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SUMMARY

Systems consisting of large (or even unbounded) number of behaviorally sim-

ilar processes communicating with each other are known as parameterized systems.

Such systems are common in distributed computing and real-life software systems.

Verifying properties for such systems involves reasoning about unboundedly many

processes and hence cannot be accomplished directly by model-checking.

In this thesis, we present an abstraction refinement based verification framework

for parameterized systems. We enhance the well-known Spin model checker with

process count abstraction to develop a time/memory efficient Linear-time Tempo-

ral Logic (LTL) verifier for parameterized systems. We also developed methods to

automatically detect spurious counter-examples and refine the abstraction. The us-

ability / scalability of our checker is demonstrated via the modeling and automated

verification of several real-life parameterized control systems and protocols.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

Systems that utilize cache-coherence or telecommunication protocols are common in

distributed computing. Such systems usually consist of a large number of processes of

the same type communicating with each other, or with processes of the other types.

The number of processes is usually unknown prior to system deployment, which poses

difficulty in verification and validation of system correctness.

Among the existing approaches, model checking has been advertised as a promis-

ing automated technique for ensuring correctness of complex distributed software

systems. However, modeling of systems with (potentially) unbounded number of pro-

cesses results in infinite-state system, which is not suitable for explicit model-checking.

Moreover, fixing the number of processes to a constant (i.e., cutoff number) requires

reasoning about that the restricted system can actually exhibit all valid behaviors of

the actual system with unbounded number of processes.

Systems with unbounded number of processes are known as parameterized sys-

tems. A parameterized system usually consists of finite number of process types,

each of which may contain unbounded number of instances. Verifying that a pa-

rameterized system satisfies certain specification entails proving that no matter how

many number of processes participating in the system, the specification is satisfied.
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In general, automated verification of parameterized system is undecidable [4]. Exist-

ing techniques for parameterized verification usually focus on developing their own

verification procedure, which is not only hard for third-party evaluation, but also dif-

ficult to scale to an efficient and effective checker for real-life systems. The problems

need to be addressed are whether : (1) the verification method is supported by a

powerful modeling language to describe non-trivial control systems and protocols; (2)

the checking is time/memory efficient; (3) it supports any spurious counter-example

detection techniques and its refinement; (4) the analysis of non-spurious traces leads

to any finite system that exhibits the same trace.

1.2 Objective and Scope

Our research aims to address the above mentioned problems by developing a usable

and efficient abstraction-refinement based automated verification framework for con-

current parameterized systems. Our abstraction deals with the number of processes

to keep track of, for process types in the system with unbounded number of pro-

cesses. Thus, for every process type with unbounded number of processes, a cutoff

number is assumed in the initial abstraction and then gradually refined by repeated

application of abstract - modelcheck - refine steps. Since our abstractions in general

lead to over- approximations of behavior, model checking of the abstracted system

may lead to spurious counter-examples. We develop automated methods to (i) check

whether a given counter-example trace is spurious, and (ii) refine our abstraction (by

increasing cutoff numbers) to eliminate a given spurious counter-example. Moreover,

for non-spurious counter-examples, we also developed heuristics to determine a small,
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finite system that exhibits the same trace.

In terms of implementation, we modify the internals of the well-known Spin model

checker [19] to integrate our proof method. Hence, any designer familiar with Spin

and its input modeling language Promela may easily adapt our method to verify

parameterized systems. Moreover, we take advantage of the powerful optimization

(such as partial order reduction, bitstate hashing, etc.) inside Spin to develop a time

and memory efficient model checker for parameterized systems.

1.3 Thesis Organization

The rest of this thesis is organized as following: we survey related verification tech-

niques in Chapter 2, followed by an overview of our abstraction framework in Chap-

ter 3. We then proceed to discuss the concrete and abstract system modeling in

Chapter 4 and 5. The verification procedure, including our spuriousness detection

and abstraction refinement techniques, are presented in Chapter 6. The details of

how we modify the internals of Spin are presented in Chapter 7, while experiments

on several real-life software systems are discussed in Chapter 8. Finally, we conclude

this thesis in Chapter 9.
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CHAPTER 2

BACKGROUND ON SYSTEM VERIFICATION

In this Chapter, we review related state-of-art research on parameterized system

verification, abstraction refinement and the Spin model-checker.

2.1 Parameterized System Verification

Verification of parameterized systems is undecidable [4]. There are two possible reme-

dies to this problem: either we look for restricted subsets of parameterized systems

for which the verification problem becomes decidable, or we look for sound but not

necessarily complete methods.

The first approach tries to identify a restricted subset of parameterized systems

and temporal properties, such that if a property holds for a system with up to a

certain number of processes, then it holds for every number of processes in the system.

Moreover, the verification for the reduced system can be accomplished by model

checking. Systems that are verified with this approach include systems with a single

controller and arbitrary number of user processes [17], rings with arbitrary number

of processes communicating by passing tokens [15, 14], systems formed by composing

an arbitrary number of identical processes in parallel [21], and systems formed by

unbounded processes of several process types where the communication mechanism

between the processes is restricted to conjunctive / disjunctive transition guards [13].
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The sound but incomplete approaches include methods based on synthesis of invis-

ible invariant (e.g., [16]) which can be viewed as a combination of assertion synthesis

techniques with abstraction for verification; methods based on network invariant (e.g.,

[25]) that relies on the effectiveness of a generated invariant and the invariant refine-

ment techniques; regular model checking [22, 23] that requires acceleration techniques.

Compositional proof methods have been studied in [6], while explicit induction based

proof methods for parameterized families have been discussed in [29].

Among the above mentioned works, we emphasize on the counter abstraction (e.g.,

[12, 28, 27]), which is closest to our current research work. These works also employ

process count abstraction. The verification of safety properties is discussed in [12],

the verification of liveness properties is addressed in [27].

Parameterized verification of extended system models having data variables with

unbounded domains have been studied in [24, 10, 7, 30]. These approaches combine

counter abstraction with data abstraction or linear-arithmetic constraints.

2.2 Counter-Example Guided Abstraction Refine-

ment

Counter-example guided abstraction refinement has earlier been studied for verifica-

tion of large finite-state or infinite-state systems [11, 8, 9, 5]. The common approach

in these works is to abstract the variable domains based on the control flow predicates

in the program, so that the state space are partitioned into different abstract states.

When a counter-example is generated, it will be checked whether it corresponds to

a concrete counter-example in the original system. If so, a program error is found;
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otherwise, the predicates will be refined and the verification will start, either from

the very beginning or from point where the previous predicate becomes not-so-precise

(Lazy Abstraction [8]). This technique is mostly used in analysis of sequential pro-

grams, and systems with finite number of processes. Hence, if a system being verified

is infinite-state due to unbounded number of processes, it is not clear how to employ

the above mentioned abstraction refinement methods.

2.3 Spin: The Model Checker

Spin is a generic verification system that supports the design and verification of asyn-

chronous process systems. Spin verification models are focused on proving the cor-

rectness of process interactions, and they attempt to abstract as much as possible from

internal sequential computations. Process interactions can be specified in SPIN with

rendezvous primitives, with asynchronous message passing through buffered channels,

through access to shared variables, or with any combination of these. As a formal

methods tool, SPIN aims to provide [19]:

1. an intuitive, program-like notation for specifying design choices unambiguously,

without implementation detail;

2. a powerful, concise notation for expressing general correctness requirements;

3. a methodology for establishing the logical consistency of the design choices

from 1 and the matching correctness requirements from 2.

Spin accepts design specification written in the verification language Promela(a

Process Meta Language), and it accepts correctness claims specified in the syntax
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of standard Linear Temporal Logic (LTL). Models specified in Promela are always

required to be bounded and have only countably many distinct behaviors. All verifica-

tion systems have physical limitations that are set by problem size, machine memory

size, and the maximum runtime that the user is willing, or able, to endure. These

constraints are an often neglected issue in formal verification. SPIN addresses this

issue by offering some complexity management techniques.

The basic structure of the Spin model checker is illustrated in Figure 2.1. The

typical mode of working is to start with the specification of a high level model of a con-

current system, or distributed algorithm, typically using SPIN’s graphical front-end

XSpin. After fixing syntax errors, one can choose to perform interactive simulation,

or generate an optimized on-the-fly verification program from the high-level specifica-

tion. This verification program is compiled, with various compile-time options for the

types of reduction algorithms to be used, and executed. If any counter examples to

the correctness claims are detected, the error trail can be fed back into the simulator

and inspected in detail to establish, and remove, its cause.

In Spin, the description of a concurrent system in Promela consists of one or

more user-defined process templates, or proctype definitions, and at least one process

instantiation. The templates define the behavior of different types of processes. Any

running process can instantiate further asynchronous processes, using the process

templates.

Spin translates each process template into a finite automata. The global behavior

of the concurrent system is obtained by computing an asynchronous interleaving prod-

uct of automata, one automaton per asynchronous process behavior. The resulting
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global system behavior is itself again represented by an automaton. This interleaving

product is often referred to as the state space of the system, and, because it can easily

be represented as a graph, it is also commonly referred to as the global reachability

graph.

XSPIN

Promela parser LTL parser 

Syntax checker Interactive 
simulation

Verifier 
generator

Model checkerExecutable 
on-the-fly Verifier

Counter-example

Figure 2.1: The structure of SPIN simulation and verification [19]

In Spin, a correctness claim is to formalize erroneous system behaviors, i.e, be-

haviors that are undesirable. The verification process then either proves that such

behaviors are impossible or it provides detailed examples of behaviors that match.

To perform verification, SPIN takes a correctness claim that is specified as a tempo-

ral logic formula, converts that formula into a Büchi automaton, and computes the

synchronous product of this claim and the automaton representing the global state

space. The result is again a Büchi automaton. If the language accepted by this au-

tomation is empty, this means that the original claim is not satisfied for the given
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system. If the language is nonempty, it contains precisely those behaviors that satisfy

the original temporal logic formula.

Like other model checking techniques, Spin’s verification procedure is based on

some graph traversal methods. Two kinds of traversal methods available in Spin are

depth-first search and breadth-first search. In the worst case, the global reachability

graph has the size of the Cartesian product of all component systems. Although,

in practice, the size of the global reachability never approaches the worst case size,

the reachable portion of the Cartesian product can also easily become prohibitively

expensive to construct exhaustively. A number of complexity management techniques

have been developed to combat this problem. These techniques include partial order

reduction, state compression and Bit-State hashing.
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CHAPTER 3

VERIFICATION FRAMEWORK OVERVIEW

We have developed an abstraction-refinement based automated proof method for pa-

rameterized systems. The systems of interest consist of finitely many process types,

each of which (may) have unbounded number of processes executing the same pro-

gram. Our abstraction and its refinement, which greatly assembles the abstract-verify-

refine loop, deal with the number of processes in the system.

