684 research outputs found

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    The STRESS Method for Boundary-point Performance Analysis of End-to-end Multicast Timer-Suppression Mechanisms

    Full text link
    Evaluation of Internet protocols usually uses random scenarios or scenarios based on designers' intuition. Such approach may be useful for average-case analysis but does not cover boundary-point (worst or best-case) scenarios. To synthesize boundary-point scenarios a more systematic approach is needed.In this paper, we present a method for automatic synthesis of worst and best case scenarios for protocol boundary-point evaluation. Our method uses a fault-oriented test generation (FOTG) algorithm for searching the protocol and system state space to synthesize these scenarios. The algorithm is based on a global finite state machine (FSM) model. We extend the algorithm with timing semantics to handle end-to-end delays and address performance criteria. We introduce the notion of a virtual LAN to represent delays of the underlying multicast distribution tree. The algorithms used in our method utilize implicit backward search using branch and bound techniques and start from given target events. This aims to reduce the search complexity drastically. As a case study, we use our method to evaluate variants of the timer suppression mechanism, used in various multicast protocols, with respect to two performance criteria: overhead of response messages and response time. Simulation results for reliable multicast protocols show that our method provides a scalable way for synthesizing worst-case scenarios automatically. Results obtained using stress scenarios differ dramatically from those obtained through average-case analyses. We hope for our method to serve as a model for applying systematic scenario generation to other multicast protocols.Comment: 24 pages, 10 figures, IEEE/ACM Transactions on Networking (ToN) [To appear

    Timing Predictable and High-Performance Hardware Cache Coherence Mechanisms for Real-Time Multi-Core Platforms

    Get PDF
    Multi-core platforms are becoming primary compute platforms for real-time systems such as avionics and autonomous vehicles. This adoption is primarily driven by the increasing application demands deployed in real-time systems, and the cost and performance benefits of multi-core platforms. For real-time applications, satisfying safety properties in the form of timing predictability, is the paramount consideration. Providing such guarantees on safety properties requires applying some timing analysis on the application executing on the compute platform. The timing analysis computes an upper bound on the application’s execution time on the compute platform, which is referred to as the worst-case execution time (WCET). However, multi-core platforms pose challenges that complicate the timing analysis. Among these challenges are timing challenges caused due to simultaneous accesses from multiple cores to shared hardware resources such as shared caches, interconnects, and off-chip memories. Supporting timing predictable shared data communication between real-time applications further compounds this challenge as a core’s access to shared data is dependent on the simultaneous memory activity from other cores on the shared data. Although hardware cache coherence mechanisms are the primary high-performance data communication mechanisms in current multi-core platforms, there has been very little use of these mechanisms to support timing predictable shared data communication in real-time multi-core platforms. Rather, current state-of-the-art approaches to timing predictable shared data communication sidestep hardware cache coherence. These approaches enforce memory and execution constraints on the shared data to simplify the timing analysis at the expense of application performance. This thesis makes the case for timing predictable hardware cache coherence mechanisms as viable shared data communication mechanisms for real-time multi-core platforms. A key takeaway from the contributions in this thesis is that timing predictable hardware cache coherence mechanisms offer significant application performance over prior state-of-the-art data communication approaches while guaranteeing timing predictability. This thesis has three main contributions. First, this thesis shows how a hardware cache coherence mechanism can be designed to be timing predictable by defining design invariants that guarantee timing predictability. We apply these design invariants and design timing predictable variants of existing conventional cache coherence mechanisms. Evaluation of these timing predictable cache coherence mechanisms show that they provide significant application performance over state-of-the-art approaches while delivering timing predictability. Second, we observe that the large worst-case memory access latency under timing predictable hardware cache coherence mechanisms questions their applicability as a data communication mechanism in real-time multi-core platforms. To this end, we present a systematic framework to design better timing predictable cache coherence mechanisms that balance high application performance and low worst-case memory access latency. Our systematic framework concisely captures the design features of timing predictable cache coherence mechanisms that impacts their WCET, and identifies a spectrum of approaches to reduce the worst-case memory access latency. We describe one approach and show that this approach reduces the worst-case memory access latency of timing predictable cache coherence mechanisms to be the same as alternative approaches while trading away minimal performance in the original cache coherence mechanisms. Third, we design a timing predictable hardware cache coherence mechanism for multi-core platforms used in mixed-critical real-time systems (MCS). Applications in MCS have varying performance and timing predictability requirements. We design a timing predictable cache coherence mechanism that considers these differing requirements and ensures that applications with no timing predictability requirements do not impact applications with strict predictability requirements

    Model checking parameterized process classes

    Get PDF
    Master'sMASTER OF SCIENC

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 13371 and 13372 constitutes the refereed proceedings of the 34rd International Conference on Computer Aided Verification, CAV 2022, which was held in Haifa, Israel, in August 2022. The 40 full papers presented together with 9 tool papers and 2 case studies were carefully reviewed and selected from 209 submissions. The papers were organized in the following topical sections: Part I: Invited papers; formal methods for probabilistic programs; formal methods for neural networks; software Verification and model checking; hyperproperties and security; formal methods for hardware, cyber-physical, and hybrid systems. Part II: Probabilistic techniques; automata and logic; deductive verification and decision procedures; machine learning; synthesis and concurrency. This is an open access book

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing
    corecore