
(12) United States Patent 
Bierhoff et al.  

(54) METHOD FOR STATICALLY CHECKING AN 
OBJECT- ORIENTED COMPUTER PROGRAM 
MODULE 

(75) Inventors: Kevin M. Bierhoff, Pittsburgh, PA (US); 
Jonathan Aldrich, Pittsburgh, PA (US) 

(73) Assignee: Carnegie Mellon University, Pittsburgh, 
PA (US) 

(*) Notice: Subject to any disclaimer, the term of this 
patent is extended or adjusted under 35 
U.S.C. 154(b) by 1007 days. 

(21)  Appl. No.: 12/077,830 

(22)  Filed: Mar. 21, 2008 

(1o) Patent No.: 	US 8,327,327 B2 
(45) Date of Patent: 	Dec. 4, 2012 

6,813,761 B1 11/2004 	Dasetal. 
6,978,443 B2 12/2005 	Flanagan et al. 
7,024,661 B2 4/2006 	Leino et al. 
7,120,902 B2 10/2006 	Flanagan et al. 

2002/0046393 Al 4/2002 	Leino et al. 
2002/0112201 Al 8/2002 	Flanagan et al. 
2002/0133806 Al 9/2002 	Flanagan et al. 
2003/0131284 Al 7/2003 	Flanagan et al. 
2004/0139370 Al * 7/2004 	Bailey et al . 	.................... 	714/38 
2004/0205742 Al 10/2004 	Das et al. 
2005/0066319 Al 3/2005 	DeLine et al. 

(Continued) 

FOREIGN PATENT DOCUMENTS 

EP 	 398645 A2 * 11/1990 

(Continued) 

OTHER PUBLICATIONS 

(65) 	 Prior Publication Data 	 John Boyland, "Checking Interference with FractionalPermissions", 

US 2008/0313613 Al 	Dec. 18, 2008 	
Static Analysis Symposium 2003.* 

(Continued) 
Related U.S. Application Data 

(60) Provisional application No. 60/919,252, filed on Mar. 	Primary Examiner Wei Zhen 

21, 2007. 	 Assistant Examiner Daxin Wu 
(74) Attorney, Agent, or Firm Jones Day 

(51) Int. Cl. 
G06F 9144 	 (2006.01) 

	

(52) 	U.S. Cl . ....................................................... 717/116 
(58) Field of Classification Search ........... 707/999.009; 

717/136, 141, 106, 726, 116; 713/157 
See application file for complete search history. 

	

(56) 	 References Cited 

U.S. PATENT DOCUMENTS 

	

5,555,412 A 
	

9/1996 Besaw et al. 

	

5,628,005 A 
	

5/1997 Hurvig .................................. 1/1 

	

5,878,427 A 
	

3/1999 Waheed et al . ....................... 1/1 

	

5,987,252 A 
	

11/1999 Leino etal. 

	

6,173,444 B1 
	

1/2001 Archambault 

	

6,353,925 B1 
	

3/2002 Stata et al. 

	

6,442,753 BI* 
	

8/2002 Gerard et al . ................. 717/170  

(57) 	 ABSTRACT 

A method for statically checking an object-oriented computer 
program module includes the step of identifying objects 
within a computer program module, at least one of the objects 
having a plurality of references thereto, possibly from mul-
tiple clients. A discipline of permissions is imposed on the 
objects identified within the computer program module. The 
permissions enable tracking, from among a discrete set of 
changeable states, a subset of states each object might be in. 
A determination is made regarding whether the imposed per-
missions are violated by a potential reference to any of the 
identified objects. The results of the determination are output 
to a user. 

22 Claims, 10 Drawing Sheets 

12 

Identify Objects-1 	10 

14 

Impose a Discipline of.) 
Permissions on Objects 

Determine if 
16 

Permissions are Violated 

i 	18  
Output Results—) 

https://ntrs.nasa.gov/search.jsp?R=20130000655 2019-08-30T23:31:57+00:00Z



US 8,327,327 B2 
Page 2 

U.S. PATENT DOCUMENTS 

2005/0076331  Al 	4/2005 Das et al. 
2005/0081192 Al 	4/2005 DeLine et al. 
2006/0123412 Al 	6/2006 Hunt et al. 
2006/0123424 Al 	6/2006 Hunt et al. 
2006/0155905 Al* 	7/2006 Leino et al . ................... 710/243 
2006/0200794 Al 	9/2006 Robertson et al. 
2006/0236305 Al 10/2006 Chang et al. 
2006/0236311  Al 	10/2006 Chang et al. 
2006/0271917  Al 	11/2006 Das et al. 
2007/0074188 Al 	3/2007 Huang et al. 
2007/0094495 Al 	4/2007 Hunt et al. 
2007/0106975 Al 	5/2007 DeLine 
2007/0169019  Al 	7/2007 Leino et al. 
2007/0271594  Al 11/2007 Wobber et al. 
2007/0282841 Al* 12/2007 Sreedhar ........................... 707/9 
2008/0005750 Al 	1/2008 Hunt et al. 
2008/0270838 Al* 10/2008 Dorai et al . ..................... 714/38 

FOREIGN PATENT DOCUMENTS 

JP 	 10214191 A * 8/1998 
WO 	W002084481 Al * 10/2002 

OTHER PUBLICATIONS 

"Run-time evaluation of opportunities for object inlining in Java", 

Hendren et al., 2002 ACM, JGI'02, Nov. 3-5, 2002, Seattle, Wash-
ington, USA.* 
"Codesign from co specification", Woo et al., IEEE, Jan. 1994"Spe-
cial issue: aliasing in object-oriented systems", Noble et al., 
ECOOP'99 Workshops, LNCS 1743, 1999.* 
"Verification of obj ect-oriented programs with invariants", Barnett et 
al., Journal of Object Technology, vol. 3, No. 6, Jun. 2004.* 
"MGA: rule-based specification of active object-oriented database 
applications", Sawyer et al., Research report, University of Lancaster 
1994.* 
Chin, Wei-Ngan, Khoo, Siau-Cheng, Qin, Shengchao, Popeea, 
Cornelin, Nguyen, Hun Hai; Verifying Safety Policies with Size 
Properties and Alias Controls; International Conference on Software 
Engineering; pp. 186-195; 2005. 
Girard, Jean-Yves; Linear Logic; Theoretical Computer Science, 50; 
pp. 1-102; 1987. 
Ball, Thomas, Rajamani, Sriram; Automatically Validating Temporal 
Safety Properties of Interfaces; Procedures of the 8th SPIN Work-
shop; pp. 101-122; 2001. 
Bierhoff, Kevin; Iterator Specification with Typestates; In 5th Inter-
national Workshop on Specification and Verification of Component-
Based Systems; pp. 79-82; 2006. 
Bierhoff, Kevin; Aldrich, Jonathan; Lightweight Object Specifica-
tion with Typestates; Joint European Software Engineering Confer-
ence andACM Symposium on the Foundation of Software Engineer-
ing; pp. 217-226; 2005. 
Bierhoff, Kevin, Aldrich, Jonathan; Modular Typestate Verification 
of Aliased Objects; Technical Report CMU-ISRI-07-105; Carnegie 
Mellon University; 2007. 
Boyland, John, Retert, William; Connecting Effects and Uniqueness 
with Adoption; ACM Symposium on Principles of Programming 
Languages; pp. 283-295; 2005. 
Chaki, Sagar, Clarke, Edmund, Groce, Alex, Jha, Somesh, Vieth, 
Helmut; Modular Verification of Software Components in C; Inter-
national Conference on Software Engineering; pp. 385-395; 2003. 
Chin, W., Khoo, S., Qin, S., Popeea, C., Nguyen, H.; Verifying Safety 
Policies with Size Properties and Alias Controls; International Con-
ference on Software Engineering; pp. 186-195; 2005. 
Cousot, Patrick, Cousot, Radhia; Abstract Interpretation: A Unified 
Lattice Model for Static Analysis of Programs by Construction or 
Approximation of Fixpoints; ACM Symposium on Principles of Pro-
gramming Languages; pp. 238-252; 1977. 
Degen, Markus, Thiemann, Peter, Wehr, Stefan; Tracking Linear and 
Affine Resources with Java(X); European Conference on Object-
Oriented Programming; 2007. 
Deline, Robert, Fahndrich, Manuel; Enforcing High-Level Protocols 
in Low-Level Software; ACM Conference on Programming Lan-
guages Design and Implementation; pp. 59-69; 2001. 

Deline, Robert, Fahndrich, Manuel; Typestates for Objects; Euro-
pean Conferenece on Object-Oriented Programming; pp. 465-490; 
2004. 
Fahndrich, Manuel, Deline, Robert; Adoption and Focus: Practical 
Linear Types for Imperative Programming; ACM Conference on 
Programming Language Design and Implementation; pp. 13-24; 
2002. 
Fahndrich, Manuel, Leino, K. Rustan; Heap Monotonic Typestates; 
International Workshop on Aliasing, Confinement and Ownership in 
Object-Oriented Programming; 2003. 

Fink, Stephan, Yahav, Evan, Dor, Nurit, Ramalingam, G., Geay, 
Emmanuel; Effective Typestate Verification in the Presence ofAlias-
ing; ACM International Symposium on Software Testing and Analy-
sis; pp. 133-144; 2006. 
Flanagan, Cormac, Leino, K. Rustanl Lillibridge, Mark, Nelson, 
Greg, Saxe, James, Stata, Raymie; Extended Static Checking for 
Java; ACM Conferenece on Programming Language Design and 
Implementation; pp. 234-245; 2002. 
Foster, Jeffrey, Terauchi, Tachio, Aiken, Alex; Flow-Sensitive Type 
Qualifiers; ACM Conference on Programming Language Design and 
Implementation; pp. 1-12; 2002. 

Giannakopoulou, Dimitra, Pasareaunu, Corina, Cobleigh, Jamieson; 
Assume-Guarantee Verification of Source Code with Design-Level 
Assumptions; International Conference on Software Engineering; 
pp. 211-220; 2004. 

Girard, J.; Linear Logic; Theoretical Computer Science, 50; pp. 
1-102; 1987. 
Hallem, Seth, Chelf, Benjamin, Xie, Yichen, Engler, Dawson; A 
System and Language for Building System-Specific, Static Analyses; 
ACM Conference on Programming Language Design and Implemen-
tation; pp. 69-82; 2002. 
Harel, David; Statecharts: A Visual Formalism for Complex Systems; 
Science of Computer Programming, 8; pp. 231-274; 1987. 

Henzinger, Thomas, Jhala, Ranjit, Majumdar, Rupak, Sutre, 
Gregoire; Lazy Abstraction; ACM Symposium on Principles of Pro-
gramming Languages; pp. 58-70; 2002. 
Hughes, Graham, Bultan, Tevfik; Interface Gr ammars for Modular 
Software Model Checking; ACM International Symposium on Soft-
ware Testing and Analysis; pp. 39-49; 2007. 
Igarashi, Atsushi, Kobayashi, Naoki; Resource Usage Analysis; 
ACM Symposium on Principles of Programming Languages; pp. 
331-342; 2002. 
Igarashi, Atsushi, Pierce, Benjamin, Wadler, Philip; Featherweight 
Java: A Minimal Core Calculus for Java and GJ; ACM Conference on 
Object-Oriented Programming, Systems, Languages & Applica-
tions; pp. 132-146; 1999. 
Lam, Patrick, Kuncak, Viktor, Rinard, Martin; Generalized Typestate 
Checking for Data Structure Consistency; International Conference 
on Verification, Model Checking and Abstract Interpretation; pp. 
430-447; 2005. 
Kuncak, Viktor, Lam, Patrick, Zee, Karen, Rinard, Martin; Modular 
Pluggable Analyses for Data Structure Consistency; IEEE Transac-
tions on Software Engineering, 32(12); 2006. 
Leavens, Gary, Baker, Albert, Ruby, Clyde; JML: A Notation for 
Detailed Design; Ch. 12 in Behavioral Specifications of Businesses 
and Systems, H. Kilov, B. Rumpe, and L Simmonds (Eds.); Kluwer 
Academic Press: Boston, MA; pp. 175-188; 1999. 
Leino, K. Rustan; Data Groups: Specifying the Modification of 
Extended State; ACM Conference on Object-Oriented Programming, 
Systems, Languages & Applications; pp. 144-153; 1998. 
Lincoln, Patrick, Scedrov, Andre; First Order Linear Logic Without 
Modalities is NEXPTIME-Hard; Theoretical Computer Science, 
135; pp. 139-154; 1994. 
Liskov, Barbara, Wing, Jeannette; A Behavioral Notion of Subtyping; 
ACM Transactions on Programming Languages and Systems, 16(6); 
pp. 1811-1841; 1994. 
Mandelbaum, Yitzhak, Walker, David, Harper, Robert; An Effective 
Theory of Type Refinements; ACM International Conference on 
Functional Programming; pp. 213-225; 2003. 



US 8,327,327 B2 
Page 3 

Nanda, Mangala, Grothoff, Christian, Chandra, Satish; Deriving 
Object Typestates in the Presence of Inter-Object References; ACM 
Conference on Object-Oriented Programming, Systems, Languages 
& Applications; pp. 77-96; 2005. 
Ramalingam, G., Warshaysky, Alex, Field, John, Goyal, Deepak, 
Sagiv, Mooly; Deriving Specialized Program Analyses for Certifying 
Component-Client Conformance; ACM Conference on Program-
ming Language Design and Implementation; pp. 83-94; 2002. 
Smith, Frederick, Walker, David, Morrisett, Greg; Alias Types; Euro-
pean Symposium on Programming; pp. 366-381; 2000. 

Strom, Robert,Yemini, Shaula; Typestate: A Programming Language 
Concept for Enhanced Software Reliability; IEEE Transactions on 
Software Engineering, 12; pp. 157-171; 1986. 
Tan, Gang, On, Xinming, Walker, David; Enforcing Resource Usage 
Protocols Via Scope Methods; International Workshop on Founda-
tions of Object-Oriented Languages; 2003. 
Wadler, Philip; Linear Types Can Change the World!; Working Con- 
ference on Programming Concepts and Methods; pp. 347-359; 1990. 