An outline of our verification framework appears in Figure 3.1. The verification

procedure involves deriving an abstract verifier (based on model checker Spin) corre-

sponding to a given system model and property to be verified. Parameterized verifica-

tion of the system proceeds by executing the abstract verifier thus generated. At the

end of a verification run, either the verifier outputs “pass”– indicating no property

LTL PropertyParameterized
System

Abstract Verifier Generator

Abstract Verifier
Pass? Done

Yes
(modified SPIN)

Abstraction 
Refinement

Abstract 
Counter‐example σ

Pass? Done

No
Refinement

No

p

Yes
Spurious? A finite state system 

exhibiting σбg

Figure 3.1: Verification Framework
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violation in the system model, or a counter-example exhibiting the property violation.

Since, in general our abstraction is an over-approximation of concrete behaviors, a

counter-example obtained from the abstract verifier can be spurious. Thus, a spuri-

ousness check is performed on the counter-example obtained. If a counter-example

is not spurious, a system with finite number of processes exhibiting the same coun-

terexample is generated. Otherwise, we refine our abstraction to prevent the spurious

counter-example from occurring in the subsequent verification runs. Since parame-

terized system verification is undecidable [4], the abstraction-refinement loop shown

in Figure 3.1 is not guaranteed to terminate. Hence, user may specify a bound on

the number of refinement steps undertaken.

We now illustrate the various steps in our verification framework with the help

of a small example. Consider a system model consisting of a single process type p1

with no local variables. The transition system corresponding to process type p1 is

shown in Figure 3.2, where for i ∈ [0, 3], li represents a control location, and α0 – α2

represent the actions executed by a p1-process. Thus, for example, a process of type

p1 can move from location l0 to l1 by executing action α0. Assume now, that we want

to verify certain properties for this system model for any number of p1 processes. Let

us consider an unbounded number of p1 processes which are initially in the state l0.

In our abstract verification we only maintain the count of processes in various local

states, and not their individual states or identities. If the process count is unbounded

in some state, it is represented as ω during abstract verification. Further, a user-

provided p1 specific cutoff parameter (called cutp1) is used, such that ω represents

greater-than or equal-to cutp1 p1-processes. Then, (a) if a p1 process moves in to a
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state with cutp1 number of processes, the process count of that state becomes ω, and

(b) if a p1 process moves out of a state with currently ω number of processes, there

remains either ω or cutp1 number of processes in the source state.

We now consider verification of the given system against the following LTL prop-

erty: ¬(α0 ∧ Xα1 ∧ XXα2). It specifies that the action sequence σ = α0α1α2 can

never occur in a system execution. Initially, let cutp1 = 1. This means in the abstract

verification, the count of processes in any state li is either 0 (denoting no processes

in li) or ω (denoting one or more processes in li). Abstract verification returns a

counter-example trace, which is σ itself. The number of processes in different states

during abstract execution of σ are shown in the following.

Control Number of processes (cutp1 = 1)

state Initially After α0 After α1 After α2

l0 ω ω, 0 ω, 0 ω, 0

l1 0 ω ω, 0 ω, 0

l2 0 0 ω ω

l3 0 0 0 ω

However, it is easy to see that the counter-example trace σ cannot be exhibited

in any concrete system. At least two occurrences of α0 are required for α1 and α2

to be executed subsequently. Hence, σ is spurious. Trace σ can be exhibited in

the abstract system because after a single occurrence of α0, the process count in l1

becomes ω (since cutp1 = 1). Consequently, both α1 and α2 can be executed from

l1. In order to prevent this spurious counter-example, we refine our abstraction by

increasing the cutoff number cutp1 to 2. This means in the abstract verification, the

12



l
0

l
1

l
2 l

3

α
0

α
1

α
2

Figure 3.2: Example transition system for a process type p1.

count of processes in any state li is now either 0 (denoting no processes in li) or 1

(denoting exactly one process in li) or ω (denoting more than one process in li). Now,

after a single occurrence of α0 the process count at l1 will become 1 (and not ω),

which is not sufficient to execute both α1 and α2. As a result, σ can no longer occur

in abstract execution.

As another example, consider the LTL property ¬(α0∧Xα1), which specifies that

the action sequence σ′ = α0α1 can never occur. Similar to the previous example, here

also the abstract verification run returns a counter-example, which is σ′. However,

unlike above, σ′ is not spurious and can be exhibited in a concrete system. Further, we

can easily see that σ′ can be exhibited in a concrete system with only a single process

of type p1. Later, (in Section 6.2) we describe a heuristic procedure for deriving

such a smaller concrete system corresponding to a non-spurious counter-example for

debugging purposes.

13



CHAPTER 4

MODELING

We use (a fragment of) Promela, the input language of Spin, for modeling the

system to be verified. This enables a user already familiar with Spin, and hence

Promela, to readily use our parameterized verification framework.

We fix a finite set of process types P with p, q ranging over P . Each process

type in P corresponds to a process declaration via proctype in Promela. Various

processes, which are the instances of process types in P , are described by means of

finite-state labeled transition systems. We also fix a finite alphabet of actions Σ with

α, β ranging over Σ. Actions in Σ represent basic Promela statements, such that

an action in Σ may correspond to a send/receive event, an assignment, an assertion,

or creation of an instance of a process type. Various processes can communicate via

synchronous message exchange or through shared variables. With each action α ∈ Σ,

we associate– (a) a pre-condition Preα specifying a boolean condition to be satisfied

by a system state for executing α, and (b) a post-condition Postα capturing the

system state update upon execution of α.

We note here that Promela allows inter-process communication via shared vari-

ables, synchronous message passing as well as asynchronous message passing. In our

modeling, we restrict ourselves to systems which do not have asynchronous message

passing.

14



In order to model the internal states and computations performed by processes,

we fix a set of local variables V arp for each process type p ∈ P , and a set of global

variables V arG. Assume that V arp ∩ V arq = ∅ whenever p, q ∈ P and p 6= q. Also,

let V arP =
⋃
p∈P V arp and V arP ∩ V arG = ∅. Each variable x ∈ V arP ∪ V arG takes

values from a finite domain Dx. Thus, a variable valuation refers to a mapping of

each variable to a value in its finite domain.

Definition 4.1 (System Model). A system model is a structure

S = (V arG, v
g
in, TSP)

consisting of (i) a set of global variables V arG, (ii) their initial valuation vgin and (iii)

a p-indexed family of transition systems

TSP = {TSp = (Lp,→p, l
p
in, V arp, v

p
in)}p∈P

such that for each p ∈ P,

• Lp is a finite set of p’s control states,

• →p⊆ Lp × Σ× Lp is a transition relation for p,

• lpin ∈ Lp is the initial control state of p, and

• V arp is the set of local variables in p, and vpin is their initial valuation.

Consider the example in Figure 3.2, which consists of a single process type p1 with

no local variables. The actions appearing in this specification are Σ = {α0, α1, α2},

and the transition system of p1 is represented as:

TSp1 = ({l0, l1, l2, l3},→p1 , l0, ∅)

15



where →p1= {(l0, α0, l1), (l1, α1, l2), (l1, α2, l3)}.

Let OBJp denote a finite non-empty set of processes populating process type p.

We require that OBJp ∩ OBJq = ∅ whenever p 6= q. We set OBJ =
⋃
p∈P OBJp and

let o, o′ range over OBJ. Further, each variable x in the system has a finite domain

Dx. Hence, we let V alG be a mapping for each global variable to its finite domain,

and V alp be a mapping for each variable in process type p to its finite domain. We

denote V alP =
⋃
p∈P V alp. For each process type p, let Sp ⊆ Lp × V alp represent

the execution states of p, where Lp is the set of p’s control states describing TSp

and V alp is the set of valuations of variables in V arp. The initial p-state is given

by spin = (lpin, v
p
in), where lpin ∈ Lp is the initial p-control state and vpin is an initial

valuation of variables in p. We set SP =
⋃
p∈P Sp and let s, s′ range over SP . Again,

consider the example shown in Figure 3.2. The initial state corresponding to process

type p1 is sp1in = (l0, ε), where the variable valuation part is empty (represented as ε)

since p1 has no local variables.

In order to define the operational semantics of a system model, we define the

notion of a configuration capturing the global system state during execution. Since

we are defining a system configuration where the system consists of concrete processes,

we call it a “concrete configuration”. This is to distinguish this notion from the state

space abstraction and the abstract configurations we will introduce later.

Definition 4.2 (Concrete Configuration). Let S = (V arG, v
g
in, TSP) be a given sys-

tem model. A concrete configuration of S is a pair of mappings (vg,M), where vg

is a valuation of global variables V arG, and mapping M : SP → 2OBJ is defined such
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that:

• M(s) ⊆ OBJp for every p and every s in Sp,

• M(s) ∩M(s′) = ∅ whenever s 6= s′, and

•
⋃
{M(s) | s ∈ Sp} = OBJp for every p.

Let CFG denote the set of all concrete configurations.

Given a system model S = (V arG, v
g
in, TSP) and an initial set of processes OBJinp

for each process type p, the initial configuration of S is defined as Cin = (vgin,M
in),

where– (a) vgin is an initial valuation of global variables, and (b) for every p ∈ P

and every s ∈ Sp, M
in(s) = OBJinp if s = spin, otherwise M in(s) = ∅. For the

example shown in Figure 3.2, suppose two instances (say, o1, o2) of process type p1

are created initially. Since, p1 has no local variables, all possible execution states of

p1 are determined by its local control states, i.e. Sp1 = {s0, s1, s2, s3} = SP , where

si = (li, ε), with ε representing an empty variable valuation. Also, since there are no

global variables in this example, the global variable valuations in this example will

also be empty (or, ε). Then, the initial configuration in this case is given by: (ε,M in),

where M in(s0) = {o1, o2} and M in(s1) = M in(s2) = M in(s3) = ∅.

