11 research outputs found

    Deriving object typestates in the presence of inter-object references

    Full text link

    A Notion of Dynamic Interface for Depth-Bounded Object-Oriented Packages

    Full text link
    Programmers using software components have to follow protocols that specify when it is legal to call particular methods with particular arguments. For example, one cannot use an iterator over a set once the set has been changed directly or through another iterator. We formalize the notion of dynamic package interfaces (DPI), which generalize state-machine interfaces for single objects, and give an algorithm to statically compute a sound abstraction of a DPI. States of a DPI represent (unbounded) sets of heap configurations and edges represent the effects of method calls on the heap. We introduce a novel heap abstract domain based on depth-bounded systems to deal with potentially unboundedly many objects and the references among them. We have implemented our algorithm and show that it is effective in computing representations of common patterns of package usage, such as relationships between viewer and label, container and iterator, and JDBC statements and cursors

    Dynamic Package Interfaces - Extended Version

    Full text link
    A hallmark of object-oriented programming is the ability to perform computation through a set of interacting objects. A common manifestation of this style is the notion of a package, which groups a set of commonly used classes together. A challenge in using a package is to ensure that a client follows the implicit protocol of the package when calling its methods. Violations of the protocol can cause a runtime error or latent invariant violations. These protocols can extend across different, potentially unboundedly many, objects, and are specified informally in the documentation. As a result, ensuring that a client does not violate the protocol is hard. We introduce dynamic package interfaces (DPI), a formalism to explicitly capture the protocol of a package. The DPI of a package is a finite set of rules that together specify how any set of interacting objects of the package can evolve through method calls and under what conditions an error can happen. We have developed a dynamic tool that automatically computes an approximation of the DPI of a package, given a set of abstraction predicates. A key property of DPI is that the unbounded number of configurations of objects of a package are summarized finitely in an abstract domain. This uses the observation that many packages behave monotonically: the semantics of a method call over a configuration does not essentially change if more objects are added to the configuration. We have exploited monotonicity and have devised heuristics to obtain succinct yet general DPIs. We have used our tool to compute DPIs for several commonly used Java packages with complex protocols, such as JDBC, HashSet, and ArrayList.Comment: The only changes compared to v1 are improvements to the Abstract and Introductio

    Practical API Protocol Checking with Access Permissions

    Full text link
    Reusable APIs often define usage protocols. We previously developed a sound modular type system that checks compliance with typestate-based protocols while affording a great deal of aliasing flexibility. We also developed Plural, a prototype tool that embodies our approach as an automated static analysis and includes several extensions we found useful in practice. This paper evaluates our approach along the following dimensions: (1) We report on experience in specifying relevant usage rules for a large Java standard API with our approach. We also specify several other Java APIs and identify recurring patterns. (2) We summarize two case studies in verifying third-party open-source code bases with few false positives using our tool. We discuss how tool shortcomings can be addressed either with code refactorings or extensions to the tool itself. These results indicate that our approach can be used to specify and enforce real API protocols in practice

    Automatic extraction of heap reference properties in object-oriented programs

    Get PDF
    We present a new technique for helping developers understand heap referencing properties of object-oriented programs and how the actions of the program affect these properties. Our dynamic analysis uses the aliasing properties of objects to synthesize a set of roles; each role represents an abstract object state intended to be of interest to the developer. We allow the developer to customize the analysis to explore the object states and behavior of the program at multiple different and potentially complementary levels of abstraction. The analysis uses roles as the basis for three abstractions: role transition diagrams, which present the observed transitions between roles and the methods responsible for the transitions; role relationship diagrams, which present the observed referencing relationships between objects playing different roles; and enhanced method interfaces, which present the observed roles of method parameters. Together, these abstractions provide useful information about important object and data structure properties and how the actions of the program affect these properties. We have implemented the role analysis and have used this implementation to explore the behavior of several Java programs. Our experience indicates that, when combined with a powerful graphical user interface, roles are a useful abstraction for helping developers explore and understand the behavior of object-oriented programs

    Checking framework interactions with relationships

    Full text link

    Method for Statically Checking an Object-oriented Computer Program Module

    Get PDF
    A method for statically checking an object-oriented computer program module includes the step of identifying objects within a computer program module, at least one of the objects having a plurality of references thereto, possibly from multiple clients. A discipline of permissions is imposed on the objects identified within the computer program module. The permissions enable tracking, from among a discrete set of changeable states, a subset of states each object might be in. A determination is made regarding whether the imposed permissions are violated by a potential reference to any of the identified objects. The results of the determination are output to a user
    corecore