* cited by examiner 



Access through Current permission has ... 

other permissions Read/write access 	Read-only access 

None unique [6] 
Read-only full [3] 	 immutable [6] 

Read/write share [12] 	pure [3] 

FIG. 2 

U.S. Patent 	Dec. 4, 2012 
	

Sheet 1 of 10 	US 8,327,327 B2 

12 

Identify Objects 	10 

1 	14 

Impose a Discipline of) 
Permissions on Objects 

1  
Determine if 	

16 
Permissions are Violated)  

1 	18 
Output Results 

Legend 
available 

next()  hasNextO 
is true 

atomic 
state 

alive 
hasNextO OR 

end is false state 

Statechart 

FIG. 1 
available 	hasNext() 

is true 

nextt ~ 	

hasNext() 

end 	is false 

Abstract state machine 

FIG. 3 

interface Iterator<c : Collection, k:Fract> 
states available, end refine alive 

Collection c = new 	... 
Iterator it = c.iterator0 ; // legal 
vhile(it.hasNext() 	&& 	...) 	{ // legal 

Object o = it.nextO ; // legal 
Iterator it2 = cAterator0 ; // legal 
vhile(it2.hasNext 0) { // legal 

Object o2 = it2.next(); // legal 

} 

if(it.hasNext() && c.size() == 3) f // legal 
c. remove (it.next0) ;  // legal 
if(it.hasNext()) 	... 	} // ILLEGAL 

Iterator it3 = c Aterator 0; /1 legal 

FIG. 4  

boolean hasNext O : 
pure(this) — (result = true (a pure(this) in available)) 

® (result = false ® pure(this) in end) 
Object next(): 

full(this) in available — full(this) 
void finalize() : 

unique(this) --o immutable(c, k) 
} 

interface Collection { 
void add(Object o) : full(this) — full(this) 
int sizeO : pure(this) — result > 0 ® pure(this) 
// remove(), contains() etc

_ 
similar 

Iterator<this, k> iteratorO : 
immutable(this, k) -- o unique(result) 

} 

FIG. 5 



U.S. Patent 	Dec. 4 , 2012 	Sheet 2 of 10 
	

US 8,327,327 B2 

Collection c = new ... 	 unique(c) 
Iterator it<c, 1/2> = c.iteratorO ; 

immutable(c, 1/2) ® unique(it) 
while ( it.hasNext 0 && ...) { 

immutable(c, 1/2) ® unique(it) in available 
Object o = it.nextO; 

immutable(c, 1/2) ® unique(it) 
Iterator it2<c, 1 /4> = c.iteratorO ; 

immutable(c, 1/4) ® unique(it) ® unique(it2) 
while ( it2.hasNext()) { 
immutable(c, 1/4) ® unique(it) ® unique(i12) in available 

Object o2 = it2.next 0; 

immutable(c, 1/4) ® unique(it) ® unique(W) 
it2 dies 

} 	 immutable(c, 1/2) ® unique(it) 
if(it.hasNext O && c.sizeO _= 3) ( 

immutable(c, 1/2) 	unique(it) in available 
c.remove(it.next()); // it dies after next() 

unique(c) and no permission for it 
if(it.hasNext 0) ... } 	 // ILLEGAL 

it definitely dead 	 unique(c) 
Iterator it3<c, 1/2> = c.iterator(); 

immutable(c, 1/2) S unique(it3) 

FIG. 6  

receive() 
	

closeO 

read() character 

Legend 

Atomic 
state 
OR 

state 

AND state 

1 

FIG. 7 

public class PipedOutputStream { 
states raw , open, closed refine alive; 
states ready , sending refine open; 

raw := sink = null 
ready := half(sink, open) 

sending := sink # null 
closed := sink 7~ null 

private PipedInputStream sink; 

public PipedOutputStream(): 
1 —o unique (this) in raw { } 

void connect (PipedInputStream snk): 
full(this ) in raw ® half(snk, open) b 

full(this ) in ready 
{ sink = snk; 	 store permission infield 
} 	 full(this ) in open 

public void vrite(int b): 
full(this, open) in ready ® b > 0 — full(this , open ) in ready 

{ 	 half(sink, open) from invariant 
sink _ receive ( b); 	 returns half(sink, open) 

} 	 full(this, open ) in ready 

public void close(): 
full(this) in ready 	full (this) inclosed 

{ 	 half(sink, open ) from invariant 
sink .  receivedLast  0 	 consumes half (sink, open) 

} 

 

full(this) in closed 
} 

FIG. 8 



U.S. Patent 	Dec. 4, 2012 	Sheet 3 of 10 	 US 8,327,327 B2 

class PipedInputStream { 
stream = open, closed refines alive; 
position = within, eof refines open; 
buffer = empty, nonEmpty refines within; 
filling = partial, filled refines nonEmpty; 
source = sourceOpen, sourceClosed refines nonEmpty; 

empty := in < 0 ® closedByWriter = false 
partial := in > 0 ® in # out 
filled := in = out 
sourceOpen := closedByWriter = false 
sourceClosed := closedByWriter ® half(this, open) 
eof := in < 0 ® closedByWriter ® half(this, open) 

private boolean closedByWriter = false; 
private volatile boolean closedByReader = false; 
private byte buffer[] = new byte[1024] ; 
private int in = -1, out = 0; 

public PipedlnputStream(PipedOutputStream src): 
full(src) in raw —o half(this, open) ® full(src) in open 

{ unique(this) in open :0 half(this, open) ® half(this, open) 
src . connect (this) ; 	consumes one half(this, open) 

} 	 half(this, open) ® full(src) in open 

synchronized void receive(int b): 
half(this, open) ® b > 0 —o half(this, open) in nonEmpty 

{ // standard implementation checks if pipe intact 
while (in == out) 	 half(this, open) in filled 

wait a second 
half(this, open) in empty ® partial 

if(in < 0) { in = 0; out = 0; 1 
buffer[in++] (byte)(b & OxFF); 
if(in >= buffer.length) in = 0; 

} 	 half(this, open) in partial 

synchronized void receivedLast(): 
half(this, open) —o 1 

{ closedByWriter = true; } 	this is now sourceClosed 

public synchronized int read(): 
share(this, open)  —  (result > 0 (& share(this, open)) 

® (result = —10 share(this, open) in eof) 
analogous to receiveO 

public synchronized void close(): 
half(this, open) in eof --a unique(this) inclosed 

{ 	half(this, open) from eof invariant 0 unique(this, open) 
closedByReader = true; 
in = -1; 

} 

} 

FIG. 9 



U.S. Patent 	Dec. 4, 2012 	Sheet 4 of 10 	 US 8,327,327 B2 

Client  
references 

X  

S 

Buff eredinputStream instance  

Buff eredinputStream frame 
Current typestate 	filled  

inside 
frames 

this 

thislr  State invariant 	unique(super) in eof 
® 0<pos< count 

thisir 

thislt  

1 super 

FilterinputStream frame 
Current typestate 	eof  

State invariant 	unique(s) in eof 

1 super 

InputStream frame 
Current typestate 	alive 

FIG. 10 

public abstract class InputStream { 
states open, closed refine alive; 
states within, eof refine open; 

public abstract int read(): 
share(thisf, >  open) —o (result > 0 (a share(thisf„ open)) 

® (result = —1 (9 share(this f„ open) in eof) 
public abstract void close(): 

full(thisf., alive) in open -o full(thisf., alive) inclosed 

public int read(byte ❑ buf): 
share(this, open) ® buf # null --4 

(result = —10 share(this, open) in eof) iB 
(result > 0 ® share(this, open)) 

{ ... for(...) 
... int c = this.readO ... } 

} 

public class FilterInputStream extends InputStream { 
within := unique(s) in within 
eof := unique(s) in eof 
closed := unique(s) in closed 

private volatile InputStream s; 

protected FilerInputStream(InputStream s) 
unique(s, alive) in open - unique(thisf„ alive) in open 

{ this.s = s; } 
... // read() and close() forward to s 

} 

FIG. 11 



U.S. Patent 	Dec. 4, 2012 	Sheet 5 of 10 	 US 8,327,327 B2 

public class BufferedlnputStream 
extends FilterInputStream { 

states depleted, filled refine *within; 

closed := unique(super) in closed ® buf = null 
open := unique(buj) 
filled 	pos < count ® unique(super) in open 
depleted := pos > count (& unique(super) in within 
eof := pos > count ® unique(super) in in eof 

private byte buf [I = new byte [8192] ; 
private int count = 0, pos = 0; 

public BufferedInputStream(InputStream s) 
unique(s) in open —o unique(thisf,) in open 

{ 	 count = pos = 0 ® unique(buj) 
super(s); 	 unique(super) in open 

} 	 unique(thisf,, alive) in open 

public synchronized int read() { 
if(pos >= count) 
{ 	 share(thisf„ open) in depleted ® eof 

fill O ; 	 share(thisf„ open) in filled ® eof 
if (pos >= count) 

return -1; 	returns share(thisf,, open) in eof 
} 	 any path: share(thisf„ open) in filled 
return buf[pos++] & OxFF; 

} 	 share(thisf„ open) in filled ® eof 

private void fill()  
share(thisf,, open) in depleted ® eof  —4  

share(thisf,, open) in filled ® eof 
{ 	 invariant: unique(super) in within ® eof 

count = pos = 0; 	note: assumes buffer was fully read 
int b = super.read(); unique(super)in within ®eof 
while (b >= 0) { 	 unique(super) in within 

buf [count++] = (byte) (b & OxFF) ; 
share(thisf„open) in filled 

if(count >= buf.length) break; 
b = super . read O ; 	unique(super) in within ® eof 

} 	 if loop never taken, share(thisf„ open) in eof 
} 	 share(this, open) in filled ® eof 

public synchronized void closeO { 
buf = null; 	 invariant: unique(super) in open 
super.closeO; 	 unique(super) inclosed 

} 	 full(thisf„ alive) in closed 

FIG. 12 



U.S. Patent 	Dec. 4, 2012 	Sheet 6 of 10 	US 8,327,327 B2 

programs PR 	.._ (CL, e) 
class decl. CL 	_.= class C extends C' { F R I N M } 
field decl. F 	:.= f :Tin n 
meth. decl. M 	:.= T m(T x) : MS = e 
state decl. R 	:.= d = s refines so 

terms t 	..= x 	o I true I false 
t, and t2  I t, or t2 	I not t 

expressions e 	..= t I f I assign f := t 
new C(t) I to .m(t) I super.m(-t) 
if (t, ei, e2) I 	let x = e l  in e2  

values v 	..= o 	true I false 
references r 	:.= x 	f I o 

types T 	:.= C 	bool 
nodes n 	..= s 	d 

classes C 	fields f 	variables 	x 	objects 	o 
methods m 	states s 	dimensions 	d 

	

permissions 	p 

	

facts 	q 

	

assumptions 	A 

	

fraction fa. 	9 

fractions 	k 
predicates 	P 

method specs MS 

	

expr. types 	E 

	

state inv. 	N 

	

initial state 	I 

	

precise state 	S 

	

Tract. terms 	h 
fract. types H 

	

fract. vars. 	z 

access (r, n, 9, k, A) 
t = true I t = false 
n A,  ®  A2  A, r'3 A2  

= z n ~ v 
912  1 91,92 
1 0 1 z k/2 

p q 
Pi®P2 1 
P1 P2 T 
P1 P20 
3z : H.P b'z : H.P 
P—E 
3x : T.P 
n=P 
initially (3ff  : TT.P,S) 
S10 ... ® sn  

9Ik 
Fract I n - Fract 

FIG. 13 	 FIG. 15 

class C extends C' { F R ... } ref ine me nts(C') = R' 	n in refineme nts(C)  
refinements (Object) = 	 refinements(C) = R', R 	 C F n wf 

C F A, wf C F A 2  wF C F- A, wf A t  # A 2  C F A2  wf d = s refines s E refinements(C) C F n wf 
CF A,GA2 wf 	 CF Al ®A2 wf 	 CFsi <d Cf d<s 	CF- n<n 

C F n < n" C F n" < n' d = s refines s' E refinements(C) d' = s' refines s` E refinements(C) d # d' 

C!-n<n' 	 Ch- d#d' 

	

CFnl <ni CFni#n2 CFn2 <n2 Cf A'#A C F- A1,2#A 	C ~ Ai,2#A 	CI- n'<_n 
CFn,#n2 	 CFA#A' CFA,®A2#A CFAs®A2#A Cf- n' to 

CFA1,2 <n CFA,®A2 wf CFA 1 ,2  n,  CFA,®A2 wf  CF- A ~ n b'n':CFA-~ n' implies n<n' 
CFA,®A2-en 	 CFA,EDA2jn 	 CFAG<n 

FIG. 14 



U.S. Patent 	Dec. 4, 2012 	Sheet 7 of 10 
	

US 8,327,327 B2 

r I- t: T r;  A ~- [t/x]P  
P-TERM 	

IocalFields (C) = ff  : TT  r ;  A  1-- [f;1x[P  
r;,~NFet: Ex: T.P 	 r;A1-C fi :3x: Ti . P 

r I- tt : TT  init(C) = (3ff : TT.P, A) r;  A I- [t%f]P  
P-NEw 

r; A I- 0  new C(t) : 3x : C.access(x, alive, {alive ~ 1 }, 1, A) 

(r, t = true); 0 F' e l  : 3x : TY, \ £ 1  
r1- t :bool (r,t=false);0Ne2 : 3x:T.P2\ £2 

P-IF 
r; A ~ 'vi if (t, e l , e2) : 3x : T.P1  ® P2 \ £1 U £2 

r;APe l :3x:T.P\£1  (r, x:T);(A',P)N e2:E2\ £2 
i = 1 implies no temporary assumptions in A' Fields in £1 do not occur in A' 

Tr m(Tx):P—E=eokinC 

P-FIELD 

P-METH 

 P
- 

A') ~ 'vi let x = e l  in e2 : E2 \ £1  U £2 	
LET 

(x : T, this : C); P 0 e : 3result : T, .P ®T \ £ E = 3result : T .P override(m, C, dx : T.P  —  E) 

M ok in C M o verrides all methods with thisfrpermissions in C' 	 CL ok •; • F- ' e : E \ £ 

class C extends C' { F R I N M} ok 	
P-CL 3 	

(CL, e) : E 	
P -PROG 

FIG. 16 

class C extends C' {...}  E  CL 	class C {... M ... } E CL T, m(T x) : P  —  3result : T .P' = e E M 

C extends C' 	 mtype(m, C) = dx : T.P -o 3result : T,..P' 