During execution, system moves from one concrete configuration to another by

participating in an action from Σ. If a process o of type p moves from state s1 ∈ Sp

at concrete configuration C = (v,M) to state s2 ∈ Sp by executing an action α ∈ Σ,

the processes at the resulting configuration C ′ = (v′,M ′) are determined as follows.

Let I : SP → 2OBJ be an intermediate mapping s.t.
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• If s1 6= s2, then

I(s1) = M(s1)− {o}.

I(s2) = M(s2) ∪ {o}.

I(s) = M(s) for s ∈ SP\{s1, s2}.

• Otherwise, ∀s ∈ SP , I(s) = M(s).

The relationship between the resulting mapping M ′ at configuration C ′ and the

intermediate mapping I is as follows – (i) If α does not create new process, then

M ′ = I, (ii) Otherwise, suppose by executing α, a new process oq of type q is created

and starts its execution from an execution state sq ∈ Sq. Then, we have

• M ′(sq) = I(sq) ∪ {oq};

• M ′(s) = I(s), for all s 6= sq.

We use relation updatec(s1,M, α, s2,M
′) to denote that the mapping M ′ can be

derived from M due to migration of a process from state s1 to s2 by executing α.

The transition relation for the concrete execution ↪→⊆ CFG×Σ×CFG is defined as

follows.

Definition 4.3 (Concrete Transition relation ↪→). Let C = (vg,M), C ′ = (v′g,M
′)

∈ CFG be concrete configurations of a system model S = (V arG, v
g
in, TSP), and α ∈ Σ

be an action. Then (C, α,C ′) ∈↪→ iff ∃p ∈ P , ∃s = (l, v), s′ = (l′, v′) ∈ Sp, s.t.

1. (l, α, l′) ∈→p is a transition in TSp.

2. |M(s)| ≥ 1, i.e. there is at least one process at state s.
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Each box is of the form: M(s0), M(s1), M(s2), M(s3)

Figure 4.1: Sample Concrete Transition Relation

3. v and vg satisfy the pre-condition Preα.

4. v′(v′g) is the effect of post-condition Postα on v(vg). Here v′g represents an up-

date of global variables V arG, which can later be read/updated by other processes,

thus allowing for shared variable communication.

5. If last action executed was a send1 event, then α must be the corresponding

receive event. If the matching receive cannot be executed, then the last executed

send event is rolled back, and some other enabled action is executed in its place.

6. The relation updatec(s,M, α, s′,M ′) holds as described above.

For the example shown earlier in Figure 3.2, we present its state exploration

graph depicting all reachable concrete configurations in Figure 4.1. Since, no global

variables are used in this example, we omit their valuation from a state representation.

In each global state, the processes presented in various execution states of process

type p1 are shown, which is the only process type appearing in this example. Also,

1Recall that, we only consider synchronous message communication.
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for i = 0, 1, 2, 3, si = (li, ε), where li is the local control state of p1 and ε represents an

empty local variable valuation. Initially, two processes of type p1 are created, which

are represented as o1 and o2 residing at state s0 = (l0, ε). Then, either o1 or o2 can

be chosen to execute α0, following by the execution of α0 from the other process, or

the execution of either α1 or α2 from the same process, resulting in different paths in

the state exploration graph ending in two configurations with o1 residing at state s2

and o2 residing at state s3, or vice versa.
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CHAPTER 5

STATE SPACE ABSTRACTION

5.1 Core Abstraction

For efficient verification of parameterized systems, we employ an abstract state space

representation, where the core idea is to group together processes in a process type

which are in similar states. However, the grouping of processes is not fixed statically,

but changes dynamically with the state space construction. Two processes of type p

are similar if and only if they are in the same state s = (l, v) ∈ Sp, where l is the

control state in TSp (the transition system of p) and v is a valuation of p’s variables.

Based on this, the key idea in our abstraction is that, if two processes are in the same

execution state– there is no need to distinguish between them via their process ids.

Hence, our abstraction systematically exploits this observation by only maintaining

the count of processes in each execution state in
⋃
p∈P Sp.

Along with the state space abstraction as described above, we allow a process-type

to have an unbounded number of processes in our abstract execution semantics. If a

process type p initially has unbounded number of processes, or if p has unbounded

number of processes due to dynamic process creation during execution – the user

provides an input parameter cutp ∈ N. By default cutp is set to 1. Then, for any

number of processes equal to or greater than cutp, we represent it as ω.

For a process type p with initially fixed number of processes, and no dynamic
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process creation – the process counts never become ω and the number of processes

is fixed. Hence, the cutoff number is not an issue! We can simply assume the cutoff

number to be a number greater than the number of p-processes by default.

Based on our abstract state representation, we now define the notion of an abstract

configuration.

Definition 5.1 (Abstract Configuration). Let S = (V arG, v
g
in, TSP) be a given system

model and for each process type p ∈ P, Na
p denote the number of p-processes during

execution. An abstract configuration is defined as a pair of mappings (vag ,Ma),

where vag ∈ V alG is a valuation of global variables and Ma : SP → N ∪ {ω} s.t.

∀p ∈ P ,
∑

s∈Sp
Ma(s) = Na

p .

Let CFGabs denote the set of all abstract configurations.

Let S = (V arG, v
g
in, TSP) be a given system model with Np number of processes

of type p ∈ P . Then, the initial abstract configuration of S is defined as Cin
a =

(ving ,M
in
a ), where– (a) ving is the initial valuation of global variables, and (b) for every

p ∈ P and every s ∈ Sp, M in
a (s) = Np if s = spin, otherwise M in

a (s) = 0.

During execution, system moves from one abstract configuration to another by

executing an action from Σ. If a process of type p moves from state s1 ∈ Sp at

configuration Ca = (v,Ma) to state s2 ∈ Sp by executing an action α ∈ Σ, the

process counts at a resulting configuration C ′a = (v′,M ′
a) are determined as follows.

Let Ia : SP → N ∪ {ω} be an intermediate mapping, s.t. –
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• If s1 6= s2, then

Ia(s1) =


Ma(s1)− 1, if Ma(s1) < cutp

cutp − 1 or ω, if otherwise.

Ia(s2) =


M(s2) + 1, if M(s2) < cutp − 1

ω, otherwise .

Ia(s) = M(s), for s ∈ SP\{s1, s2} (5.1)

• Otherwise, ∀s ∈ SP · Ia(s) = Ma(s).

If α does not create new process, then M ′
a = Ia. Otherwise, suppose by executing

α, a process of type q is created and starts its execution from state sq ∈ Sq. Then we

set

• for state sq,

M ′
a(sq) =


Ia(sq) + 1, if Ia(sq) < cutq − 1

ω, otherwise.

(5.2)

• for s ∈ SP\{sq}, M ′
a(s) = Ia(s).

We use the relation updatea(s1,Ma, α, s2,M
′
a) to denote that mapping M ′

a can

be derived from Ma due to migration of a process from state s1 to s2 by executing

action α.

Note that, when there are ω processes in the source state s1 at configuration

Ca = (v,Ma, Da) (i.e. Ma(s1) = ω) and the destination state s2 is different from

s1, then two possible configurations may result from Ca as described above (see

Eqs. (5.1)). If Ca′
= (v′,Ma′

, Da′
) represents the resulting abstract configuration,
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then process count in state s1 at configuration Ca′
(i.e. Ma′

(s1)) is either– (i) ω,

assuming there were greater than cutp processes in s1 at configuration Ca, or (ii)

cutp−1, assuming there were exactly cutp processes in s1 at configuration Ca. Similar

arguments apply to Da(m1) and Da(m2) when there are ω number of channels with

contents m1. Given the above notion of abstract configurations CFGabs, we define an

abstract transition relation ↪→a⊆ CFGabs × Σ× CFGabs as follows.

Definition 5.2 (Abstract Transition Relation ↪→a). Let S = (V arG, v
g
in, TSP) be a

system model, Ca = (vg,Ma), C ′a = (v′g,M
′
a) ∈ CFGabs be its abstract configurations,

and α ∈ Σ be an action. Then (Ca, α, C
′
a) ∈↪→a if and only if ∃p ∈ P ,∃ s = (l, v), s′ =

(l′, v′) ∈ Sp, s.t.

1. (l, α, l′) ∈→p is a transition in TSp,

2. Ma(s) ≥ 1, i.e. there is at least one process in s,

3. v and vg satisfy the pre-condition Preα.

4. v′(v′g) is the effect of post-condition Postα on v(vg). Here v′g represents an up-

date of global variables V arG, which can later be read/updated by other processes,

thus allowing for shared variable communication.

5. If α

6. If last action executed was a send1 event, then α must be the corresponding

receive event. If the matching receive cannot be executed, then the last executed

send event is rolled back, and some other enabled action is executed in its place.

1Recall that, we only consider synchronous message communication.
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Figure 5.1: Partial (abstract) state exploration graph for p1 (Np1 = ω).

7. The relation updatea(s,Ma, α, s
′,M ′

a) holds.

For illustration, we again consider the example in Figure 3.2. Assume that, an

unbounded number of processes (ω) of type p1 are created initially, and the default

cutoff number cutp1 = 1 is used. For i ∈ [0, 3], si = (li, ε), where li is a control

location in TSp1, and since p1 has no local variables, their valuation is represented as ε.

Further, assuming that there are no global variables, we omit global variable valuation

from the abstract configurations. Hence, we represent the abstract configurations for

this system by a mapping Ma, such that Ma(si), i ∈ [0, 3] represents the number

of p1 processes in state si. Its partial abstract state exploration graph is shown

in Figure 5.1. Initially, action α0 is executed by a process in state s0 from the

initial configuration (Cin
a ), resulting in two different configurations C1 and C2. The

configuration C1
a (towards left) corresponds to the case where ω represents exactly

one process in state s0 at Cin
a , while configuration C2

a (towards right) corresponds

to the case where ω represents two or more processes in state s0 at Cin
a . Further,

all actions α0, α1 and α2 are enabled at configuration C2
a , while only α1 and α2 are
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enabled at configuration C1
a . The paths following these abstract configurations are

explored in a similar manner.

5.2 Soundness of Abstraction

We now show the soundness of proof search over the abstract state space. Before

proceeding to the proof, we first define a relation '⊆ CFG× CFGabs as follows.

Definition 5.3. For all Cc = (vgc ,Mc) ∈ CFG and Ca = (vga,Ma) ∈ CFGabs, Cc ' Ca

iff vgc = vga, and ∀p ∈ P ,∀s ∈ Sp, Ma(s) ≥ |Mc(s)|.

