Full text link
    This proposed work addresses the photo-realism for synthetic images. We introduced a modified generative adversarial network: StencilGAN. It is a perceptually-aware generative adversarial network that synthesizes images based on overlaid labelled masks. This technique can be a prominent solution for the scarcity of the resources in the healthcare sector

    Deep learning of brain asymmetry digital biomarkers to support early diagnosis of cognitive decline and dementia

    Get PDF
    Early identification of degenerative processes in the human brain is essential for proper care and treatment. This may involve different instrumental diagnostic methods, including the most popular computer tomography (CT), magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. These technologies provide detailed information about the shape, size, and function of the human brain. Structural and functional cerebral changes can be detected by computational algorithms and used to diagnose dementia and its stages (amnestic early mild cognitive impairment - EMCI, Alzheimer’s Disease - AD). They can help monitor the progress of the disease. Transformation shifts in the degree of asymmetry between the left and right hemispheres illustrate the initialization or development of a pathological process in the brain. In this vein, this study proposes a new digital biomarker for the diagnosis of early dementia based on the detection of image asymmetries and crosssectional comparison of NC (normal cognitively), EMCI and AD subjects. Features of brain asymmetries extracted from MRI of the ADNI and OASIS databases are used to analyze structural brain changes and machine learning classification of the pathology. The experimental part of the study includes results of supervised machine learning algorithms and transfer learning architectures of convolutional neural networks for distinguishing between cognitively normal subjects and patients with early or progressive dementia. The proposed pipeline offers a low-cost imaging biomarker for the classification of dementia. It can be potentially helpful to other brain degenerative disorders accompanied by changes in brain asymmetries

    Mechanisms and Novel Therapeutic Approaches for Gynecologic Cancer

    Get PDF
    This book—entitled “Mechanisms and Novel Therapeutic Approaches for Gynecologic Cancer”—was edited as a Special Issue of Biomedicines, focusing on basic research such as genomics, epigenomics, and proteomics, as well as clinical research in the field of gynecologic oncology. The number of patients with gynecological cancer has been increasing worldwide due to its high lethality and lack of early detection tools and effective therapeutic interventions. In this regard, basic research on its pathophysiology and novel molecular targeting intervention is required to improve the prognosis of gynecologic cancer. This book contains 13 papers, including 8 original research papers and 5 reviews focusing on the basic research of gynecologic oncology. The reader can learn about state-of-the-art research and obtain extensive knowledge of the current advances in the field of gynecologic oncology. It is my hope that this book contributes towards the progress of gynecologic oncology
    corecore