C extends C' mtype(m, C) = bx : T.MS' implies (x : T, this : C); • F MS -o MS' 	class C ... {F ...} E CL 

override(m, C, b'x : TT.MS ) 	 IocalFields(C) = F 

class C extends C' {f :  T in n S initially (3 f' : T', f : T.P' ® P, A) ... } 

init(C') = (3f' : T'.P', A') 	(P,full(super, alive, {alive  ~  1),A')) F- inv c (A) ® T 

init(Object) _ ( l,alive ) 	 init(C) = (3f' : T', f : T.P' (D P, A) 

class C {... n = P ... } E CL P = ®n-<n- « predc (n") 	 invc (A) = P n' 

predc (n) = P 	 pred c (n', n) = P 	invc (n, A) = P ® pred c (n',n) ® pred c (n) 

invc(A,) = Pi  =:~-  ni pred c (ni,  n) = P; n 1  ®n2  « n (i=1,2) 

invc(n)=1 ~ n 	 invc(A1 ®A2)=P1®Pi®P2®P2 ~ n 

invc(A i) = Pi  =*- ni pred c (ni, n) = P  n1  ®n2  K n (i E  1, 2) 

invc(A1 ~D A2) = (P, (&Pi) ®(P2 0 predc(n2, n)) =~- n 

only pure permissions in P 	exists share or  full permission in P 

effectsAl lowed (P) = 0 	effectsA I lowed (P) = 1 

FIG. 17 



U.S. Patent 	Dec. 4 , 2012 	Sheet 8 of 10 	US 8,327,327 B2 

invC (n, g, k, A) = invC (n, A) ®purify(abovec (n)) 

invc(n, g, 0, A) = purify (invc(n, A) ® abovec(n)) 

where abovec(n) = ®nl:n<nl<alive predc(n') 

FIG. 18 

r; A ~ C access(thisfr , n, g, k, A) receiver packed 
k = 0 implies i = 0  r;  (0', invc(n, g, k, A), unpacked (n, g, k, A)) I-c e : E \ E 

P-UNPACK 
F ;  (A, 0') I-C unpack(n, k, A) in e : E \ E 

 

r; A E-c inv c (n, g, k, A) ®unpacked (n, g, k, A')  k = 0 implies A = A' 
r; (0', access(this fr , n, g, k, A)) f-' e : E \ E IocalFields(C) = f : T in n Fields do not occur in A' 

f-c pack n to A in e : E \ f 

r ~- t o  : Co  r  F tt : TT r; A f- [to/this][to/thisfr]r/x]P 
mtype(m, Co) = dx : T.P —o E i = effectsAl lowed (P) receiver packed 

_ 	 P-CALL 
r;A P to.m(t) : [to/this][to/thisf r]r/x]E 

r P tt : TT  r;  A f [super/thisfr](t/T]P C extends C' 
mtype(m, C') =  bx : TT--o E i = effectsAllowed(P) receiver packed 

_ 	 P -SUPER 
r; A I-C super.m(t) : [super/thisfjrt/x]E 

F-1  A  t- t : 3x : Ti .P r;,A' ~-
c  [filx']P' ® p 

IocalFields (C) =  f :  T in n ni < n p = unpacked (n, g, k, A), k  0  0 
] 	 P - ASSIGN 

r ;  (A, A , ) F--1  assign fi := t : 3x' : T i .P' ® 
[
fi

/ 
 x P ® p \ fi  

P-PACK 

FIG. 19 

p = access (r, n, g, k, A) 	purify(Pi ) = Pi purify(P2 ) = Pz op E {®, &, ®}  
purify(p) = pure(r, n, g, A) 

	
purify (P, op P2) = P1 op Pz 

unit  E  { 1 , T, 0} 
	

purify(P) = P' 	 purify(P) = P'  
purify (unit ) = unit purify 3z : H.P) = 3z : H.P' purify(b'z : H.P) = dz : H.P' 

FIG. 20 



U.S. Patent 	Dec. 4, 2012 	Sheet 9 of 10 	 US 8,327,327 B2 

A=A'=A"or(A=A'andA"=n)or(A=A"and A'=n) 
access(r n k A) ~E> access(r n 	 ® 2 k 2 A' access r n 2 k/2 , A")

SYM  

A = A' = A" or (A = A'andA" = n) or (A = A" andA'= A'=n) 

access(r, n, g, k, A) J=- E~ access(r, n, g12, k, A') ® pure(r, n, g 12, Al ASYM 

ni #n2 A, -< nl <n A2 n2<n 

pi  = full(r, n i,  {g,  nodes(ni , n) 	11/2, Ai) 
F-SPLIT-® 

full(r, n, g, A l  ® A2) 0 Pl ® p2 

n, # n2 A l  < n, < n A2 ~ n2 < n 
pi = full(r, ni, {g, n 	1, nodes (ni, n ) F--,  11/2, Ai) 

PI ® P2 E:> full(r, n, {g, n " 11, A l  (& A 2 ) 

A l  # A2 
full(r, n, g, A l  ® A2) -~aEs- full(r, n, g, A z ) ® full(r, n, g, A2) 

F-JOIN-® 

F-® 

A -<n'<n 

full(r, n, g, A) E> full(r, n', {g, nodes(n', n) ~ 1}, A) 
F-DowN 

A -<n' <n 
full(r, n', {g, n ~-4 1, nodes(n', n) ~-, 11, A) EE> full(r, n, {g, n ~-4 1}, A) 

F-Up 

n' < n 	
P-up 

pure(r, n, {g, nodes(n', n) r-4 k}, A) -:E> pure(r, n', g, A) 

access(r, n, g, k, A) -=-=> access(r, n, g, k, n) 
FORGET 

FIG. 21 



U.S. Patent 	Dec. 4, 2012 	Sheet 10 of 10 	US 8,327,327 B2 

class BufferedlnputStream extends FilterinputStream { 
states ready, reads refine open; ... 
states partial, complete refine filled; 

reads := reading; ready := reading = false; .. . 

private boolean reading; ... 

public int read(} : `dk : Fract.... 
unpack(open, k) in 

let r = reading in if (r == false, ... fillO ... } 

private bool fill() : dk . Fract. 
share(thisf„ open) in depleted ® eof —o 

share(thisf„ open) in available ® eof — 
unpack(open, k, depleted E£ eof} in 

assign count = 0 in assign pos = 0 in 
assign reading = true in 
pack to reads in 

let b = super.read() in 
unpack(open, k, open) in 

let r = reading in assign reading = false in 
assign count = 0 in assign pos = 0 in 
if (r, if (b = -1, pack to eof in false, 

pack to depleted in doFill (b) } , 
pack to eof in f alse) 

private bool doFill (int b) : Vk : Fract. 
share(thisf,, open) in depleted ED partial -- 

share(thisf,, open) in partial ® complete 
unpack(open, k, depleted (D partial) in 
let c = count in let buffer = buf in 
assign buffer [c] = b in assign count = c + 1 in 
let 1 = buffer.length in 
if (c + 1 >= 1, pack to complete in true, 
assign reading = true in pack to reads in 

let b = super. read() in unpack(open, k) in 
let r = reading in assign reading = false in 
assign count = c + 1 in assign pos = 0 in 
pack to partial in 

if(r == false II b == -1, true, doFill(b)) 

FIG. 22 



US 8,327,327 B2 
1 

METHOD FOR STATICALLY CHECKING AN 
OBJECT-ORIENTED COMPUTER PROGRAM 

MODULE 

This application claims the benefit of copending U.S. pro-
visional application Ser. No. 60/919,252 filed Mar. 21, 2007, 
and entitled System for Tracking Typestate in Object-Ori-
ented Languages WithAliasing, which is hereby incorporated 
in its entirety for all purposes. 

GOVERNMENT RIGHTS 

This invention was made with government support under 
NASA Grant No. NNA05CS30A, NSF Grant No. CCF-
0546550, and DARPA Contract No. HR00110710019. The 
government may have certain rights in this invention. 

BACKGROUND 

In object-oriented software, objects often define usage pro-
tocols that clients must follow in order for these objects to 
work properly. Protocols essentially define legal sequences of 
method calls. In conventional object-oriented languages, 
developers have at least three ways of finding out about pro-
tocols: reading informal documentation, receiving runtime 
exceptions that indicate protocol violations, or observing 
incorrect program behavior as a result of protocol violations 
that broke internal invariants. 

Aliasing, i.e., the existence of multiple references to the 
same object, is a significant complication in checking 
whether clients observe a protocol: a client does not neces-
sarily know whether its reference to an object is the only 
reference that is active at a particular execution point. This 
also makes it difficult to check whether a class implements its 
specified protocol because reentrant callbacks through aliases 
can again lead to unexpected state changes. 

Existing protocol checking approaches fall into two cat-
egories. They either operate globally, i.e., check an entire 
code base at once, or severely restrict aliasing. Global analy-
ses typically account for aliasing, but they are not suitable for 
interactive use during development. Moreover, they do not 
check whether a declared protocol is implemented correctly, 
a crucial requirement in object-oriented software where any 
class might have a protocol of its own. 

Modular protocol checkers, like Fugue [12], the first sound 
modular typestate checker for an object-oriented language, 
better support developers while they write code: like a 
typechecker, they check each method separately for protocol 
violations while assuming the rest of the system to behave as 
specified. The trade-off, unfortunately, has been that modular 
checkers require code to follow pre-defined patterns of alias-
ing. Once a program leaves the realm of supported aliasing, 
any further state changes are forbidden. Generally speaking, 
state changes are only allowed where the checker is aware of 
all references to the changing object. 

This approach has serious drawbacks. First, many 
examples of realistic code might be excluded. Moreover, 
from a developer's point of view, the boundaries of what a 
checker supports are hard to predict, and they might not fit 
with the best implementation strategy for a particular prob-
lem. Finally, aliasing restrictions arguably leave developers 
alone just when they have the most trouble in reasoning about 
their code, namely, in the presence of subtle aliasing. Thus, a 
need exists for a method of checking an object-oriented pro-
gram module having objects having multiple references by 
code not available for analysis. 

2 
SUMMARY 

We have developed a sound modular protocol checking 
approach, based on typestates, that allows a great deal of 

5 flexibility in aliasing while guaranteeing the absence of pro-
tocol violations at runtime. A main technical contribution is a 
novel abstraction, access permissions, that combines 
typestate and object aliasing information. In our methodol-
ogy, developers express their protocol design intent through 

io annotations based on access permissions. Our checking 
approach then tracks permissions through method implemen-
tations. For each object reference the checker keeps track of 
the degree of possible aliasing and is appropriately conserva-
tive in reasoning about that reference. This helps developers 

15 account for object manipulations that may occur through 
aliases. The checking approach handles inheritance in a novel 
way, giving subclasses more flexibility in method overriding. 
Case studies on Java iterators and streams provide evidence 
that access permissions can model realistic protocols, and 

20 protocol checking based on access permissions can be used to 
reason precisely about the protocols that arise in practice. 

One embodiment of our disclosure is directed to a method 
for statically checking an object-oriented computer program 
module that includes the step of identifying objects within a 

25 computer program module, at least one of the objects having 
a plurality of references thereto, possibly from multiple cli-
ents. A discipline of permissions is imposed on the objects 
identified within the computer program module. The permis-
sions enable tracking, from among a discrete set of change- 

3o able states, a subset of states each object might be in. A 
determination is made regarding whether the imposed per-
missions are violated by a potential reference to any of the 
identified objects. The results of the determination are output 
to a user. 

35 	Another embodiment of our disclosure is directed to a 
method for statically checking an object-oriented computer 
program module, comprising identifying objects within a 
computer program module. The identified objects are parti-
tioned into a plurality of dimensions, each dimension 

4o assigned to a client. Each client independently tracks, from 
among a discrete set of changeable states, a subset of states 
each object might be in within that client's dimension. A 
discipline of permissions is imposed in which the operations 
that a client can invoke involving an object are limited to those 

45 operations in whichthe invoked operation changes the state of 
the object only in that client's dimension. A determination is 
made regarding whether the imposed permissions are vio-
lated, and the results are output to the user. 

Another embodiment of our disclosure is directed to a 
50 method for statically checking an object-oriented computer 

program module, comprising identifying objects within a 
computer program module. A discipline of permissions is 
imposed to the objects identified within the computer pro-
gram module such that for each object, only one client may 

55 have read/write permission to the object, track the object's 
state from among a discrete set of changeable states, and 
perform any legal operation on the object given the object's 
current state while all other clients may have read-only access 
to the object, and can perform only operations that do not 

6o affect the object's state and are legal given the client's knowl-
edge of the object's current state. A determination is made 
regarding whether the imposed permissions are violated, and 
the results are output to the user. 