We now prove that our abstract execution semantics is an over-approximation of

the concrete execution semantics.

Theorem 1. Let σ be a possibly infinite sequence of actions that can be exhibited in

the concrete execution of a system model S with initially N c
p ∈ N processes of type p.

Then, σ can be exhibited in the abstract execution of S with initially Na
p processes of

type p, where either Na
p = ω or Na

p ∈ N s.t. Na
p ≥ N c

p .

Proof. In order to prove this theorem, we consider the following property. Recall that

↪→ and ↪→a denote the concrete and abstract transition relations respectively.

Property 1:

∀(Cc, α, C ′c) ∈↪→,∀Ca ∈ CFGabs, Cc ' Ca ⇒ ∃(Ca, α, C ′a) ∈↪→a, s.t. C ′c ' C ′a.

We prove the above property as follows. Let Cc = (vgc ,Mc), C
′
c = (vg

′
c ,M

′
c) ∈ CFG,

and Ca = (vga,Ma) ∈ CFGabs, s.t. (Cc, α, C
′
c) ∈↪→ and Cc ' Ca. Suppose by executing

26



α in concrete execution, a process o of type p moves from state sα to state s′α. Hence,

updatec(sα,Mc, α, s
′
α,M

′
c) from Def. 4.3 holds.

Since Cc ' Ca, by Def. 5.3, vgc = vga; moreover, Ma(sα) ≥ |Mc(sα)| and Ma(s
′
α) ≥

|Mc(s
′
α)|. Thus, action α can be executed by choosing a process from state sα in

the abstract execution. Let C ′a = (vg
′
a ,M

′
a) be the resulting abstract configuration.

Without loss of generality, we assume that sα 6= s′α.

If Ma(sα) ∈ N, by the definition of updatec and udpatea (ref. Sections 4 and 5),

we have intermediate mappings I ′c(sα) = Ic(sα)− {o} and I ′a(sα) = Ia(sα)− 1. Now,

we consider the following cases based on action α.

1. If α does not create new process and sα 6= s′α, then M ′
a(sα) = I ′a(sα) and

M ′
c(sα) = I ′c(sα). Since Ma(sα) ≥ |Mc(sα)|, we have M ′

a(sα) ≥ |M ′
c(sα)|.

2. If, by executing α, a new process oq of type q is created and starts its execution

at state sq, then we have M ′
c(sq) = Mc(sq) ∪ {oq} and M ′

a(sq) = Ma(sq) + 1.

Since Ma(sα) ≥ |Mc(sα)|, we have M ′
a(sα) ≥ |M ′

c(sα)|.

If Ma(sα) = ω, then by the definition of updatea, we always allow the possibility

that M ′
a(sα) = ω. By the similar argument as in the case of Ma(sα) ∈ N, we have

M ′
a(sα) ≥ |M ′

c(sα)|. Similar argument applies to M ′
a(s
′
α). Finally since the effect of

action α is the same on vgc and vga, we have vg
′
c = vg

′
a . Therefore, C ′c ' C ′a.

Property 1 establishes that ' is a simulation relation. To complete the proof of

the main theorem, we only need to show that the initial configurations in the concrete

and abstract execution semantics are related by '. This is indeed the case, and this

concludes the proof.
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5.3 When is the abstraction exact?

We have now established that our abstract execution semantics is an over approxi-

mation — any execution trace exhibited in the concrete execution semantics is also

exhibited in the abstract execution semantics. Further, our abstract execution seman-

tics is exact (i.e., any sequence of actions allowed by the abstract execution semantics

is also allowed by the concrete execution semantics) iff the following conditions hold–

C1. In abstract execution, the process counts in a process type p are always rep-

resented using a natural number (i.e. they never become ω) and are updated

following the usual arithmetic rules. Note that cutp does not play any role in

this case.

C2. For each process type p, the initial number of processes in abstract execution

(Na
p ) is equal to the initial number of processes in the concrete execution (N c

p),

i.e. Na
p = N c

p .

Definition 5.4. Let CFGabs (CFG) be the set of abstract (concrete) configurations

of system model S. Then for all Ca = (vga,Ma) ∈ CFGabs and Cc = (vgc ,Mc) ∈ CFG,

Ca 'a Cc iff vga = vgc and ∀s ∈ SP , (Ma(s) = |Mc(s)|).

Theorem 2. Let σ = α0α1 . . . be a possibly infinite action sequence exhibited in the

abstract execution of S satisfying C1, then σ can be exhibited in the concrete execution

of S satisfying C2, and for i ≥ 0, Ci
a 'a Ci

c, where Ci
a (Ci

c) is the abstract (concrete)

configuration before the abstract (concrete) execution of αi.

Proof. In order to prove this theorem, we consider the following property. The ↪→
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and ↪→a denote the concrete and abstract transition relations respectively.

Property 2:

∀(Ca, α, C ′a) ∈↪→a,∀Cc ∈ CFG, Ca 'a Cc ⇒ ∃(Cc, α, C ′c) ∈↪→, s.t. C ′a 'a C ′c.

We prove the above property as follows. Let Ca = (vga,Ma), C
′
a = (vg

′
a ,M

′
a) ∈

CFGabs, and Cc = (vgc ,Mc) ∈ CFG, s.t.(Ca, α, C
′
a) ∈↪→a and Ca 'a Cc. Suppose by

executing action α in the abstract execution, a process of type p moves from state sα

to s′α, where sα, s
′
α ∈ Sp.

Since Ca 'a Cc, we have vga = vgc and ∀s ∈ SP , (Ma(s) = |Mc(s)|), which implies

that ∀s ∈ SP ,Ma(s) ∈ N. Hence, by the definition of updatea, we have intermediate

mappings I ′a(sα) = Ma(sα)−1 and I ′a(s
′
α) = Ma(s

′
α)+1. Moreover α can be executed

by a process op of type p at state sα in the concrete execution, which results in

the intermediate mappings – Ic(sα) = Mc(sα) − {op} and Ic(s
′
α) = Mc(s

′
α) + {op}.

Therefore, we have Ia(sα) = |I ′c(sα)| and Ia(s
′
α) = |I ′c(s′α)|. Now, based on the

characteristic of action α, we consider the following cases:

1. If α does not create new process, then for abstract execution, we have M ′
a(sα) =

Ia(sα), M ′
a(s
′
α) = Ia(s

′
α); and for concrete execution, we have M ′

c(sα) = Ic(sα),

M ′
c(s
′
α) = Ic(s

′
α). Therefore, M ′

a(sα) = |M ′
c(sα)|, M ′

a(s
′
α) = |M ′

c(s
′
α)|.

2. If, by executing α, a new process of type q is created and starts its execution at

local state sq. Moreover, in concrete execution, this new process is identified as

oq. Then, in abstract execution, we have M ′
a(sq) = Ia(sq) + 1, and for all other
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s ∈ ScP , M ′
a(s) = Ia(s). In concrete execution, we have M ′

c(sq) = Ic(sq) ∪ {oq},

and for all other s ∈ SP , M ′
c(s) = Ic(s). Therefore, we have M ′

a(sα) = |M ′
c(sα)|,

M ′
a(s
′
α) = |M ′

c(s
′
α)|.

Finally, the effect of α is the same on vgc and vga. Therefore, we have C ′a 'a C ′c.

Property 2 establishes that 'a is a simulation relation. It is easy to see that

C0
a 'a C0

c , i.e. the initial configurations in the abstract and concrete execution

semantics are related by 'a. This concludes the proof.

5.4 Extending Abstraction with Count Variables

In the previous section we discussed our state space abstraction which involved ab-

stracting away process ids. From the real life case studies that we have modeled for

our experiments, we observe that this counter abstraction alone is not sufficient for

modeling most of these examples. These examples generally involve a process (e.g.

a controller) that needs to communicate with, and maintain a count of processes of

another type (e.g. several clients). Then, if we intend to verify a system which has

an unbounded number of processes, say of type p, we cannot use a variable with a

finite domain to keep a count of p-processes.

5.4.1 Extended Abstraction Scheme

In order to keep track of the number of processes of type p with an unbounded

number of processes, we introduce process-count variables having the domain N ∪

{ω}. We denote the set of all process-count variables as V arω. For a process-count

variable, we only allow assignment operation that initializes it with a constant value
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or ω, as well as operations that increment or decrement its value by 1, and obey

the following execution semantics2. For a process-count variable v ∈ V arω used for

counting processes of type p:

v++ =


v + 1, v < cutp − 1

ω, otherwise.

v−− =


v − 1, v < cutp

cutp − 1 or ω, otherwise.

Moreover, v can be involved in a boolean expression: B ≡ v Relop c, where

Relop is a relational operator and c ∈ N. Here, we only consider the case where

Relop is ≤. If v ∈ [0, cutp), B evaluates to true if v ≤ c, and false otherwise. If

v = ω and c < cutp, then B is false. Otherwise, if v = ω and c ≥ cutp, then we non-

deterministically allow B to be either true or false. Various other relational operators

are considered in a similar manner.

Thus, if process type p has ω processes in abstract execution, the value of v lies

in the domain [0, cutp) ∪ {ω}, where ω indicates the value of v to be cutp or greater.

Further, when v is decremented by one (i.e. v−−), if the original value of v is ω,

then the resulting value of v is non-deterministically chosen to be either cutp−1 or ω.

The former (latter) choice corresponds to the possibility that value of v was equal-to

(greater-than) cutp.

In Promela, a process-count variable used for counting processes of type p, is

2The abstract semantics can be similarly extended to support increment/decrement of a process
count variable by any constant number c. The case c = 1, worked out here, is most common.
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declared using the following syntax– ‘abs p X’, where p is the process-type and X is

any valid string allowed in a variable name in Promela. This specific format allows

the verifier to identify and update these variables as per the rules described above.

Since the domain of variable x ∈ V arω includes the unbounded value represented

as ω, to distinguish it from the concrete domain of x, i.e. Dx (= N), we represent the

abstract domain as Dax (i.e. N∪ {ω}). Note that, for all other variables y ∈ (V arP ∪

V arG)\V arω, Day = Dy. Then, we use V alap to represent the abstract valuations

of variables in V arp, which is a mapping for each variable to its abstract domain.