Another embodiment of our disclosure is directed to a 
65 method for statically checking an object-oriented computer 

program module, comprising identifying objects within a 
computer program module, where the objects have discrete 



US 8,327,327 B2 
3 
	

4 
states that change perceptibly and non-monotonically within 

	
FIG. 7 illustrates a PipedInputStream's state space (inside 

a guaranteed state space. A discipline of permissions is 	open); 
imposed to the objects identified within the computer pro- 	FIG. 8 illustrates a Java PipedOutputStream (simplified); 
gram module such that a plurality of clients can each have a 

	
FIG. 9 illustrates a Java PipedInputStream (simplified); 

permission that enables tracking a subset of states each object 5 	FIG. 10 illustrates frames of a BufferedInputStream 
might be in. A determination is made regarding whether the 

	
instance in state filled. The shaded virtual frame is in a dif- 

imposed permissions are violated, and the results are output 
	

ferent state than its super-frame; 
to the user. 	 FIG. 11 illustrates a Java FilterInputStream that forwards 

Another embodiment of our disclosure is directed to a 	all calls to underlying InputStream (simplified); 
method for statically checking an object-oriented computer 10 	FIG. 12 illustrates how BufferedInputStream caches char- 
program module, comprising identifying objects within a 	acters from FilterInputStream base class; 
computer program module, at least one of the objects having 

	
FIG. 13 illustrates an example of core language syntax. 

a plurality ofreferences thereto. A discipline ofpermissions is 
	

Specifications (I, N, MS) in FIG. 15; 
imposed to the objects identified within the computer pro- 	FIG. 14 illustrates state space judgments (assumptions A 
gram module that enables tracking, from among a discrete set 15 defined in FIG. 15): 
of changeable states represented by a hierarchical state 

	
FIG. 15 illustrates an example of permission-based speci- 

machine, a subset of states each object might be in. A deter- 	fications; 
mination is made regarding whether the imposed permissions 

	
FIG. 16 Illustrates a permission checking for expressions 

are violated, and the results are output to the user. 	 (part 1) and declarations; 
Finally, another embodiment of our disclosure is directed 20 	FIG. 17 illustrates protocol verification helper judgments; 

to a method for statically checking an object-oriented com- 	FIG. 18 illustrates invariant construction (purify in FIG. 
puterprogram module, comprising identifying objects within 

	
20); 

a computer program module, at least one of the objects having 
	

FIG. 19 illustrates permission checking for expressions 
a plurality of references thereto. A discipline of permissions is 

	
(part 2); 

imposed to the objects identified within the computer pro-  25 	FIG. 20 illustrates permission purification; 
gram module that enables tracking, from among a discrete set 

	
FIG. 21 illustrates splitting and joining of access permis- 

of changeable states including a superclass state and a sub- 	sion; 
class state which may differ, a subset of states each object 

	
FIG. 22 illustrates a fragment of BufferedInputStream 

might be in. A determination is made regarding whether the 
	

from FIG. 12 in core language. 
imposed permissions are violated, and the results are output 30 

to the user. 	 DETAILED DESCRIPTION 
This disclosure proposes a sound modular protocol check- 

ing approach, based on typestates, that allows a great deal of 
	

1. Introduction 
flexibility in aliasing. A novel abstraction, access permis- 	This disclosure will help developers follow protocols while 
sions, combines typestate and object aliasing information. 35 they write code as well as allow developers to correctly and 
Developers express their protocol design intent using access 	concisely document protocols for their code. We build on our 
permissions. Our checking approach then tracks permissions 	previous work on leveraging typestates [34] for lightweight 
through method implementations. For each object reference 	object protocol specification [4]. Our protocols are state 
the checker keeps track of the degree of possible aliasing and 

	machines that are reminiscent of Statecharts [20]. 
is appropriately conservative in reasoning about that refer-  40 	Turning to FIG. 1, a method 10 for statically checking an 
ence. A way of breaking an invariant in a frequently used Java 	object-oriented computer program module according to the 
standard library class was exposed in this way. The checking 	present disclosure is illustrated. The method is comprised of 
approach handles inheritance in a novel way, giving sub- 	step 12 in which objects within a computer program module 
classes more flexibility in method overriding. Case studies on 	are identified. At least one of the objects has a plurality of 
Java iterators and streams provide evidence that access per-  45 references thereto which may be from independent clients. 
missions can model realistic protocols, and protocol checking 

	In step 14, a discipline of permissions is imposed on the 
based on access permissions can be used to reason precisely 	objects identified in step 12. The permissions, discussed in 
about protocols arising in practice. Note that only a fraction of 

	
detail below, may be selected from the group consisting of: 

our system's capabilities are needed for any given example 	a permission allowing a read-only reference to an object, 
(although they all are necessary in different situations). 50 where other references can read and write to the object; 
Those, and other advantages and benefits, will become appar- 	a permission allowing a read/write reference to an object, 
ent from the detailed description below. 	 where all other references to the object are read-only; 

a permission allowing a read-only reference to an object, 
BRIEF DESCRIPTION OF THE FIGURES 

	
where all other references to the object are also read-only; 

55 	a permission allowing a single reference to an object; and 
For the present disclosure to be readily understood and 

	
a permission allowing a read/write reference to an object, 

easily practiced, the present disclosure will now be described, 	where other references to the object can also be read/write 
for purposes of illustration and not limitation, in connection 	references. 
with the following figures, wherein: 

	
The permissions may be imposed in a manner that allows 

FIG. 1 is a flow chart illustrating our disclosed method; 	60 the permissions to be associated with a fraction of an object. 
FIG. 2 illustrates our access permission taxonomy; 

	
Thepermissions enable tracking, from among a discrete set of 

FIG. 3 illustrates a read-only Iterator state machine proto- 	changeable states, a subset of states each object might be in. 
col; 
	

Computer programs always describe how objects go from 
FIG. 4 is an example of a simple Iterator client; 	 one discrete "state" to another, because computers operate on 
FIG. 5 illustrates a read-only Iterator and partial Collection 65 the very large but still discrete states expressible in their 

interface specification; 	 physical memory. Likewise, any formal description of a pro- 
FIG. 6 is an example verifying a simple Iterator client; 	gram will be in terms of such states. The problem here is that 



US 8,327,327 B2 
5 

"state" is used differently in different contexts. It can refer to 
all the data associated with an object (or some abstraction 
thereof), but we mean in this disclosure "abstract" states that 
are the creation of the programmers which can be organized 
to describe a finite-state machine. We give programmers the 
opportunity to write these "abstract" states down and define 
how objects change from one of these states to another. We do 
this to capture legal sequences of events (states). Conversely, 
the actual code describes how the objects' data changes over 
time. Our method associates each "abstract" state with a 
description of the data that may be associated with the object 
in that "abstract" state. Our method tracks what subset of 
these "abstract" states each object might be in, but it does not 
directly track how object data changes over time that is 
tracked only indirectly, through the description of data asso-
ciated with each "abstract" state. 

It is assumed that the states will change non-monotonically 
within a guaranteed state space. The states may be repre-
sented by a hierarchical state machine. Additionally, objects 
having a superclass and subclass are allowed to have different 
states for each. 

The method of FIG. 1 continues with step 16 in which a 
determination is made regarding whether any of the imposed 
permissions is violated by a potential reference to one of the 
identified objects. Thereafter, at step 18, the results from step 
16 are output. 

The method illustrated in FIG. 1 is a sound, modular, 
typestate checking approach for Java-like object-oriented 
languages that allows a great deal of flexibility in allowing for 
aliased objects. For each reference, it tracks the degree of 
possible aliasing, and is appropriately conservative inreason-
ing about that reference. This helps developers account for 
object manipulations that may occur through aliases. High 
precision in tracking effects of possible aliases together with 
systematic support for dynamic state tests, i.e., runtime tests 
on the state of objects, make this approach feasible. Our 
approach helped expose a way of breaking an internal invari-
ant that causes a commonly used Java standard library class, 
java. io . BufferedInputStream, to access an array outside its 
bounds. 

The method of FIG. 1 incorporates a novel abstraction, 
called access permissions (or simply permissions), that com-
bines typestate with aliasing information about objects. 
Developers use access permissions to express the design 
intent of their protocols in annotations on methods and 
classes. Our modular checking approach verifies that imple-
mentations follow this design intent. 

Access permissions systematically capture different pat-
terns of aliasing (FIG. 2). A permission tracks (a) how a 
reference is allowed to read and/or modify the referenced 
object, (b) how the object might be accessed through other 
references, and (c) what is currently known about the object's 
typestate. 

In particular, our full and pure permissions [3] capture the 
situation where one reference has exclusive write access to an 
object (a full permission) while other references are only 
allowed to read from the same object (using pure permis-
sions). Read-only access through pure permissions is intu-
itively harmless but to our knowledge has not been exploited 
in existing modular protocol checkers. 

To increase precision of access permissions, we include 
two additional novel features, which make weak permissions 
more useful than in existing work. We call permissions 
"weak" if the referenced object can potentially be modified 
through other permissions. 

6 
Temporary state information can be associated with weak 

permissions. Our checking approach makes sure that tempo-
rary state information is "forgotten" when it becomes out-
dated. 

5 	Permissions can be confined to a particular part of the 
referenced object's state. This allows separate permissions to 
independent parts of the same object. It also implies a state 
guarantee even for weak permissions, i.e., a guarantee that the 
referenced object will not leave a certain state. 

10 	We handle inheritance in a novel way, giving subclasses 
more flexibility in method overriding. This is necessary for 
handling realistic examples of inheritance such as Java's 
BufferedInputStream (details in section 3.2). 

We validated the method set forth in FIG. 1 with two case 
15 studies, iterators (section 2) and streams (section 3) from 

Sun's Java standard library implementation. These case stud-
ies provide evidence that access permissions can model real-
istic protocols, and protocol checking based on access per-
missions can be used to reason precisely about the protocols 

20 that arise in practice. 
The evaluation herein does establish that our compared 

to full-fledged program verification systems [26, 2] rela-
tively simple method of FIG. 1 can verify code idioms and 
find errors that no other decidable modular system can. The 

25 case studies reflect actual Java standard library protocols and, 
as far as presently known, cannot be handled by any existing 
modular protocol verification system. 

The following two sections introduce access permissions 
and a verification approach with examples from our case 

30 studies before sections 4 and 5 give a formal account of our 
approach. Section 6 compares our approach to related work. 

2. Read-Only Iterators 
This section illustrates basic protocol specification and 

verification using our approach based on a previous case 
35 study on Java iterators [3]. Iterators follow a straightforward 

protocol but define complicated aliasing restrictions that are 
easily violated by developers. They are therefore a good 
vehicle to introduce our approach to handling aliasing in 
protocol verification. Iterators as presented here cannot be 

4o handled by existing modular typestate checkers due to their 
aliasing restrictions. 

2.1 Specification Goals 
The material presented in this section models the Iterator 

interface defined in the Java standard library. For the sake of 
45 brevity, we focus on read-only iterators, i.e., iterators that 

cannot modify the collection on which they iterate. We will 
refer to read-only iterators simply as "iterators" and qualify 
full Java iterators as "modifying iterators." In earlier work we 
showed how to capture full Java iterators [3]. Goals of the 

50 presented specification include the following. 
Capture the usage protocol of Java iterators. 
Allow creating an arbitrary number of iterators over col-

lections. 
Invalidate iterators before modification of the iterated col-

55 lection. 
2.2 State Machine Protocol 
An iterator returns all elements of an underlying collection 

one by one. Collections in the Java standard library are lists or 
sets of objects. Its interface includes methods to add objects, 

6o remove objects, and test whether an object is part of the 
collection. The interface also defines a method iterator that 
creates a new iterator over the collection. Repeatedly calling 
next on an iterator returns each object contained in the iterated 
collection exactly once. The method hasNext determines 

65 whether another object is available or the iteration reached its 
end. It is illegal to call next once hasNext returns false. FIG. 
3 illustrates this protocol as a simple state machine. 



US 8,327,327 B2 
7 

Notice that hasNext is legal in both states but does not 
change state. We call hasNext a dynamic state test: its return 
value indicates what state the iterator is currently in. The next 
section will show how this protocol can be specified. 

2.3 Iterator Interface Specification 
States Through Refinement. We call the set of possible 

states of an object its state space and define it as part of the 
object's interface. As suggested above, we can model the 
iterator state space with two states, available and end. In our 
approach, states are introduced by refinement of an existing 
state. State refinement corresponds to OR-states in Stat-
echarts [20] and puts states into a tree hierarchy. 

State refinement allows interfaces to, at the same time, 
inherit their supertypes' or superclass state spaces, define 
additional (more fine-grained) states, and be properly substi-
tutable as subtypes of extended interfaces [4]. Refinement 
guarantees that all new states defined in a subtype correspond 
to a state inherited from the supertype. States form a hierarchy 
rooted in a state alive defined in the root type Object. Iterators 
therefore define their state space as follows. 

states available, end refine alive; 
Typestates do not correspond to fields in a class. They 

describe an object's state of execution abstractly, and infor-
mation about fields can be tied to typestates using state invari-
ants (see section 3.1). 

Access Permissions Capture Design Intent. Iterators have 
only two methods, but these have very different behavior. 
While next can change the iterator's state, hasNext only tests 
the iterator's state. And even when a call to next does not 
change the iterator's state, it still advances the iterator to the 
next object in the sequence. hasNext, on the other hand, is 
pure: it does not modify the iterator at all. 

We use a novel abstraction, access permissions ("permis-
sions" for short), to capture this design intent as part of the 
iterator's protocol. Permissions are associated with object 
references and govern how objects can be accessed through a 
given reference [7] . For next and hasNext, we only need two 
kinds of permissions; more kinds of permissions will be intro-
duced later. 

full permissions grant read/write access to the referenced 
object and guarantee that no other reference has read/write 
access to the same object. 

pure permissions grant read-only access to the referenced 
object but assume that other permissions could modify the 
object. 

A distinguished full permission can coexist with an arbi-
trary number of pure permissions to the same object. This 
property will be enforced when verifying protocol compli-
ance. In a specification, we write penn(x) for a permission to 
an object referenced by x, where perm is one of the permis-
sion kinds. Access permissions carry state information about 
the referenced object. For example, "full(this) in available" 
represents a full permission for an object (this) that is in the 
available state. 

Linear Logic Specifications. Methods can be specified 
with a state transition that describes how method parameters 
change state during method execution. We previously argued 
that existing typestate verification approaches are limited in 
their ability to express realistic state transitions [4] and pro-
posed to capture methodbehavior more precisely with logical 
expressions. 

Access permissions represent resources that have to be 
consumed upon usage otherwise permissions could be 
freely duplicated, possibly violating other permissions' 
assumptions. Therefore, we base our specifications on linear 
logic [18]. Pre- and post-conditions are separated with a 
linear implication (—o) and use conjunction (z) and disjunc- 

8 
tion ®). "Tensor" (z) corresponds to conjunction, "alterna-
tive" (®) to disjunction, and "lollie" (—o) to implication in 
conventional logic. The key difference is that linear logic 
treats known facts as resources that are consumed when prov- 

5  ing another fact. This fits well with our intuition of permis-
sions as resources that give access to objects. In certain cases, 
internal choice (&, also called additive conjunction) has been 
useful [3]. These connectives represent the decidable multi- 

10 
plicative-additive fragment of linear logic (MALL). 

Iterators illustrate that state transitions are often non-deter-
ministic. For next, we can use an imprecise post-condition 
and specify next so that it requires a full permission in state 
available and returns the full permission in the alive state. In 

15  a Statechart, this corresponds to transitioning to a state that 
contains substates (FIG. 3). 

full(this) in available —o full(this) in alive 
Dynamic state tests (like hasNext) require relating the 

(Boolean) method result to the state of the tested object (usu- 
2o ally the receiver). A disjunction of conjunctions expresses the 

two possible outcomes of hasNext (FIG. 5) where each con-
junction relates a possible method result to the corresponding 
receiver state. (We adopt the convention that (—o) binds 
weaker than (z) and (®).) 

25 	pure(this) —o (result—true 0  pure(this) in available) 
® (result—false 0  pure (this) in end) 

These specifications enforce the characteristic hasNext/ 
next call pairing; hasNext determines the iterator's current 
state. If it returns true then it is legal to call next. The iterator 

30 is in an unknown state after next returns, and another hasNext 
call determines the iterator's new state. 

2.4 Creating and Disposing Iterators 
Multiple (independent) iterators are permitted for a single 

collection at the same time. However, the collection must not 
35 be modified while iteration is in progress. Standard imple-

mentations try to detect such situations of concurrent modi-
fication on a best-effort basis. But, ultimately, Java program-
mers have to make sure on their own that collections are not 
modified while iterated. (Note that "concurrent" modifica- 

40 tions often occur in single-threaded programs [32].) 
This section shows how the aliasing constraints between 

iterators and its collection can be handled. As we will see, this 
problem is largely orthogonal to specifying the relatively 
simple protocol for individual iterators that was discussed in 

45 the previous section. 
Immutable Access Prevents Concurrent Modification. 

Access permissions can guarantee the absence of concurrent 
modification. The key observation is that when an iterator is 
created it stores a reference to the iterated collection in one of 

50 its fields. This reference should be associated with a permis-
sion that guarantees the collection's immutability while itera-
tion is in progress. We include two previously proposed per-
missions [6] into our system in order to properly specify 
collections. 

55 	immutable permissions grant read-only access to the ref- 
erenced object and guarantee that no reference has read/write 
access to the same object. 

unique permissions grant read/write access and guarantee 
that no other reference has any access to the object. 

60 Thus immutable permissions cannot co-exist with full per-
missions to the same object. We can specify the collection's 
iterator method using these permissions as follows. Notice 
how it consumes or captures the incoming receiver permis-
sion andreturns an initial unique permission to a fresh iterator 

65 object. 
public class Collection { 
Iterator iterator (): immutable(this) —o unique(result)} 



US 8,327,327 B2 
9 

It turns out that this specification precisely captures Sun's 
Java standard library implementation of iterators : Iterators 
are realized as inner classes that implicitly reference the col-
lection they iterate. 

Permission Splitting. Consider a client such as the one in 
FIG. 4 . It gets a unique permission when first creating a 
collection. Then it creates an iterator which captures an 
immutable permission to the collection . However, the client 
later needs more immutable permissions to create additional 
iterators. Thus, while a unique permission is intuitively stron-
ger than an immutable permission , we cannot just coerce the 
client ' s unique permission to an immutable permission and 
pass it to iterator: it would get captured by the newly created 
iterator, leaving the client with no permission to the collection 
at all. 

To avoid this problem we use permission splitting in our 
verification approach. Before method calls we split the origi-
nal permission into two, one of which is retained by the caller. 
Permissions are split so that their assumptions are not vio-
lated . In particular, we never duplicate a full or unique per-
mission and make sure that no full permission co-exists with 
an immutable permission to the same object . Some of the 
legal splits are the following. 

unique(x)E> full(x) xx pure(x) 
full(x)O immutable(x)@x immutable(x) 

immutable(x)E> immutable(x)Q immutable(x) 
immutable(x)~ immutable(x) x pure(x) 
They allow the example client in FIG. 4 to retain an immu-

table permission when creating iterators , permitting multiple 
iterators and reading the collection directly at the same time. 

Permission Joining Recovers Modifying Access. When 
splitting a full permission to a collection into immutable 
permissions we lose the ability to modify the collection. 
Intuitively, we would like to reverse permission splits to 
regain the ability to modify the collection. 

Such permis Sion j oining can be allowed if we introduce the 
notion of fractions [6]. Essentially, fractions keep track of 
how often a permission was split . This later allows joining 
permissions (with known fractions) by putting together their 
fractions. A unique permission by definition holds a full frac-
tion that is represented by one (1). We will capture fractions as 
part of our permissions and write (perm) (x, k) for a given 
permission with fraction k. We usually do not care about the 
exact fraction and therefore implicitly quantify over all frac-
tions. If a fraction does not change, we often will omit it. 
Fractions allow us to define splitting and joining rules as 
follows: 

unique(x, 1) C=: ~> full(x, i/2) xx pure x, '/2) 

full (x, k) -W*immutable(x, k/2)U immutable(x, k/2) 
immutable(x, k) ,t=*immutable(x, k/2)@ Immutable(x, 

k/2) 
immutable(x, k) (20 immutable(x, k/2) x0 pure(x, k/2) 
For example, we can split full(it, 1/2) into full (it, 1/4)@ 

pure(it, 1/4) and recombine them. Such reasoning lets our 
iterator client recover a unique iterator permission after each 
call into the iterator. 

Recovering Collection Permissions . Iterators are created 
by trading a collection permission for a unique iterator per-
mission. We essentially allow the opposite trade as well to 
modify a previously iterated collection again. We can safely 
consume a unique iteratorpermission and recover the permis-
sions to its fields because no reference will be able to access 
the iterator anymore. A simple live variable analysis can 
identify when variables with unique permissions are no 
longer used . (As a side effect , a permission -based approach 
therefore allows identifying dead objects.) 

10 
For lack of a more suitable location, we annotate the final-

ize method to indicate what happens when an iterator is no 
longer usable. And to re-establish exactly the permission that 
was originally passed to the iterator we parameterize Iterator 

5  objects with the collection permission's fraction. The finalize 
specification can then release the captured collection permis-
sion from dead iterators. The complete specification for itera-
tors and a partial collection specification are summarized in 
FIG. 5 

10 	2.5 Client Verification 
FIG. 6 illustrates how our client from FIG. 4 can be verified 

by tracking permissions and splitting/joining them as neces-
sary. After each line of code, we show the current set of 

15  permissions on the right-hand side of the figure. We recover 
collection permissions from dead iterators as soon as pos-
sible. This lets us verify the entire example client. We cor-
rectly identify the seeded protocol violation. 

2.6 Summary 
20 	We presented a specification of read-only iterators that 

prevents concurrent collection modification . To this end, it 
associates collections and iterators with access permissions, 
defines a simple state machine to capture the iterator usage 
protocol , and tracks permission information using a decid- 

25 able fragment of linear logic . Our logic-based specifications 
can relate objects to precisely specify method behavior in 
terms of typestates and support reasoning about dynamic 
tests. 

3. Java Stream Implementations 
30 	I/O protocols are common examples for typestate-based 

protocol enforcement approaches [11, 12, 4]. This section 
summarizes a case study in applying our approach to Java 
character streams and , inparticular, streampipes andbuffered 

35  input streams. The section focuses on implementation verifi-
cation of stream classes, which to our knowledge has not 
been attempted with typestates before. Implementation veri-
fication generalizes techniques shown in the previous section 
for client verification. 

40 	3.1 Stream Pipes 
Pipes are commonly used in operating system shells to 

forward output from one process to another process. Pipes 
carry alphanumeric characters for a source to a sink. The Java 
I/O library includes a pair of classes, PipedOutputStream and 

45 PipedInputStream, that offers this functionality inside Java 
applications . This section provides a specification for Java 
pipes and shows how the classes implementing pipes in the 
Java standard library can be checked using our approach. 

Informal Pipe Contract. In a nutshell, Java pipes work as 
50 follows: A character -producing "writer" writes characters 

into a PipedOutputStream (the "source") that forwards them 
to a connected PipedlInputStream (the "sink") from which a 
"reader" can read them. The source forwards characters to the 
sink using the internal method receive . The writer calls close 

55 on the source when it is done, causing the source to call 
receivedLast on the sink (FIG. 8). 

The sink caches received characters in a circular buffer. 
Calling read on the sink removes a character from the buffer 
(FIG. 9). Eventually the sink will indicate, using an end of file 

60 token (FOE, —1 in Java), that no more characters can be read. 
At this point the reader can safely close the sink. Closing the 
sink before FOE was read is unsafe because the writer may 
still be active. 

The pipe classes in Sun ' s standard library implementation 
65 have built-in runtime checks that throw exceptions in the 

following error cases: (1) closing the sink before the source, 
(2) writing to a closed source or pushing characters to the sink 



US 8,327,327 B2 
11 

after the source was closed, and (3) reading from a closed 
sink. The specification we present here makes these error 
cases impossible. 

State Space with Dimensions. The source protocol can be 
modeled with three states: raw, open, and closed. "raw" indi-
cates that the source is not connected to a sink yet. For 
technical reasons that are discussed below, we refine open 
into ready and sending. The writer will always find the source 
in state ready. 

For the sink protocol, we again distinguish open and 
closed. A refinement of open helps capturing read's protocol. 
The sink is within as long as read returns characters; the eof 
state is reached when read returns the FOE token. While 
within, we keep track of the sink's buffer being empty or 
nonEmpty. We further refine nonempty into partial and filled, 
the latter corresponding to a full buffer. 

At the same time, however, we would like to track whether 
the source was closed, i.e., whether receivedLast was called. 
We previously proposed state dimensions to address such 
separate concerns (here, the buffer filling and the source state) 
[4] with states that are independent from each other. State 
dimensions correspond to AND-states in Statecharts [20]. 

We can simply refine nonEmpty twice, along different 
dimensions. We call the states for the second dimension 
sourceOpen and sourceClosed with the obvious semantics. 
Note that we only need the additional source dimension while 
the buffer is non Empty; the source is by definition open 
(closed) in the empty (eof) state. This is only one way of 
specifying the sink. It has the advantage that readers need not 
concern themselves with the internal communication 
between source and sink. To better visualize the sink's state 
space, FIG. 7 summarizes it as a Statechart. 

Shared Modifying Access. Protocols for source and sink 
are formalized in FIGS. 8 and 9 with specifications that work 
similar to the iterator example in the last section. However, 
the sink is conceptually modified through two distinct refer-
ences, one held by the source and one held by the reader. To 
capture this, we introduce our last permission. 

Share permissions grant read/write access to the referenced 
object but assume that other permissions have read/write 
access as well. 

Conventional programming languages effectively always 
use share permissions for mutable state. Interestingly, share 
permissions are split and joined exactly like immutable per-
missions. Because share and immutable permissions cannot 
coexist, our rules force a commitment to either one when 
initially splitting a full permission. 

full(x, k) IrM share(x, k/2)xx share(x, k/2) 
share(x, k) cmn> share(x, k/2)w share(x, k/2) 
share(x, k) 1m* share(x, k/2) x pure(x, k/2) 
State Guarantees. We notice that most modifying methods 

cannot change a stream's state arbitrarily. For example, read 
and receive will never leave the open state, and they cannot 
tolerate other permissions to leave open. 

We make this idea part of our access permissions. We 
include another parameter into permissions that specifies a 
state guarantee, i.e., a state that cannot be left even by modi-
fying permissions. Thus a state guarantee (also called the 
permission's root) corresponds to an "area" in a Statechart 
that cannot be left. As an example, we can write the permis-
sion needed for read as share(this, open). Without an explicit 
state guarantee, only alive is guaranteed (this is what we did 
foriterators). 

State guarantees turn out to be crucial in making share and 
pure permissions useful because they guarantee a state even 
in the face of possible changes to the referenced object 
through other permissions. Moreover, if we combine them 

12 
with state dimensions, we get independent permissions for 
orthogonal object aspects that, e.g., let us elegantly model 
modifying iterators [3]. 

Explicit Fractions for Temporary Heap Sharing. When 
5 specifying the sink methods used by the source (receive and 

receivedLast), we have to ensure that the source can no longer 
call the sink after receivedLast so the sink can be safely 
closed. Moreover, to close the sink, we need to restore a 
permission rooted in alive. Thus the two share permissions for 

io the sink have to be joined in such a way that there are defi-
nitely no other permissions relying on open (such permis-
sions, e.g., could have been split off of one of the share 
permissions). 

We extend the notion of fractions to accomplish this task. 
15 We use fractions to track, for each state separately, how many 

permissions rely on it. What we get is a fraction function that 
maps guaranteed states (i.e., the permission's root and its 
super-states) to fractions. For example, if we split an initial 
unique permission for a PipedInputStream into two share 

20 permissions guaranteeing open then these permissions rely 
on open and alive with a 1/2 fraction each. (Iterator permis-
sions root in alive and their fraction functions map alive to the 
given fraction.) 

To close the sink, we have to make sure that there are 
25 exactly two share pen nissions relying on open. Fraction func-

tions make this requirement precise. For readability, we use 
the abbreviation half in FIG. 9 that stands for the following 
permission. 

half(x, open)—share(x, open, {alive H  'k, open 
3o 	 H 

By adding fractions and moving the state guarantee up in 
the state hierarchy, the initial permission for the sink, unique 
(this, alive, {alive I- 11), can be regained from two half(this, 

35 open)permissions; half is the only permissionwith an explicit 
fraction function. All other specifications implicitly quantify 
over all fraction functions and leave them unchanged. 

State Invariants Map Typestates to Fields. We now have a 
sufficient specification for both sides of the pipe. To verify 

40 their implementations we need to know what typestates cor-
respond to in implementations. Our implementation verifica-
tion extends Fugue's approach of using state invariants to 
map states to predicates that describe the fields of an object in 
a given state [12]. We leverage our hierarchical state spaces 

45 and allow state invariants for states with refinements to cap-
ture invariants common to all substates of a state. 

FIG. 8 shows that the source's state invariants describe its 
three states in the obvious way based on the field snk pointing 
to the sink. Notice that the invariant does not only talk about 

50 the sink's state (as in Fugue) but uses permissions to control 
access through fields just as through local variables. 

The sink's state invariants are much more involved (FIG. 9) 
and define, e.g., what the difference between an empty buffer 
(in <0) and a filled circular buffer (input) is. Interestingly, 

55 these invariants are all meticulously documented in the origi-
nal Java standard library implementation for PipedInput-
Stream [4]. The half permission to itself that the sink tempo-
rarily holds for the time between calls to receivedLast and 
close lets us verify that close is allowed to close the sink. 