Let V alaP =
⋃
p∈P V al

a
p . The abstract valuations of global variables is represented

similarly as V alaG. Accordingly, the abstract states of a process type p are represented

as Sap ⊆ Lp × V alap , where Lp if the set of local states in the transition system TSp

as before. The abstract initial p-state is given by sap,in = (lpin, v
a
p,in), where vap,in is

an initial valuation of variables in p over abstract variable domain. Further, we set

SaP =
⋃
p∈P S

a
p .

Since the domain of variables in V arω differs in the abstract execution as compared

to the concrete execution, we are to establish a relation between valuation of variables

in the concrete and abstract execution as following. Let R be a relation between

valuation of variables in concrete and abstract domain: R ⊆ (V alG×V alP)×(V alaG×

V alaP). For all g ∈ V alG, f ∈ V alP , ga ∈ V alaG, fa ∈ V alaP : (g, f)R(ga, fa) iff

1. ∀v ∈ V arG\V arω, ga(v) = g(v).

2. ∀v ∈ V arP\V arω, fa(v) = f(v).

3. ∀v ∈ V arG ∩ V arω, ga(v) = g(v), if g(v) ∈ [0, cutp);
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and ga(v) = ω, otherwise.

4. ∀v ∈ V arP ∩ V arω, fa(v) = f(v), if f(v) ∈ [0, cutp);

and fa(v) = ω, otherwise.

5.4.2 Soundness with Process-count Variables

We now refine the relation '⊂ CFG × CFGabs with respect to R between concrete

and abstract configurations as follows.

Definition 5.5. For all Cc = (vgc ,Mc) ∈ CFG and Ca = (vga,Ma) ∈ CFGabs, Cc ' Ca

iff ∀p ∈ P, ∀sc = (l, vc) ∈ Sp,∃sa = (l, va) ∈ Sap , s.t.(v
g
c , vc)R(vga, va) ∧ Ma(sa) ≥

|Mc(sc)|.

We now prove that our abstract execution semantics is an over-approximation of

the concrete execution semantics.

Theorem 3. Let σ be a possibly infinite sequence of actions that can be exhibited in

the concrete execution of a system model S with initially N c
p ∈ N processes of type p.

Then, σ can be exhibited in the abstract execution of S with initially Na
p processes of

type p, where either Na
p = ω or Na

p ∈ N s.t. Na
p ≥ N c

p .

Proof. In order to prove this theorem, we consider the following property. Recall that

↪→ and ↪→a denote the concrete and abstract transition relations respectively.

Property 1:

∀(Cc, α, C ′c) ∈↪→,∀Ca ∈ CFGabs, Cc ' Ca ⇒ ∃(Ca, α, C ′a) ∈↪→a, s.t. C ′c ' C ′a.
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We prove the above property as follows. Let Cc = (vgc ,Mc), C
′
c = (vg

′
c ,M

′
c) ∈ CFG,

and Ca = (vga,Ma) ∈ CFGabs, s.t. (Cc, α, C
′
c) ∈↪→ and Cc ' Ca. Suppose by executing

α, a process o of type p is moved from state sc = (l, vc) to state s′c = (l′, v′c). Hence,

updatec(sc,Mc, α, s
′
c,M

′
c) in Def. 4.3 holds.

Since Cc ' Ca, by Def. 5.5, ∃sa = (l, va) ∈ SaP , s.t.(g, f)R(ga, fa) ∧ Ma(sa) ≥

|Mc(sc)|, where g ∈ V alG, f ∈ V alP , fa ∈ V alaG, fa ∈ V alaP . Since α is executable

from sc, to show that α is also executable from sa in the abstract execution, we first

need to show that vga and va satisfy Preα. Since (vgc , vc)R(vga, va), let x be a variable

in the system, we consider the following cases:

1. If x ∈ V arG\V arω, then ga(x) = g(x), and hence ga(x) satisfies Preα. Similar

argument applies to x ∈ V arP\V arω.

2. If x ∈ V arG ∩ V arω, then ga(x) ≥ g(x). Now, consider boolean expression

B ≡ xRelopc, where Relop is any relational operator and c is a constant.

Here, we take the case where Relop is ≤ as an example. Various other relational

operators can be considered in a similar fashion. Since g(x) ≤ c evaluates to

true, we consider the evaluation of ga(x) ≤ c as follows.

• If g(x) ∈ [0, cutp), then ga(x) = g(x). Hence, ga(x) ≤ c evaluates to true.

• If g(x) ≥ cutp, then ga(x) = ω. Let g(x) = n0 ∈ N. Since ω represents

a value greater than or equal to cutp, ga(x) is possible to evaluate to n0

(n0 ≥ cutp). Therefore, we always allow the possibility that ga(x) ≤ c

evaluates to true.

34



Hence, whenever g(x) satisfies Preα, ga(x) satisfies Preα. Similar argument

applies to x ∈ V arP\V arω.

Let C ′a = (vg
′
a ,M

′
a) ∈ CFGabs be the resulting abstract configuration, such that

a process moves to state s′a = (l′, v′a) ∈ Sap by executing α in abstract execution.

Consider the global and local variables. For a variable x, let vc and v′c be the valu-

ation of x before and after execution of α in concrete execution, respectively. Their

corresponding valuations in the abstract execution are va and v′a. If x ∈ V arG\V arω,

then since vc = va and the effect of α on x in concrete and abstract executions are

identical. Hence, we have v′c = v′a. Similar result is obtained for V arP\V arω. If

x ∈ V arω, since va ≥ vc, by the operational semantics for abstract-count variables,

we have v′a ≥ v′c. Hence, we can easily see that (vg
′
c , v

′
c)R(vg

′
a , v

′
a).

Further, similar to the proof of Theorem 1 in Section 5, by the semantics of updatec

and udpatea, we have M ′
a(sa) ≥ |M ′

c(sc)| and M ′
a(s
′
a) ≥ |M ′

c(s
′
c)|. Therefore, C ′c ' C ′a.

Property 1 establishes that ' is a simulation relation. To complete the proof of

the main theorem, we only need to show that the initial configurations in the concrete

and abstract execution semantics are related by '. This is indeed the case, and this

concludes the proof.

Note that under condition C1 and C2 (refer Page 28), Sap = Sp for all process type

p and Da
x = Dx for all variable x. Hence, our abstraction is again exact. Theorem 2

and its proof in Section 5 also apply in this case.
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l0

l1

l2

l3

α0

α1

α2

Server Client

…

… …
α0 : abs_Client_l2 > 0; abs_Client_l2‐‐; snd(status)
α1 : abs_Client_l2 == 0;
α2 : rcv(status) 

Figure 5.2: Example of using process-count variable

5.4.3 Elimination of Spuriousness Caused by Process-Count Variables

In our modeling, process-count variables can be used as a global shared-variable or

local variable that keeps track of the number of processes in a particular control state

of a process type. The use of data abstraction, in particular, process-count variables,

introduces extra spurious behaviors in the system. This is mainly due to the fact that

a process-count variable and the actual number of processes that it keeps track of are

both updated in a non-deterministic manner. A server-client example in Figure 5.2

demonstrates the issue. In this example, a Server informs all the connected Clients

of its status, and the number of connected clients is maintained via Server’s local

variable abs Client l2. After one execution of send and receive actions, four global

states can be generated (Figure 5.3). The global states in dotted box are spurious,

since in these states, the process-count variable (abs Client l2) is unbounded while

the actual number of processes in the corresponding state (l2) is a concrete number

less than cutClient, or vise-versa.

To eliminate the spuriousness caused by using process-count variables, we require

that a process-count variable to be associated with a control state whose number
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Server: [s = (loc, abs_Client_l2), Ma(s)], …
Client:  [s = (loc), Ma(s)], …

S: [(l0, ω), 1]
C: [(l2), ω]

S: [(l0, cutclient-1), 1]
C: [(l2), ω], [(l3), ω]

S: [(l0, cutclient-1), 1]
C: [(l2), cutclient-1], [(l3), ω]

S: [(l0, ω), 1]
C: [(l2), cutclient-1], [(l3), ω]

… …

deadlock
…

α0α2

α0α2 α0α2 α0α2

Each box is of the form:

Figure 5.3: Partial state exploration in the presence of process-count variable

of processes it keeps track of. In Promela, to count the number of processes at

local state l of a process type p, we follow the naming convention abs p l for the

associated process-count variable. Moreover, an internal variable (name it as int p l)

is used to maintain the execution choice of abs p l (i.e., ω − 1 = ω or ω − 1 = cutp).

During state space exploration, when control reaches an execution state s = (l, vp)

of process type p and an action α ∈ Σ is enabled, a check is performed to make

sure that Ma(s) matches the value of abs p l (note that, the only possible reason for

the two not matching is because the initial assignment of abs p l does not equal to

Ma(s), and hence should be reported as an error); moreover, after the execution of

α, Ma(s) is updated following our abstract semantics but with the same execution

choice as the update of abs p l. Consider the Server-Client example in Figure 5.2.

The control state associated with process-count variable abs Client l2 is l2 of process

type Client. When abs Client l2 is updated as a post-condition of action α0, internal

variable int Client l2 is updated; and when α2 is enabled from an execution state

s = (l2, vClient), Ma(s) is updated based on the value of int Client l2, which ensures

that the spurious global states (the dotted boxes in Figure 5.3) are never reached.
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To summarize, the use of process-count variables in a Promela model requires

the following steps:

1. Identify and label the control states that associate with any process-count vari-

ables.

2. Declare process-count variable (either local or global) using naming convention

abs p l, such that it counts the number of processes at control state (with label)

l of process type p.
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CHAPTER 6

VERIFICATION

We now elaborate our verification procedure outlined earlier in Figure 3.1. It proceeds

on the abstract state representation discussed in the preceding.

6.1 Model Checking

We use linear-time temporal logic (LTL) [26] for specifying the properties to be veri-

fied. This decision is influenced by our use of model checker Spin [19] for implement-

ing our verification framework. Spin uses LTL as a property specification language.

Properties in LTL are specified using atomic-propositions, boolean-operators (¬, ∨,

∧), and temporal-operators (G, F , X, U , R).

As described earlier in Section 5.4, our system model may also contain process-

count variables (denoted as V arω), such that a variable v ∈ V arω is used for counting

processes of a given type, say p, with its domain ranging over [0, cutp) ∪ {ω}. Then,

for LTL property specification, we restrict the boolean expressions involving a global

process-count variable v to be of the form v Relop c, such that c ∈ [0, cutp) and

Relop is any relational operator. This restriction ensures deterministic evaluation of

boolean expressions involving the process-count variables.