60 Verification with Invariants. Implementation checking 
assumes state invariants implied by incoming permissions 
and tracks changes to fields. Objects have to be in a state 
whenever they yield control to another object, including dur-
ing method calls. For example, the source transitions to send- 

65 ing before calling the sink. However, the writer never finds the 
source in the sending state but always ready-sending never 
occurs in a method specification. We call states that are not 



US 8,327,327 B2 
13 
	

14 
observed by a client intermediate states. They help us deal 

	
correctness of fill because a dynamically dispatched call 

withre-entrant calls (details in section 5.2). Apractical syntax 	would lead back into the still empty buffer, causing an 
could make such intermediate states implicit. 	 infinite loop. (One can trigger exactly this effect in the Java 6 

FIGS. 8 and 9 show how implementation checking pro- 	implementation of BufferedInputStream.) 
ceeds for most of the source's and sink's methods. We show 5 	3.3 Summary 
in detail how field assignments change the sink's state. The 

	
This section showed how our approach can be used to 

sink's state information is frequently a disjunction of possible 	verify realistic Java pipe and buffered input stream imple- 
states. Dynamic tests essentially rule out states based on 	mentations. The notion of access permissions is central to our 
incompatible invariants. All of these tests are present in the 	approach. Overall, we introduced five different kinds of per- 
original Java implementation; we removed additional non- io missions (FIG. 2). While three kinds are adapted from exist- 
null and state tests that are obviated by our approach. This not 

	
ing work [7, 12] we recently proposed full and pure permis- 

only shows how our approach forces necessary state tests but 	sions [3]. State guarantees and temporary state information 
also suggests that our specifications could be used to generate 

	
increase the usefulness of "weak" (share and pure) permis- 

such tests automatically. 	 sions. Permission splitting and joining is flexible enough to 
3.2 Buffered Input Streams 	 15 model temporary aliasing on the stack (during method calls) 
A BufferedInputStream (or "buffer," for short) wraps 	and in the heap (e.g., inpipes and iterators). Permission-based 

another "underlying" stream and provides buffering of char- 	state invariants enable reasoning about protocol implementa- 
acters for more efficient retrieval. We will use this example to 	tions. We handle inheritance based on frames [12] and permit 
illustrate our approach to handling inheritance. Compared to 

	
dynamic dispatch within objects for convenience methods. 

the original implementation, we made fields "private" in 20 	4. Formal Language 
order to illustrate calls to overridden methods using super. We 

	
This section formalizes an object-oriented language with 

omit intermediate states in this specification. 	 protocol specifications. We briefly introduce expression and 
Class Hierarchy. BufferedInputStream is a subclass of Fil- 	class declaration syntax before defining state spaces, access 

terInputStream, which in turn is a subclass of InputStream. 	permissions, and permission-based specifications. Finally, 
InputStream is the abstract base class of all input streams and 25 we discuss handling of inheritance and enforcement of behav-
defines their protocol with informal documentation that we 

	
ioral subtyping. 

formalize in FIG. 11. It implements convenience methods 
	

4.1 Syntax 
such as read (int [ ]) in terms of other-abstract-methods. 	FIG. 13 shows the syntax of a simple class-based object- 
FilterInputStream holds an underlying stream in a field s and 

	
oriented language. The language is inspired by Featherweight 

simply forwards all calls to that stream (FIG. 11). Buffered-  30 Java(FJ, [24]); we will extend it to include typestate protocols 
InputStream overrides these methods to implement buffering. 	in the following subsections. We identify classes (C), meth- 

Frames. The buffer occasionally calls overridden methods 	ods (m), and fields (f) with their names. As usual, x ranges 
to read from the underlying stream. Our approach is based on 	over variables including the distinguished variable this for the 
Fugue's frames for reasoning about inheritance [12]. Objects 	receiver object. We use an overbar notation to abbreviate a list 
are broken into frames, one for each class in the object's class 35 of elements. For example, x:T°x,:T...... x„ T,,. Types (T) in 
hierarchy. A frame holds the fields defined in the correspond- 	our system include Booleans (tool) and classes. 
ing class. We call the frame corresponding to the object's 

	
Programs are defined with a list of class declarations and a 

runtime type the virtual frame, referred to with normal refer- 	main expression. A class declaration CL gives the class a 
ences (including this). Relative to a method, we call the cur- 	unique name C and defines its fields, methods, typestates, and 
rent frame—corresponding to the class that the method is 40 state invariants. A constructor is implicitly defined with the 
defined in with this" and the frame corresponding to the 	class's own and inherited fields. Fields (F) are declared with 
immediate superclass is called super frame. FIG. 10 shows a 	their name and type. Each field is mapped into a part of the 
sample BufferedInputStream instance with its three frames. 	state space n that can depend on the field (details in section 

Frame Permissions. In our approach, a permission actually 
	

5.2). A method (M) declares its result type, formal param- 
grants access to a particular frame. The permissions we have 45 eters, specification and a body expression. State refinements 
seen so far give a client access to the referenced object's 

	
R will be explained in the next section; method specifications 

virtual frame. Permissions for other frames are only acces- 	MS and state invariants N are deferred to section 4.4. 
sible from inside a subclass through super. 	 We syntactically distinguish pure terms t and possibly 

FIG. 10 illustrates that a BufferedInputStream's state can 	effectful expressions e. Arguments to method calls and object 
differ from the state its filter frame is in. The filter's state 50 construction are restricted to terms. This simplifies reasoning 
might be eof (when the underlying stream reaches eof) while 	about effects [30, 9] by making execution order explicit. 
the buffer's is still within (because the buffer array still holds 

	
Notice that we syntactically restrict field access and assign- 

unread characters). The state invariants in FIG. 12 formalize 	ments to fields of the receiver class. Explicit "getter" and 
this. They let us verify that super calls in the buffer imple- 	"setter" methods can be defined to give other objects access to 
mentation respect the filter's protocol. 	 55 fields. Assignments evaluate to the previous field value. 

Because the states of frames can differ it is important to 
	

4.2 State Spaces 
enforce that a permission is only ever used to access fields in 

	
State spaces are formally defined as a list of state refine- 

the frame it grants permission to. In specifications we specifi- 	ments (see FIG. 13). A state refinement (R) refines an existing 
cally mark permissions that will actually access fields (and 

	
state in a new dimension with a set of mutually exclusive 

not just call other methods) of the receiver with this. We 60 sub-states. We use s and d to range over state and dimension 
require all methods that use these permissions to be overrid- 	names, respectively. A node n in a state space can be a state or 
den. On the other hand, convenience methods such as read (int 

	
dimension. State refinements are inherited by subclasses. We 

[ ]) can operate with permissions to the virtual frame and need 
	

assume a root state alive that is defined in the root class 
not be overridden (FIG. 11). 	 Object. 

This distinction implies that fill (FIG. 12) cannot call read 65 	We define a variety of helper judgments for state spaces in 
(int [ ]) (because it does not have a suitable virtual frame 

	
FIG. 14. refinements (C) determines the list of state refine- 

permission) but only super. read( ). This is imperative for the 	ments available in class C. CI –A wf defines well-formed state 



US 8,327,327 B2 
15 

assumptions. Assumptions A combine states and are defined 
in FIG. 15. Conjunctive assumptions have to cover orthogo-
nal parts of the state space. CI—non defines the substrate 
relation for a class. CI—A # A defines orthogonality of state 
assumptions. A and A are orthogonal if they refer to different 
(orthogonal) state dimensions. CI—A< n defines that a state 
assumption A only refers to states underneath a root node n. 
CI—A<<n finds the tightest such n. 

4.3 Access Permissions 
Access permissions p give references permission to access 

an object. Permissions to objects are written access (r, n, g, k, 
A) (FIG. 15). (We wrote perm(r, n, g) in A before.) The 
additional parameter k allows us to uniformly represent all 
permissions as explained below. 

Permissions are granted to references r. References can be 
variables, locations, and fields. 

Permissions apply to a particular subtree in the space of r 
that is identified by its root node n. It represents a state 
guarantee (section 3). Other parts of the state space are unaf-
fected by the permission. 

The fraction function g tracks for each node on the path 
from n to alive a symbolic fraction [6]. The fraction function 
keeps track of how often permissions were split at different 
nodes in the state space so they can be coalesced later (see 
section 5.5). 

The subtree fraction k encodes the level of access granted 
by the permission. k>0 grants modifying access. k<1 implies 
that other potentially modifying permissions exist. Fraction 
variables z are conservatively treated as a value between 0 and 
1, i.e., 0<z<l. 

A state assumption A expresses state knowledge within the 
permission's subtree. Only full permissions can permanently 
make state assumptions until they modify the object's state 
themselves. For weak permissions, the state assumption is 
temporary, i.e., lost after any effectful expression (because 
the object's state may change without the knowledge of r). 

We can encode unique, full, share, and pure permissions as 
follows. In our formal treatment we omit immutable permis-
sions, but it is straightforward to encode them with an addi-
tional "bit" that distinguishes immutable and share permis-
sions. 

unique(r, n, g) in A=access(r, n, {g nH 11, 1, A) 
full(r, n, g) in A=access(r, n, g 1, A) 

sharer, n, g k) A=access(r, n, g  k, A) (0<k<l) 
pure(n, n, g) in A=access (r, n, g  0, A) 

4.4 Permission-Based Specifications 
We combine atomic permissions (p) and facts about Bool-

ean values (q) using linear logic connectives (FIG. 15). We 
also include existential (3z: H.P) and universal quantification 
of fractions ('dz:H.P) to alleviate programmers from writing 
concrete fraction functions in most cases. We type all expres-
sions as an existential type (E). 

Method specifications. Methods are specified with a linear 
implication (—o) of predicates (MS). The left-hand side of the 
implication (method pre-condition) may refer to method 
receiver and formal parameters. The right-hand side (post-
condition) existentially quantifies the method result (a similar 
technique is used in Vault [11]). We refer to the receiver with 
this and usually call the return value result. 

State invariants. We decided to use linear logic predicates 
for state invariants as well (N). In general, several of the 
defined state invariants will have to be satisfied at the same 
time. This is due to our hierarchical state spaces. Each class 
declares an initialization predicate and a start state (I) that are 
used for object construction (instead of an explicit construc- 
tor). 

16 
4.5 Handling Inheritance 
Permissions give access to a particular frame, usually the 

virtual frame (see section 3.2) of an object. Permissions to the 
virtual frame are called object permissions. Because of sub- 

5 typing, the precise frame referenced by an object permission 
is statically unknown. 

references r::= ... I superlthis 
To handle inheritance, we distinguish references to the 

receiver's "current" frame (this) and its super-frame (super). 
io Permissions for these "special" references are called frame 

permissions. A this permission grants access to fields and 
can be used in method specifications. Permissions for super 
are needed for super-calls and are only available in state 
invariants. All methods requiring a this permission must be 

15 overridden because such methods rely on being defined in a 
particular frame to access its fields. 

4.6 Behavioral Subtyping 
Subclasses should be allowed to define their own specifi-

cations, e.g., to add precision or support additional behavior 
20 [4]. However, subclasses need to be behavioral subtypes [29] 

of the extended class. Our system enforces behavioral sub-
typing in two steps. Firstly, state space inheritance conve-
niently guarantees that states of subclasses always corre-
spond to states defined in superclasses [4]. Secondly, we 

25 make sure that every overriding method's specification 
implies the overridden method's specification [4] using the 
override judgment (FIG. 17) that is used in checking method 
declarations. This check leads to method specifications that 
are contra-variant in the domain and co-variant in the range as 

3o required by behavioral subtyping. 
5. Modular Typestate Verification 
This section describes a static modular typestate checking 

technique for access permissions similar to conventional 
typechecking. It guarantees at compile-time that protocol 

35 specifications will never be violated at runtime. We empha-
size that our approach does not require tracking typestates at 
run time. 

A companion technical report contains additional judg-
ments and a soundness proof for a fragment of the system 

40 presented in this disclosure [5]. The fragment does not 
include inheritance and only supports permissions for objects 
as a whole. State dimensions are omitted and specifications 
are deterministic. The fragment does include full, share, and 
pure permissions with fractions and temporary state informa- 

45 tion. 
5.1 Permission Tracking 
We permission-check an expression e with the judgment 

F;A~-c`e:3x:T.P\e. This is read as, "in valid context F and 
linear context A, an expression e executed within receiver 

50 class C has type T, yields permissions P, and affects fields e". 
Permissions A are consumed in the process. We omit the 
receiver C where it is not required for checking a particular 
syntactic form. The set e keeps track of fields that were 
assigned to, which is important for the correct handling of 

55 permissions to fields. It is omitted when empty. The marker i 
in the judgment can be a 0 or 1 where i=1 indicates that states 
of objects in the context may change during evaluation of the 
expression. This will help us reason about temporary state 
assumptions. A combination of markers with iVj is 1 if at least 

60 one of the markers is 1. 
valid contexts F::=•IF',x:TIF',z:HIF',q 
linear contexts A::=•IA,P 

effects e::=•le,f 
Valid and linear contexts distinguish valid (permanent) 

65 information (F) from resources (A). Resources are tracked 
linearly, forbidding their duplication, while facts can be used 
arbitrarily often. (In logical terms, contraction is defined for 



US 8,327,327 B2 
17 

facts only). The valid context types object variables, fraction 
variables, and location types and keeps track of facts about 
terms q. Fraction variables are tracked in order to handle 
fraction quantification correctly. The linear context holds cur-
rently available resource predicates. 

The judgment F'1—tT types terms. It includes the usual rule 
for subsumption based on nominal subtyping induced by the 
extends relation (FIG. 17). Term typing is completely stan-
dard and can be found in the companion report. The compan-
ion report also includes rules for formally typing fractions 
and fraction functions [5]. 

Our expression checking rules are syntax-directed up to 
reasoning about permissions. Permission reasoning is 
deferred to a separate judgment F;AI—P that uses the rules of 
linear logic to prove the availability of permissions P in a 
given context. This judgment will be discussed in section 5.5. 
Permission checking rules for most expressions appear in 
FIG. 16 and are described in turn. Packing, method calls, and 
field assignment are discussed in following subsections. 
Helper judgments are summarized in FIG. 17. The notation 
[t/r]e substitutes t for occurrences of r in e. 

P-TERM embeds terms. It formalizes the standard logical 
judgment for existential introduction and has no effect on 
existing objects. 

P-FIELD checks field accesses analogously. 
P-NEW checks object construction. The parameters 

passed to the constructor have to satisfy initialization predi-
cate P and become the object's initial field values. The new 
existentially quantified object is associated with a unique 
permission to the root state that makes state assumptions 
according to the declared start state A. Object construction 
has no effect on existing objects. 

The judgment init (FIG. 17) looks up initialization predi-
cate and start state for a class. The start state is a conjunction 
of states (FIG. 15). The initialization predicate is the invariant 
needed for the start state. 