Since we use Spin as our underlying implementation framework, we are able to

take advantage of its model checking capabilities. Spin performs on-the-fly (explicit)
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state-space construction, while trying to find a counterexample trace violating the

property being verified. If such a trace cannot be found, it means that the property

holds true in the given system model. Otherwise, a counterexample trace indicating

property violation is reported by Spin. Our abstract execution semantics allow us to

verify a family of concrete systems as follows.

Suppose a LTL property ϕ is satisfied in our abstract verification with Na
p processes

of type p, where Na
p ∈ N ∪ {ω}. Then, from Theorem 1, ϕ is also satisfied by all

concrete systems having N c
p ≤ Na

p processes of type p, where N c
p ∈ N.

6.2 Spurious counter-example detection

Our abstract execution semantics is an over-approximation in terms of allowed ex-

ecution traces. Thus, a counter-example trace obtained from model checking over

the abstract state space may be spurious, i.e. it cannot be exhibited in any concrete

system with a finite number of processes (less-than or equal-to the number of pro-

cesses in the abstract execution for each process type). In the following, we present

an approach for detecting spurious counter-examples in the absence of process-count

variable, and discuss abstraction-refinement for eliminating them in the next section.

The result also holds in the presence of process-count variable with spuriousness elim-

ination introduced in section 5.4.3.

We now introduce some definitions on finite traces. Note that our spurious

counter-example detection and abstraction-refinement work for finite as well as in-

finite counter-example traces. The notions we introduce now, will work on finite

prefixes of counter-example traces obtained from model checking.
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Let σ = α1 . . . αn ∈ Σ∗ be a finite execution trace s.t., action αi is executed by a

process moving from execution state si ∈ SP to state s′i ∈ SP . We set src(αi) = si

and dst(αi) = s′i. For a state s ∈ SP , we define:

in(s, σ) = |{i | dst(αi) = s, i ∈ [1, n]}|

out(s, σ) = |{i | src(αi) = s, i ∈ [1, n]}|

Here, in(s, σ) (out(s, σ)) gives the number of processes moving in to (out of) state

s during the execution of σ. We use new(s, σ) (del(s, σ)) to represent the number

of processes that are created (deleted) during execution of σ such that, they start

(terminate) their execution in state s. For convenience, we also define the following

terms: enter(s, σ) = in(s, σ) + new(s, σ), and leave(s, σ) = out(s, σ) + del(s, σ).

Finally, we define predicate valid(s, σ) as:

init(s) + enter(s, σ)− leave(s, σ) > 0 (6.1)

Further, for a given finite trace σ and a process type p we define the quantity np,σ

as follows. We first determine leave(spin, σ), the number of p processes that move out

from the initial p-state spin ∈ Sp during the execution of σ. Then, we define

np,σ = min(Np, leave(s
p
in, σ)) (6.2)

where Np ∈ N ∪ {ω} is the initial number of processes of type p in the abstract ver-

ification run, i.e. Np = init(spin). Note that np,σ ∈ N. Let Pre(σ) denote the set

of all prefixes of σ (excluding σ). We now consider two cases, based on whether a

counter-example is finite or infinite.
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Case-A: σ is finite. Let σ = α0 . . . αn be a finite counter-example trace obtained

from an abstract verification run s.t., action αi is executed by a process moving from

state si ∈ SP to state s′i ∈ SP , i.e. src(αi) = si and dst(αi) = s′i. We show that σ is

non-spurious ⇔ ∀γ ∈ Pre(σ), valid(s|γ|, γ) is true in abstract execution.

Proof. A.1 ⇐: Assume that ∀γ ∈ Pre(σ), valid(s|γ|, γ) is true in the abstract execu-

tion. We now show σ to be non-spurious, by showing that σ can be exhibited in the

concrete execution of a system where each process type p initially has np,σ processes.

The proof proceeds by induction on the length of σ.

Base case: It holds trivially for |σ| = 0.

Induction hypothesis: Trace σ1 = α0 . . . αk−1 can be exhibited in a concrete execution

with initially np,σ number of p-processes. Further, for all 0 ≤ i < k, action αi has the

same source state src(αi) and destination state dst(αi) in both concrete and abstract

execution.

Inductive step: We now consider execution of σ1 · αk. Since, σ1 is a prefix of σ and

∀γ ∈ Pre(σ), valid(s|γ|, γ) is true in the abstract execution, valid(sk, σ1) also holds

in the abstract execution. Here, k = |σ1| and sk is the state from which a process exe-

cutes αk in the abstract execution. Thus, init(sk)+enter(sk, σ1)−leave(sk, σ1) > 0 in

the abstract execution (see Eq. (6.1)). Note that, both leave(sk, σ1) and enter(sk, σ1)

depend on the source and destination states of processes executing various actions

in σ1. Since σ1 is also exhibited in concrete execution (from induction hypothesis),

the value of these quantities in concrete execution will be the same as in the abstract

execution. We now consider following two cases for execution of αk in the concrete
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execution.

1. If sk ∈ Sp is not the initial p-state (sk 6= spin), then init(sk) = 0 in both abstract

and concrete executions. Since, valid(sk, σ1) is true in the abstract execution, we get

enter(sk, σ1) > leave(sk, σ1), which will also hold in the concrete execution. Hence,

there is at least one process in state sk in concrete execution (after σ1) which can be

chosen to execute αk.

2. If sk = spin is the initial p-state, then in the concrete execution there will be

initially np,σ = min(Np, leave(sk, σ)) processes in state sk. Since valid(sk, σ1) holds

true in the abstract execution, we get init(sk)(= Np) + enter(sk, σ1) > leave(sk, σ1).

Recall that np,σ = min(Np, leave(sk, σ)), as we are considering the case sk = spin.

If np,σ = Np in concrete execution, since values of enter(sk, σ1) and leave(sk, σ1)

in concrete execution are same as in the abstract execution, valid(sk, σ1) is also

true in the concrete execution – a process can then be chosen from sk to execute

αk in concrete execution. Otherwise, np,σ = leave(sk, σ). Since in abstract exe-

cution αk is executed by a process in state sk (after occurrence of σ1), we have

leave(sk, σ) ≥ leave(sk, σ1) + 1. Thus, in the concrete execution valid(sk, σ1) also

holds since, init(sk)(= leave(sk, σ)) + enter(sk, σ1) > leave(sk, σ1), and a process

from state sk can be chosen to execute αk.

A.2 ⇒: We show this by contradiction. Assume that σ = α0 . . . αn is non-spurious.

Then σ can be exhibited in a concrete execution with N c
p ≤ Np (N c

p ∈ N) number of
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processes of type p, s.t. src(αi) = si and dst(αi) = s′i. Now assume that there exists

a γ = α0 . . . αk−1 ∈ Pre(σ) such that for j ∈ [0, k− 1] src(αj) = sj, dst(αj) = s′j, and

valid(sk, γ) (k = |γ|) is false. This implies init(sk)+enter(sk, γ)− leave(sk, γ) ≤ 0 in

the abstract execution. If sk = spin is the initial state of a type p, then initially there

are Np processes in state sk in the abstract execution (i.e. init(sk) = Np in abstract

execution). In concrete execution init(sk) will be equal to N c
p ≤ Np. Otherwise, if sk

is not an initial state of any process type, then initially there are zero processes in sk

in both abstract and concrete executions (i.e. init(sk) = 0).

Therefore, in either case, the value of init(sk) in concrete execution is less than or

equal to that in abstract execution. Further, since both leave(sk, γ) and enter(sk, γ)

depend on the source and destination states of processes executing various actions in

γ, their value in concrete execution will be same as in the abstract execution. Hence,

init(sk) + enter(sk, γ)− leave(sk, γ) ≤ 0 in the concrete execution, and there can be

no process in state sk after the occurrence of γ that can be chosen to execute αk,

which is a contradiction.

Case-B: σ is infinite. In this case, σ is of the form σpr(σsx)
ω. Here σpr and σsx

are finite action sequences s.t., (σsx)
ω represents an unbounded repetition of σsx, and

the abstract configurations before and after each iteration of σsx are same in abstract

execution. Let Sσsx ⊆ SP denote the execution states from/to which processes move

during an iteration of σsx. Then, we show that: σ is non-spurious ⇔ (i) σprσsx is

non-spurious, and (ii) ∀s ∈ Sσsx · enter(s, σsx) = leave(s, σsx).

Proof. B.1 ⇐: Suppose conditions (i) and (ii) hold above. Let σ′ = σprσsx. From
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condition-(i) we get that σ′ can be exhibited in a concrete system. In fact, by reusing

the arguments from Case-A.1 described earlier, we get that σ′ can be exhibited in a

concrete system with initially np,σ′ ∈ N processes for each process type p.

Further, condition-(ii) ensures that the number of processes residing in state

s ∈ Sσsx before and after each iteration of σsx are same. Hence, σsx can be re-

peated infinitely often in the concrete execution. This means σ = σpr(σsx)
ω is also

exhibited in a concrete execution with np,σ′ processes for each process type p

B.2 ⇒: Assume that σ is non-spurious. Then σprσsx is also non-spurious (i.e. con-

dition (i) holds), and it can be exhibited in a concrete execution. We use contra-

diction to show that condition (ii) also holds. Assume that there exists a state

s′ ∈ Sσsx such that enter(s′, σsx) 6= leave(s′, σsx). Consider the following two cases:

(a) enter(s′, σsx) < leave(s′, σsx), and (b) enter(s′, σsx) > leave(s′, σsx).

Case (a) above implies that after each iteration of suffix σsx, the number of pro-

cesses in state s′ will be strictly less than what it was before the occurrence of σsx.

Hence, after a finite number of iterations of σsx in concrete execution, the number of

processes in s′ will become 0. Therefore, σsx cannot iterate infinitely often.

Case (b) above implies that after each iteration of suffix σsx, the number of pro-

cesses in state s′ will be strictly greater than what it was before the occurrence of

σsx. Hence, the number of processes in s′ will grow unboundedly as σsx is repeated

infinitely often. If s′ is a state of process type p, the number of processes in s′ is no

greater than the total number of processes of type p. However, in a concrete execution,

the total number of processes of each process type is bounded. Thus, σ cannot occur
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in a concrete execution (i.e. it is spurious), which contradicts our assumption.