P-IF introduces non-determinism into the system, reflected 
by the disjunction in its type. We make sure that the predicate 
is of Boolean type and then assume its truth (falsehood) in 
checking the then (else) branch. This approach lets branches 
make use of the tested condition. 

P-Let checks a let binding. The linear context used in 
checking the second subexpression must not mention fields 
affected by the first expression. This makes sure that outdated 
field permissions do not "survive" assignments or packing. 
Moreover, temporary state information is dropped if the first 
subexpression has side effects. 

A program consists of a list of classes and a main expres-
sion (P-PROG, FIG. 16). As usual, the class table CL is 
globally available. The main expression is checked with ini-
tially empty contexts. The judgment CL ok (P-CLASS) 
checks a class declaration. It checks fields, states, and invari-
ants for syntactic correctness (omitted here) and verifies con-
sistency between method specifications and implementations 
using the judgment M ok in C. P-METH assumes the speci-
fied pre-condition of a method (i.e., the left-hand side of the 
linear implication) and verifies that the method's body 
expression produces the declared post-condition (i.e., the 
right-hand side of the implication). Conjunction with T drops 
excess permissions, e.g., to dead objects. The override judg-
ment concisely enforces behavioral subtyping (see section 
4.6). A method itself is not a linear resource since all 
resources it uses (including the receiver) are passed in upon 
invocation. 

5.2 Packing and Unpacking 
We use a refined notion of unpacking [12] to gain access to 

fields: we unpack and pack a specific permission. The access 

18 
we gain reflects the permission we unpacked. Full and shared 
permissions give modifying access, while a pure permission 
gives read-only access to underlying fields. 

To avoid inconsistencies, objects are always fully packed 
5  when methods are called. To simplify the situation, only one 

permission can be unpacked at the same time. Intuitively, we 
"focus" [13] on that permission. This lets us unpack share like 
full permissions, gaining full rather than shared access to 
underlying fields (if available). The syntax for packing and 

to unpacking is as follows. 

expressions e::= ... lunpack(n, k, A) in e (pack to A in 
e 

15 	Packing and unpacking always affects the receiver of the 
currently executed method. The unpack parameters express 
the programmer's expectations about the permission being 
unpacked. For simplicity, an explicit subtree fraction k is part 
of unpack expressions. It could be inferred from a program- 

20  mer-provided permission kind, e.g., share. 
Typechecking. For pack to work properly we have to 

"remember" the permission we unpacked. Therefore we 
introduce unpacked as an additional linear predicate. 

permissions p::= ... lunpacked(n, g, k, A) 

The checking rules for packing and unpacking are given in 
FIG. 19. Notice that packing and unpacking always affects 
permissions to this. (We ignore substitution of this with an 
object location at runtime here.) 

30 P-UNPACK first derives the permission to be unpacked. 
The judgment inv determines a predicate for the receiver's 
fields based on the permission being unpacked. It is used 
when checking the body expression. An unpacked predicate 
is added into the linear context. We can prevent multiple 

35 permissions from being unpacked at the same time using a 
straightforward dataflow analysis (omitted here). 

P-PACK does the opposite of P-UNPACK. It derives the 
predicate necessary forpacking the unpackedpermission and 
then assumes that permission in checking the body expres- 

40 sion. The new state assumption A can differ from before only 
if a modifying permission was unpacked. Finally, the rule 
ensures that permissions to fields do not "survive" packing. 

Invariant transformation. The judgment invJn, g, k, A) 
determines what permissions to fields are implied by a per- 

45 mission access(this n, g, k, A) for a frame of class C. It is 
defined in FIG. 18 and uses a purify function (FIG. 20) to 
convert arbitrary into pure permissions. 

Unpacking a full or shared permission with root node n 
yields purified permissions for nodes "above" n and includes 

50 invariants following from state assumptions as-is. Con-
versely, unpacking a pure permission yields completely puri-
fied permissions. 

5.3 Calling Methods 
Checking a method call involves proving that the method's 

55 pre-condition is satisfied. The call can then be typed with the 
method's post-condition. 

Unfortunately, calling a method can result into reentrant 
callbacks. To ensure that objects are consistent when called 
we require them to be fully packed before method calls. This 

6o reflects that aliased objects always have to be prepared for 
reentrant callbacks. 

This rule is not a limitation because we can always pack to 
some intermediate state although it may be inconvenient in 
practice. Notice that such intermediate packing obviates the 

65 need for adoption while allowing focus[ 13]: the intermediate 
state represents the situation where an adopted object was 
taken out of the adopting object. Inferring intermediate states 



US 8,327,327 B2 
19 

as well as identifying where reentrant calls are impossible 
(intermediate packing avoidance) are important areas for 
future research. 

Virtual calls. Virtual calls are dynamically dispatched (rule 
P-CALL). In virtual calls, frame and object permissions are 
identical because object permissions simply refer to the 
object's virtual frame. This is achieved by substituting the 
given receiver for both this and this. 

Super calls . Super calls are statically dispatched (rule 
P-SUPER). Recall that super is used to identify permissions 
to the super-frame. We substitute super only for this. We 
omit a substitution of this for the receiver (this again) for 
clarity. 

5.4 Field Assignments 
Assignments to fields change the state of the receiver's 

current frame. We point out that assignments to a field do not 
change states of objects referenced by the field. Therefore 
reasoning about assignments mostly has to be concerned with 
preserving invariants of the receiver . The unpacked predicates 
introduced in section 5.2 help us with this task. 

Our intuition is that assignment to a field requires unpack-
ing the surrounding object to the point where all states that 
refer to the assigned field in their invariants are revealed. 
Notice that the object does not have to be unpacked com-
pletely in this scheme . For simplicity, each field is annotated 
with the subtree that can depend on it (FIG. 13). Thus we 
interpret subtrees as data groups [27]. 

The rule P-ASSIGN (FIG. 19) assigns a given object t to a 
field f, and returns the old field value as an existential x'. This 
preserves information about that value. The rule verifies that 
the new object is of the correct type and that a suitable full or 
share permission is currently unpacked . By recording an 
effect on f. we ensure that information about the old field 
value cannot "flow around" the assignment (which would be 
unsound). 

5.5 Permission Reasoning with Splitting and Joining 
Our permission checking rules rely on proving a predicate 

P given the current valid and linear resources , written F ;AI —P. 
We use standard rules for the decidable multiplicative-addi-
tive fragment of linear logic (MALL) with quantifiers that 
only range over fractions [28]. Following Boyland [7] we 
introduce a notion of substitution into the logic that allows 
substituting a set of linear resources with an equivalent one. 

C;OFP" P 2~ P 
suasT 

C;OFP 

The judgment PO P' defines legal substitutions. We use 
substitutions for splitting and joining permissions (FIG. 21). 
The symbol 0*  indicates that transformations are allowed in 
both directions. SYM and ASYM generalize the rules from 
section 2 . Most other rules are used to split permissions for 
larger subtrees into smaller ones and vice versa. A detailed 
explanation of these rules can be found in the companion 
report [5]. 

Our splitting and joining rules maintain a consistent set of 
permissions for each object so that no permission can ever 
violate an assumption another permission makes. Fractions 
of all permissions to an object sum up to (at most) 1 for every 
node in the object ' s state space. 

5.6 Example 
To illustrate how verification proceeds, FIG. 22 shows the 

fill method from BufferedInputStream (FIG. 12) written in 
our core language. As can be seen , we need an intermediate 
state reads and a marker field reading that indicate an ongoing 

20 
call to the underlying stream . We also need an additional state 
refinement to specify an internal method replacing the while 
loop in the original implementation. (We assume that this 
permissions can be used for calls to private methods.) 

5 Maybe surprisingly, we have to reassign field values after 
super . read ( ) returns. The reason is that when calling super 
we lose temporary state information for this. Assignment 
re-establishes this information and lets us pack properly 
before calling doFill recursively or terminating in the cases of 

io a full buffer or a depleted underlying stream. 
It turns out that these re-assignments are not just an incon-

venience caused by our method but point to a real problem in 
the Java standard library implementation. We could imple-
ment a malicious underlying stream that calls back into the 

15 "surrounding" BufferedInputStream object. This call 
changes a field, which causes the buffer ' s invariant on count 
to permanently break , later on resulting in an undocumented 
array bounds exception when trying to read behind the end of 
the buffer array. 

20 	Because fill operates on a share permission our verification 
approach forces taking into account possible field changes 
through reentrant calls with other share permissions. (This is 
precisely what our malicious stream does.) We could avoid 
field re -assignments by having read require a full permission, 

25 thereby documenting that reentrant (modifying) calls are not 
permitted for this method. 

6. Related Work 
In previous work we proposed more expressive typestate 

specifications [4] that can be verified with the approach pre- 
30 sented in this paper . We also recently proposed full and pure 

permissions and applied our approach to specifying full Java 
iterators [3]. Verification of protocol compliance has been 
studied from many different angles including type systems, 
abstract interpretation, model checking, and verification of 

35 general program behavior . Aliasing is a challenge for all of 
these approaches. 

The system that is perhaps closest to our work is Fugue 
[12], the first modular typestate verification system for 
object-oriented software . Methods are specified with a deter- 

40 ministic state transition of the receiver and pre-conditions on 
arguments. Fugue's type system tracks objects as "not 
aliased" or "maybe aliased." Leveraging research on "alias 
types" [33] (see below), objects typically remain "not 
aliased" as long as they are only referenced on the stack. Only 

45 "not aliased" objects can change state; once an object 
becomes "maybe aliased" its state is permanently fixed 
although fields can be assigned to if the object's abstract 
typestate is preserved. 

Our approach supports more expressive method specifica- 
50 tions based on linear logic [18]. Our verification approach is 

based on "access permissions " that permit state changes even 
in the presence of aliases (multiple references from other 
clients). We extend several ideas from Fugue to work with 
access permissions including state invariants , packing, and 

55 frames. Fugue's specifications are expressible with our sys-
tem [4]. Fugue ' s "not aliased" objects can be simulated with 
unique permissions for alive and "maybe aliased" objects 
correspond to share permissions with state guarantees. There 
is no equivalent for state dimensions , temporary state 

6o assumptions , full, immutable , and pure permissions , or per-
missions for object parts in Fugue. 

Verification of protocol compliance has also been 
described as "resource usage analysis" [23]. Protocol speci- 
fications have been based on very different concepts includ- 

65 ingtypestates [34, 11, 25], type qualifiers [16], size properties 
[9], direct constraints on ordering [23, 35] , and type refine- 
ments [30, 10]. None of the above systems can verify imple- 



US 8,327,327 B2 
21 
	

22 
mentations of object-oriented protocols like our approach and 

	
the general case. Tools like ESC/Java [15] can partially check 

only two [35, 10] target object-oriented languages. Effective 
	

JML specifications but are unsound because they do not have 
type refinements [30] employ linear logic reasoning but can- 	a sound methodology for handling aliasing. Spec# is compa- 
not reason about protocol implementations and do not sup- 	rable in its complexity to the JML and imposes similar over- 
port aliasing abstractions. Hob [25] verifies data structure 5 head. The Boogie methodology allows sound verification of 
implementations for a procedural language with static mod- 	Spec# specifications but requires programs to follow an own- 
ule instantiation based on typestate-like constraints using 	ership discipline [2]. 
shape analyses. In Hob, data can have states, but modules 	Our system is much simpler than these approaches, focus- 
themselves cannot. In contrast, we can verify the implemen- 	ing as it does on protocols, and it is designed to be decidable. 
tation of stateful objects that are dynamically allocated and 10 Our treatment of aliasing makes our system sound, where 
support aliasing with permissions instead of shape analysis. 	ESC/Java is not. While the treatment of aliasing in our system 
Finally, concurrent work on Java(X) proposes "activity anno- 	does involve complexity, it gives the programmer more flex- 
tations" that are comparable to full, share, and pure permis- 	ibility than Boogie's method while remaining modular and 
sions for whole objects that canbe split but not j oined. Similar 	sound. Because it is designed for protocol verification in 
to effective type refinements, state changes can be tracked for 15 particular, our system will generally impose smaller specifi-
a pre-defined set of types, but reasoning about the implemen- 	cation overhead than the JML or Spec#. 
tation of these types is not supported. To our knowledge, none 
of the above systems supports temporary state information. 	 REFERENCES 

Because programming with linear types [3 6] is very incon- 
venient, a variety of relaxing mechanisms were proposed. 20 [1] T. Ball and S. K. Rajamani. Automatically validating 
Uniqueness, sharing, and immutability (sometimes called 

	
temporal safety properties of interfaces. In Proc. of the 

read-only) [7] have recently been put to use in resource usage 
	

Eighth SPINWorkshop, pages 101-122, May 2001. 
analysis [23, 9]. Alias types [33] allow multiple variables to 

	
[2] M. Barnett, R. DeLine, M. Fahndrich, K. R. M. Leino, and 

refer to the same object but require a linear token for object 
	

W. Schulte. Verification of object-oriented programs with 
accesses that can be borrowed [7] during function calls. 25 	invariants. Journal of Object Technology, 3(6):27-56, June 
Focusing can be used for temporary state changes of shared 

	
2004. 

objects [13, 16, 2]. Adoption prevents sharing from leaking 
	

[3] K. Bierhoff. Iterator specification with typestates. In 5th 
through entire object graphs (as in Fugue [12]) and allows 

	
Int. Workshop on Specification and Verification of Compo- 

temporary sharing until a linear adopter is deallocated [13]. 	nent-Based Systems, pages 79-82. ACM Press, November 
All these techniques need to be aware of all references to an 30 	2006. 
object to change its state. 	 [4] K. Bierhoff and J. Aldrich. Lightweight object specifica- 

Access permissions allow state changes even if objects are 	tion with typestates. In JointEuropean Software Engineer- 
aliased from unknown places. Moreover, access permissions 

	
ing Conference and ACM Symposium on the Foundations 

give fine-grained access to individual data groups [27]. States 	ofsoftware Engineering, pages 217-226. ACM Press, Sep- 
and fractions [6] let us capture alias types, borrowing, adop-  35 	tember 2005. 
tion, and focus with a single mechanism. Sharing of indi- 	[5] K. Bierhoff and J. Aldrich. Modular typestate verification 
vidual data groups has been proposed before [7], but it has not 	of aliased objects. Technical Report CMU-ISRI-07-105, 
been exploited for reasoning about object behavior. In Boy- 	Carnegie Mellon University, March 2007. http:Hrepor -ts- 
land's work [6], a fractional permission means immutability 	archive.adm.cs.cmu.edu/anonlisri2007/CNWISRI-07-  
(instead of sharing) in order to ensure noninterference of 40 	105.pdf. 
permissions. We use permissions to keep state assumptions 

	
[6] J. Boyland. Checking interference with fractional permis- 

consistent but track, split, and join permissions in the same 	sions. In Int. Symposium on Static Analysis, pages 55-72. 
way as Boyland. 	 Springer, 2003. 