6.3 Abstraction Refinement

We now discuss an abstraction-refinement approach for eliminating spurious counter-

examples.

Finite counter-example. Let σ = α0 . . . αn be a finite spurious counter-example

such that, action αi is executed by a process moving from state si ∈ SP to state s′i ∈

SP in the abstract verification, i.e. src(αi) = si and dst(αi) = s′i. Recall that, Pre(σ)

is the set of all execution prefixes of σ, excluding σ itself. Since, σ is spurious, there

exists a prefix γ ∈ Pre(σ) such that valid(s|γ|, γ) is false (see Section 6.2, Case-A).

We determine the smallest prefix σm = α0 . . . αk−1 such that, in abstract execution:

(i) ¬valid(sk, σm), where k = |σm|, and (ii) ∀γ ∈ Pre(σm) · valid(s|γ|, γ). Since,

valid(sk, σm) (k = |σm|) is false, this implies init(sk)+enter(sk, σm)−leave(sk, σm) ≤

0. Hence, after the occurrence of σm in abstract execution there can be no processes

in state sk. However, αk is executed by a process from sk after the occurrence of σm in

abstract execution – this is only possible, if process count in sk becomes unbounded

(i.e. ω) during execution of σm. Assuming sk is a state of process type p, its process

count can become ω only if number of processes in sk becomes cutp (the cutoff number

of p) during execution of σm. In order to prevent the process count in sk from

becoming ω in abstract execution, we determine the maximum number of processes

that can reside in sk during execution of σm, i.e. max(sk, σm) = max{init(sk) +

enter(sk, γ)−leave(sk, γ)|γ ∈ Pre(σm)}. Consequently, we set cutp = max(sk, σm)+1
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to prevent the occurrence of spurious trace σ in subsequent abstract verification runs.

For illustration, consider the system model with a single process type p1 as

shown in Figure 3.2 and the LTL property ¬(α0 ∧ Xα1 ∧ XXα2), specifying that

the trace α0α1α2 never occurs. As shown earlier in Section 3, with cutp1 = 1, σ

can be exhibited in the abstract execution s.t., src(α0) = (l0, ε), dst(α0) = (l1, ε),

src(α1) = src(α2) = (l1, ε), dst(α1) = (l2, ε) and dst(α2) = (l3, ε). Our check finds

σ to be spurious, as there exists σm = α0.α1 s.t. valid(s|σm|, σm) is false, where

s|σm| = s2 = src(α2) = (l1, ε). This is because, during execution of σm, we have

init(s2) = 0 and enter(s2, σm) = leave(s2, σm) = 1. Considering all prefixes of σm,

we can easily find that max(s2, σm) = 1. Then, if cutp1 is set to 2, the execution

sequence σ can no longer be exhibited in the abstract execution.

Infinite counter-example. Here σ = σpr(σsx)
ω. From Case-B in Section 6.2, σ is

spurious if either–

(i) σprσsx is spurious. This case is similar to that of the finite spurious counter-

example discussed in the preceding.

(ii) σprσsx is not spurious, but there exists a state s belonging to some process

type p, from which a p-process executes one of the actions appearing in σsx s.t.

enter(s, σsx) 6= leave(s, σsx) in abstract execution.

For case (ii), since suffix σsx is repeated infinitely often in the abstract execution

of σ, the abstract configuration, and hence, the process counts in state s are the

same during repeated execution of σsx in σ. As enter(s, σsx) 6= leave(s, σsx), this is

only possible if the count of processes in s is approximated to ω sometime during the
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repeated execution of σsx. We consider two sub-cases.

(ii-a) The process count in s is ω at the beginning/end of every execution of σsx

(in the abstract execution of σ).

(ii-b) The process count in s is a natural number n0 at the beginning/end of

every execution of σsx (in the abstract execution of σ). However, it grows to ω during

execution of σsx (and shrinks back to n0 before next execution of σsx).

For case (ii-a), the process count in s is ω at the beginning of the first execution

of σsx while executing σ = σpr(σsx)
ω, that is, at the end of σpr itself. Our abstraction

refinement sets the cutoff number of process type p to the maximum value of 1 +

init(s) + enter(s, γ) − leave(s, γ), where γ ∈ {σpr} ∪ Pre(σpr). This bounds the

maximum number of processes in state s after execution of σpr.

For case (ii-b), our abstraction refinement similarly prevents the process count

from becoming ω in s during the execution of σsx in σ. Here we set the cutoff number

of process type p to 1 +max{n0 + enter(s, γ)− leave(s, γ)|γ ∈ Pre(σsx)}.

6.4 Deriving a finite-state system for a non-spurious

counter-example

Finally we discuss the derivation of a system with finite number of processes that can

exhibit a given non-spurious counter-example trace σ. Thus, trace σ is obtained from

our abstract verification with unbounded number of processes, and then shown to be

non-spurious (as per our spuriousness check). We consider two cases.

(i) σ is finite. Then from Section 6.2, Case-A.1, we know that σ can be exhibited

in a finite state system with initially np,σ ∈ N number of processes of type p. From
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Eqn. (6.2) page 41, when the number of processes of type p is unbounded, np,σ is

equal to leave(sinp , σ) — the number of processes exiting the initial state of p while

executing σ.

(ii) σ is infinite and hence is of the form σpr · (σsx)ω. Let σ′ = σprσsx. Since σ is

non-spurious, from Section 6.2, Case-B.1, σ can be exhibited in a finite state system

with initially np,σ′ ∈ N number of processes of type p.
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CHAPTER 7

IMPLEMENTATION

Spin [19, 18] is a popular open-source linear-time temporal logic (LTL) model checker

for software verification. In this section, we describe our modifications involving

process abstractions to Spin, and for convenience call the modified version as Spin++.

7.1 Abstract State Representation

In Spin, the state of each active process in the system is maintained separately during

verification. The information maintained corresponding to each process consists of

its current control state and a valuation of its local variables. In addition, a unique

process id is used to identify each process in the system.

We modify the default Spin state representation by introducing abstraction over

process identities in Spin++, such that process instantiations of the same process-

type (declared using keyword proctype in Spin) are no longer distinguished based on

their process ids. Moreover, we no longer maintain the state of each process separately.

Instead, processes corresponding to the same process-type, say p, are grouped into

partitions during execution. Each such partition is identified by a p-state in Sp,

consisting of a control state in TSp and a valuation of p’s local variables. Then, at

runtime, corresponding to each process type we maintain a set of its partitions, and

the number of processes currently residing in each partition. Note that, the partition
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Figure 7.1: State representation in Spin and Spin++

set of a process type only contains partitions with at least one process in them; if the

process count of a partition becomes zero after some action at run time, then this

partition is removed from the partition set.

State Storage and Matching In Spin, each system state in the current explo-

ration graph is stored for state matching during verification. In the Spin state rep-

resentation, the order of processes is fixed for all the states, and comparison of any

two states is done byte by byte, with time complexity linear in the size of a system

state. Consider the example shown in Figure 7.1(a), where type p has two actions

α1 and α2, and no local variables (hence, p’s execution state is characterized by its

local control state). Two processes o1 and o2 of type p are created, and a sequence

of actions σ = α1α1α2 occurs. This results in the generation of four global states

as shown in Figure 7.1(b), with V i
G (i ∈ [0, 4]) representing the valuations of global

variables. We assume that α1, α2 do not modify global variables.
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However, with process abstraction in Spin++, although the order of active pro-

cess types in each system state is fixed, the order of partitions within a process type

p (representing p’s execution states, i.e. a subset of Sp with non-zero processes) may

vary. This occurs due to the addition or deletion of partitions, as processes move in

or out1 of partitions. Therefore, to be able to use the default Spin state matching al-

gorithm, we first sort the partitions corresponding to each process type before storing

them in the state vector. Consider the same example in Figure 7.1(a). The abstract

system states visited during the execution of σ are shown in Figure 7.1(c). Among the

four abstract global states generated, two of them (namely, AS1 and AS3) differ only

in the permutation of partitions of type p. This is due to the dynamic addition and

deletion of partitions as illustrated. As shown, sorting the partitions in AS3 results

in state AS1 and hence, AS3 is not stored as a new state in the state space.

7.2 Preservation of Spin Optimizations

Optimization techniques in Spin fall into two categories– (a) reducing the number of

reachable system states that must be searched to verify properties (e.g. partial order

reduction and statement merging), and (b) reducing the amount of memory needed

to store each state (eg. collapse compression and bitstate hashing).

Partial Order Reduction The partial order reduction and statement merging

techniques are based on the knowledge of dependency relations among different tran-

sitions in a system model. In Spin [19], to avoid any run-time overheads, these

1A partition is deleted when its process count becomes zero.
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Figure 7.2: Partial Order Reduction in Spin++

dependency relations are computed off-line, before a model checking run is initi-

ated. In our case, we only modify the state representation in Spin without affecting

the syntax or semantics of other operations. Hence, the dependency relations, and

consequently the partial order reduction and statement merging are preserved with

process abstractions in Spin++. For illustration, consider a system consisting of a

global variable g and a process type P with local variable x as shown in Figure 7.2(a).

The state exploration graph for this example in Spin++ with two instantiations of

process type P is shown in Figure 7.2(b). Note that, for any two instantiations of P ,

transitions labeled x = 1 and g = g+ 2 are mutually independent, and their different

inter-leavings would lead to the same system state. For example, in Figure 7.2(b) the

two paths –S1.S2.S4 and S1.S3.S4– between system states S1 and S4 are considered

equivalent. Hence, with partial order reduction enabled in Spin++, the dashed path

(S1.S2.S4) in Figure 7.2(b) is not explored.

53



Collapse compression In addition, Spin++ can also take advantage of state com-

pression techniques such as collapse compression and bit-state hashing. Collapse com-

pression addresses the state space explosion problem by dividing a system state into

several “components”. These “components” are then assigned a unique index number

and stored separately. This technique tries to exploit the observation that most of the

components of two distinct system states may be the same. When collapse compres-

sion is enabled in Spin, the global data objects and each active process in a system

state are identified as system components. For example, in Figure 7.1(c), the global

state S1 of original Spin consists of three components: value of global variables, state

of o1 and state of o2. In Spin++, we consider the following as system “components”

in a global system state — value of global variables, and the count of processes in

each local state of each process type. For example, for the abstract global state AS1

in Spin++ as shown in Figure 7.1(c), the “components” would be – global informa-

tion, and partitions s0 = (l0, ε), s1 = (l0, ε) of type P (ε denotes emptiness of local

variables). In other words, each local state (with process count greater than 0) of a

process type is considered as a system component in our state representation. This

enables the designer to use Spin’s collapse compression optimization on our abstract

state space.