Global approaches are very flexible in handling aliasing. 	[7] J. T. Boyland and W. Retert. Connecting effects and 
Approaches based on abstract interpretation (e.g., [l, 19, 14]) 45 	uniqueness with adoption. In ACM Symposium on Prin- 
typically verify client conformance while the protocol imple- 	ciples of Programming Languages, pages 283-295, Janu- 
mentation is assumed correct. Sound approaches rely on a 	ary 2005. 
global aliasing analysis [l, 14]. Likewise, most model check- 	[8] S. Chaki, E. Clarke, A. Groce, S. Jha, and H. Veith. 
ers operate globally (e.g., [21]) or use assume-guarantee rea- 	Modular verification of software components in C. In Int. 
soning between coarse-grained static components [17, 22]. 50 	Conference on Software Engineering, pages 385-395, May 
The Magic tool checks individual C functions but has to inline 

	
2003. 

user-provided state machine abstractions for library code to 
	

[9] W.-N. Chin, S.-C. Khoo, S. Qin, C. Popeea, and H. H. 
accommodate aliasing [8]. The above analyses typically run 

	
Nguyen. Verifying safety policies with size properties and 

on the complete code base once a system is fully implemented 
	

alias controls. In Int. Conference on Software Engineering, 
and are very expensive. Our approach supports developers by 55 	pages 186-195, May 2005. 
checking the code at hand like a typechecker. Thus the ben- 	[10] M. Degen, P. Thiemann, and S. Wehr. Tracking linear and 
efits of our approach differ significantly from global analyses. 	affine resources with Java(X). In European Conference on 

Recently, there has been progress in inferring typestate 
	

Object-Oriented Programming. Springer, August 2007. 
protocols in the presence of aliasing [31], which we believe 

	
[1l] R. DeLine and M. Fahndrich. Enforcing high-level pro- 

could be fruitfully combined with our work to reduce initial 60 	tocols in low-level software. In ACM Conference on Pro- 
annotation burden. 	 gramming Language Design and Implementation, pages 

Finally, general approaches to specifying program behav- 	59-69, 2001. 
ior [26, 15, 2] can be used to reason about protocols. The JML 

	
[12] R. DeLine and M. Fahndrich. Typestates for objects. In 

[26] is very rich and complex in its specification features; it is 
	

European Conference on Object-Oriented Programming, 
more capable than our system to express object behavior (not 65 	pages 465-490. Springer, 2004. 
just protocol s), but also potentially more difficult to use due to 

	
[13] M. Fiihndrich and R. DeLine. Adoption and focus: Prac- 

its complexity. Verifying JML specifications is undecidablein 	tical linear types for imperative programming. In ACM 



US 8,327,327 B2 
23 24 

Conference on Programming Language Designandlmple- tifying component-client conformance. In ACM Confer- 
mentation, pages 13-24, June 2002. ence on Programming Language Design andlmplementa- 

[14] S. Fink, E. Yahav, N. Dor, G. Ramalingam, and E. Geay. tion, pages 83-94, 2002. 
Effective typestate verification in the presence of aliasing. [33] F. Smith, D. Walker, and G. Morrisett. Alias types. In 
InACMInt. Symposium on Software Testing and Analysis, 	5 European Symposium on Programming, pages 366-381. 
pages 133-144, July 2006. Springer, 2000. 

[15] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, [34] R. E. Strom and S. Yemini. Typestate: A programming 
J. Saxe, and R. Stara. Extended static checking for Java. In language concept for enhancing software reliability. IEEE 
ACM Conference on Programming Language Design and Transactions on Software Engineering, 12:157-171, 1986. 
Implementation, pages 234-245, May 2002. 	 10 [35] G. Tan, X. On, and D. Walker. Enforcing resource usage 

[16] J. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type 
protocols via scoped methods. In Int. Workshop on Foun- 

qualifiers. InACMConference on Programming Language 
dations of Object-Oriented Languages, 2003. 

Design and Implementation, pages 1-12, 2002. 
[17] D. Giannakopoulou, C. S. Pasareanu, and J. M. [3 6] P. Wadler. Linear types can change the world! In Working 

Cobleigh. Assume-guarantee verification of source code 15 Conference on Programming Concepts and Methods, 

with design-level assumptions. In Int. Conference on Soft- pages 347-359. North Holland, 1990. 

ware Engineering, pages 211-220, May 2004. 
[18] J.-Y. Girard. Linear logic. Theoretical Computer Sci- What is claimed is: 

ence, 50:1-102, 1987. 1. A method for statically checking an object-oriented 
[19] S. Hallem, B. Chelf, Y. Xie, and D. Engler. A system and 20 computer program module, comprising: 

language for building system-specific, static analyses. In identifying objects within a computer program module, at 
ACM Conference on Programming Language Design and least one of said objects having a plurality of references 
Implementation, pages 69-82, 2002. thereto; 

[20] D. Harel. Statecharts: A visual formalism for complex imposing a discipline of permissions to the objects identi- 
systems. Sci. Comput. Programming, 8:231-274, 1987. 	25 fied within the computer program module that enables 

[21] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. tracking, from among a discrete set of changeable states, 
Lazy abstraction. In ACM Symposium on Principles of a subset of states each object might be in; 
Programming Languages, pages 58-70, 2002. determining whether the imposed permissions are violated 

[22] G. Hughes and T. Bultan. Interface grammars for modu- by a potential reference to any of the identified objects; 
lar software model checking. In ACM int. Symposium on 30 and 
Software Testing and Analysis, pages 39-49. ACM Press, outputting the result of said determining. 
July 2007. 2. The method of claim 1, wherein said imposing a disci- 

[23] A. Igarashi and N. Kobayashi. Resource usage analysis. pline of permissions includes imposing permissions that per- 
In ACM Symposium on Principles of Programming Lan- mit multiple independent references to an object. 
guages, pages 331-342, January 2002. 	 35 3. The method of claim 1 wherein said imposing a disci- 

[24] A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: pline of permissions includes imposing a permission selected 
A minimal core calculus for Java and GJ. In ACM Confer- from the group comprising: 
ence on Object-Oriented Programming, Systems, Lan- a permission allowing a read-only reference to an object, 
guages & Applications, pages 132-146, 1999. where other references can read and write to the object; 

[25] V. Kuncak, P. Lam, K. Zee, and M. Rinard. Modular 40 a permission allowing a read/write reference to an object, 
pluggable analyses for data structure consistency. IEEE where all other references to the object are read-only; 
Transactions on Software Engineering, 32(12), December a permission allowing a read-only reference to an object, 
2006. where all other references to the object are also read- 

[26] G. T. Leavens, A. L. Baker, and C. Ruby. JML: A notation only; 
for detailed design. In H. Kilov, B. Rumpe, and I. Sim- 45 a permission allowing a single reference to an object; and 
monds, editors, Behavioral Specifications of Businesses a permission allowing a read/write reference to an object, 
and Systems, pages 175-188. Kluwer Academic Publish- where other references to the object can also be read/ 
ers, Boston, 1999. write references. 

[27] K. R. M. Leino. Data groups: Specifying the modifica- 4. The method of claim 1, wherein said determining is 
tion of extended state. In ACM Conference on Object- 5o based on each of said objects assuming states that change 
Oriented Programming, Systems, Languages & Applica- perceptibly and non-monotonically within a guaranteed state 
tions, pages 144-153, October 1998. space. 

[28] P. Lincoln and A. Scedrov. First-order linear logic with- 5. The method of claim 4 wherein said imposing a disci- 
out modalities is NEXPTIME-hard. Theoretical Computer pline of permissions comprises imposing permissions that 
Science, 135:139-154, 1994. 	 55 can be associated with a fraction of an object. 

[29] B. H. Liskov and J. M. Wing. A behavioral notion of 6. The method of claim 1 wherein said determining is based 
subtyping. ACM Transactions on Programming Lan- on each of said objects having a state represented by a hier- 
guages and Systems, 16(6):1811-1841, November 1994. archical state machine. 

[30] Y. Mandelbaum, D. Walker, and R. Harper. An effective 7. The method of claim 1, wherein said determining is 
theory of type refinements. In ACM Int. Conference on 6o based on said objects having a superclass state and a subclass 
Functional Programming, pages 213-225, 2003. state, and wherein said superclass state and said subclass may 

[31] M. G. Nanda, C. Grothoff, and S. Chandra. Deriving be different. 
object typestates in the presence of inter-object references. 8. A method for statically checking an object-oriented 
In ACM Conference on Object-Oriented Programming, computer program module, comprising: 
Systems, Languages & Application, pages 77-96, 2005. 	65 identifying objects within a computer program module; 

[32] G. Ramalingam, A. Warshaysky, J. Field, D. Goyal, and partitioning identified objects into a plurality of dimen- 
M. Sagiv. Deriving specialized program analyses for cer- sions each dimension assigned to a client; 



US 8,327,327 B2 
25 

each client independently tracking, from among a discrete 
set of changeable states, a subset of states each object 
might be in within that client's dimension; 

imposing a discipline of permissions in which the opera-
tions that a client can invoke involving an object are 
limited to those operations in which the invoked opera-
tion changes the state of the object only in that client's 
dimension; 

determining whether the imposed permissions are vio-
lated; and 

outputting the result of said determining. 
9. The method of claim 8 wherein said imposing a disci-

pline of permissions includes imposing a permission selected 
from the group comprising: 

a permission allowing a read-only reference to an object, 
where other references can read and write to the object; 

a permission allowing a read/write reference to an object, 
where all other references to the object are read-only; 

a permission allowing a read-only reference to an object, 
where all other references to the object are also read-
only; 

a permission allowing a single reference to an object; and a 
permission allowing a read/write reference to an object, 
where other references to the object can also be read/ 
write references. 

10. The method of claim 8, wherein said determining is 
based on each of said objects assuming states that change 
perceptibly and non-monotonically within a guaranteed state 
space. 

11. The method of claim 8, wherein said determining is 
based on each of said objects having a state represented by a 
hierarchical state machine. 

12. The method of claim 8, wherein said determining is 
based on said objects having a superclass state and a subclass 
state, and wherein said superclass state and said subclass may 
be different. 

13. A method for statically checking an object-oriented 
computer program module, comprising: 

identifying objects within a computer program module; 
imposing a discipline of permissions to the objects identi-

fied within the computer program module such that for 
each object, only one client may have read/write permis-
sion to said object, track said object's state from among 
a discrete set of changeable states, and perform any legal 
operation on said object given said object's current state 
while all other clients may have read-only access to said 
object, and can perform only operations that do not 
affect said object's state and are legal given the client's 
knowledge of said object's current state; 

determining whether the imposed permissions are vio-
lated; and 

outputting the result of said determining. 
14. The method of claim 13 wherein said imposing a dis- 

cipline of permissions includes imposing at least one addi- 
tional discipline selected from the group comprising: 

a permission allowing a single reference to an object; and 
a permission allowing a read/write reference to an object, 

where other references to the object can also be read/ 
write references.  

26 
15. The method of claim 13, wherein said determining is 

based on each of said objects assuming states that change 
perceptibly and non-monotonically within a guaranteed state 
space. 

5 	16. The method of claim 14, wherein said imposing a 
discipline of permissions comprises imposing permissions 
that can be associated with a fraction of an object. 

17. The method of claim 13, wherein said determining is 
based on each of said objects having a state represented by a 

io hierarchical state machine. 
18. The method of claim 13, wherein said determining is 

based on said objects having a superclass state and a subclass 
state, and wherein said superclass state and said subclass may 
be different. 

15 	19. A method for statically checking an object-oriented 
computer program module, comprising: 

identifying objects within a computer program module, 
said objects having discrete states that change percepti- 
bly and non-monotonically within a guaranteed state 

20 	space; 
imposing a discipline of permissions to the objects identi-

fied within the computer program module such that a 
plurality of clients can each have a permission that 
enables tracking a subset of states each object might be 

25 	in; 
determining whether the imposed permissions are vio-

lated; and 
outputting the result of said determining. 
20. A method for statically checking an object-oriented 

30 computer program module, comprising: 
identifying objects within a computer program module, at 

least one of said objects having a plurality of references 
thereto; 

imposing a discipline of permissions to the objects identi- 
35 fied within the computer program module that enables 

tracking, from among a discrete set of changeable states 
represented by a hierarchical state machine, a subset of 
states each object might be in; 

determining whether the imposed permissions are violated 
40 	by a potential reference to any of the identified objects; 

and 
outputting the result of said determining. 
21. A method for statically checking an object-oriented 

computer program module, comprising: 
45 	identifying objects within a computer program module, at 

least one of said objects having a plurality of references 
thereto; 

imposing a discipline of permissions to the objects identi-
fied within the computer program module that enables 

50 tracking, from among a discrete set of changeable states 
including a superclass state and a subclass state which 
may differ, a subset of states each object might be in; 

determining whether the imposed permissions are violated 
by a potential reference to any of the identified objects; 

55 	and 
outputting the result of said determining. 
22. The method of claim 1, wherein said plurality of refer-

ences are active at a particular execution point. 


	8327327-p0001.pdf
	8327327-p0002.pdf
	8327327-p0003.pdf
	8327327-p0004.pdf
	8327327-p0005.pdf
	8327327-p0006.pdf
	8327327-p0007.pdf
	8327327-p0008.pdf
	8327327-p0009.pdf
	8327327-p0010.pdf
	8327327-p0011.pdf
	8327327-p0012.pdf
	8327327-p0013.pdf
	8327327-p0014.pdf
	8327327-p0015.pdf
	8327327-p0016.pdf
	8327327-p0017.pdf
	8327327-p0018.pdf
	8327327-p0019.pdf
	8327327-p0020.pdf
	8327327-p0021.pdf
	8327327-p0022.pdf
	8327327-p0023.pdf
	8327327-p0024.pdf
	8327327-p0025.pdf
	8327327-p0026.pdf