Bitstate hashing In Spin, each system state is represented as a sequence of bits

(i.e, a bitvector). With bitstate hashing enabled, a hash table containing single bit

entries is used to store the visited states information. Further, a parameter k is

used such that, k independent hash functions are applied to a system state, with
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each function pointing to an entry in the hash table. Then, if all the k entries in

the hash table corresponding to some state are found to be 1, it indicates that the

state has already been visited. Otherwise, the state has not been visited and any

of the corresponding k bits that are 0 are set to 1. In Spin the default value of

k is 2 and can be set to other values using runtime options. Since several system

states can map to the same hashtable entry, state space search with bitstate hashing

may not be exhaustive. Of course, any counter-examples found can still be used for

debugging. In our tool Spin++, we also allow the designer the flexibility of using

bitstate hashing. The only change is in how the bitvector representation of a system

state is constructed. As mentioned earlier, a system state in the abstract state space

consists of (a) the state of global variables and (b) process counts for all local states

of all process types (for those local states where the process count is greater than 0).

This state representation gets converted into a bitvector. The rest of the state space

traversal — applying hash function(s) to the bitvector, looking up the hashtable, and

storing 0/1 in a hash table entry depending on whether the state is visited – remains

unchanged, allowing the designer to use bitstate hashing if he/she wants to.
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CHAPTER 8

EXPERIMENTS

In this section, we first describe our restrictions on Promela for system specification,

and on LTL properties for property specification. We then discuss various experimen-

tal results involving the use of Spin++ for verification. All our experiments were done

on a Pentium-IV 3 GHz machine with 2 GB of main memory.

8.1 Restrictions

Our proof method is applicable to verification of arbitrary LTL properties for any

Promela model, subject to the following restrictions. Recall that Promela is the

input language of the Spin model checker [19, 18] which allows system modeling via

concurrent processes communicating by shared variables and/or message passing.

Restrictions on Promela model Below, we summarize our restrictions on model

specifications described in Promela.

• Since we suppress the use of process ids in our abstraction, we disallow the use

of special Spin variables pid and last, which can refer to individual process

ids. For the same reason, we avoid accessing or checking the value returned by a

run statement (which creates a process and returns the process id in Promela).

• Only channels of size 0 can be declared, i.e. communication via message passing
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is synchronous. In addition, we allow inter-process communication via shared

variables.

Any Promela model satisfying these two restrictions can be verified in our pa-

rameterized verification framework. Thus, the user can now model parameterized

systems using a rich and popular modeling language like Promela, rather than hav-

ing to construct FSMs for each process type. Note that dynamic process creation and

annihilation is allowed in our system model.

Restrictions on LTL property Given a Promela model satisfying the above

restrictions, we verify any LTL property with the following restrictions.

• Atomic propositions in the LTL property do not refer to process identifiers. For

example we cannot have an atomic proposition of the form pid == 1 where pid

is a local variable capturing process identifiers. This restriction stems from our

count abstraction which does not keep track of process identifiers.

• Recall that our system model may also contain process-count variables (denoted

as V arω), such that a variable v ∈ V arω is used for counting processes of a

given type, say p, with its domain ranging over [0, cutp) ∪ {ω}. Then, for LTL

property specification, we restrict the boolean expressions involving a process-

count variable vp (which counts processes of type p) to be of the form vp Relop c,

such that c ∈ [0, cutp) and Relop is any relational operator. This restriction

ensures deterministic evaluation of boolean expressions involving the process-

count variables.
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Table 8.1: Promela modeling results
Example # Global Process # Local # Local

Vars type Vars Control Loc.
Client 0 26

CTAS 1 CM 2 77
WCP 0 8
Env 2 6

MOST 3 NS 0 5
NM 5 37

Handoff 0 4
Meta-lock 3 Shared Obj. 0 10

Thread 1 7
Futurebus+ 17 Cache 0 11

8.2 Examples Modeled

For experiments, we modeled the following four examples. In Table 8.1, we summarize

the key statistics of the Promela models for each of these examples.

The first example is a weather update controller, which is an important component

of the Center TRACON Automation System (CTAS) automation tools developed by

NASA for controlling air-traffic in large airports [1]. It consists of a central controller

(CM), a weather-control panel (WCP), and several Client processes. Clients first get

connected to the CM. Subsequently, all connected clients are updated with the latest

weather information from WCP via CM.

The second example models part of the Media Oriented Systems Transport (MOST)

protocol [2], which is a networking standard designed for interconnecting various

multimedia components in automobiles. The main components consist of a network-

manager (NM) and several network-slaves (NS). We model the network management
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part of this protocol which ensures secure communication between various applica-

tions in the MOST network.

The third example is the Java-metalock [3] protocol, a distributed algorithm en-

suring mutually exclusive access to a shared object (S) among arbitrary number of

Java Threads. A hand-off process (H) handles the race between the releasing thread

and several threads waiting to acquire S. If the object S is not-busy (i.e, no thread

currently owns it), then a requesting thread is immediately granted access to it. Oth-

erwise, S is busy and the owner thread releases access of S to one of the requesting

threads via the hand-off process.

As the final example, we modeled the cache coherence part of the IEEE Future-

bus+ Protocol [20], where we restrict our model to contain only a single bus segment

with one shared-memory module and multiple caches.

8.3 Reachability Analysis

The initial set of experiments involved doing a reachability analysis for the examples

modeled using both Spin and Spin++. The main aim of these experiments was to–

(i) compare the run-time and memory usage between Spin and Spin++, and (ii) ex-

perimentally evaluate the benefits of partial order reduction and collapse-compression

optimizations in Spin++. For each example we created several versions differing in

the number of processes.

The experimental results for state space exploration are shown graphically in

Figure 8.1. As we can observe, Spin++ clearly outperforms Spin by a significant

margin as the number of processes in the system increases. Moreover, with the
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Figure 8.1: State space exploration results.

increasing number of processes, while almost linear growth is observed for both run-

time and memory usage for Spin++, the growths are exponential in case of Spin.

The results with ω number of processes using Spin++ are also shown (the last entry

in these graphs).

In Figure 8.2, we show the reduction in the number of states explored due to partial

order reduction (POR) for MOST and Java Meta-lock protocols in Spin++. We are

able to take significant advantage of POR using Spin++ on these two protocols. The

results for CTAS and Futurebus+ are omitted here, as they do not exhibit a significant

improvement with POR enabled. For CTAS, there is almost no concurrency among

Client processes, and they interact with the controller in a synchronous manner one by
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Table 8.2: Collapse compression in Spin++.
Example # of No Collapse Compr. Collapse Compr.

(Proc. Type) Proc. Mem(MB) Time(s) Mem(MB) Time(s)
CTAS 100 489.62 39.41 236.60 64.95

(Clients) 200 O.M. – 1512.67 1037.00
MOST 350 699.04 40.04 298.87 57.36
(Slaves) 700 O.M. – 1367.03 354.44

Metalock 1.5× 105 653.29 56.27 479.93 86.67
(Threads) 3× 105 1304.38 119.67 959.40 190.19

Futurebus+ 50 26.88 2.07 26.47 3.24
(Caches) 100 190.42 16.74 186.94 29.16

O.M. indicates Out of Memory.

one; for Futurebus+ protocol, most transitions involve modification of shared global

variables (used for communication) and hence, are not independent.

Finally, with collapse compression enabled in Spin++, we could verify larger

models which would otherwise run out of memory (see Table 8.2). For example,

CTAS with 200 Clients and MOST with 700 Slaves cannot be explored without using

collapse compression. Both these instances ran out of memory as indicated by O.M.

In case of Futurebus+ protocol, we observe less memory reduction as compared with

the other two protocols. This is because, its model contains no local variables and a

process state only consists of a control location. Hence, no significant reduction can

be obtained using collapse compression.

61



Table 8.3: LTL property verification in Spin++.
Example # Proc. Mem (MB) Time Result Cutoff

P1: G(disabled ⇒ F(¬disabled))
10 Clients 4.97 0.23s

√
—

CTAS 20 Clients 14.09 1.23s
√

—
ω Clients 3.31 0.06s

√
1

P2: G(regValid ⇒ F(regUpdtd))
10 Slaves 4.27 0.08s

√
—

MOST 20 Slaves 7.96 0.28s
√

—
ω Slaves 3.31 0.02s

√
1

P3: G(abs Thread isOwner ≤ 1)
Java 50 Threads 3.28 0.03s

√
—

Metalock 100 Threads 3.41 0.05s
√

—
ω Threads 3.26 0.01s

√
2

P4: G(abs Cache em > 0⇒ abs Cache eu == 0)
10 Caches 3.36 0.03s

√
—

Futurebus+ 20 Caches 4.81 0.17s
√

—
ω Caches 3.62 0.09s

√
2

8.4 Verification of LTL properties

We verified our examples against some interesting LTL properties using Spin++.

Here, we consider one property for each example and present the verification results.

The verification results for our examples appear in Table 8.3.

For CTAS, the weather-panel (WCP) is disabled each time there is an interaction

initiated between Clients and the central-controller (CM), and is enabled once the

interaction is over. Hence, for CTAS we specify a liveness property: whenever WCP

is disabled, it will eventually be enabled (property P1, Tab. 8.3).

In case of MOST, we verify the property — whenever network-manager receives

a valid registration message from any slave, its registry gets updated (property P2,

Tab. 8.3).

For the Java meta-lock protocol, we verify the invariant property that at most
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one thread can own a shared object at any point of time (property P3, Tab. 8.3).

For Futurebus+, we verify the property — if a cache holds an exclusively-modified

copy of data, then no other caches can hold an exclusively-unmodified copy of the

same data (property P4, Tab. 8.3).

As we can observe from Table 8.3, all examples satisfied the respective properties

with initially a concrete number of processes for various process types. For these ex-

periments, the choice of cutoff number is not an issue — since the number of processes

is fixed initially and there is no unbounded process creation in these examples. In

other words, the process counts never become ω, thus avoiding any spurious behaviors

during abstract verification.

For experiments with an unbounded (ω) number of processes for some process

type, spurious counter-examples may be reported by abstract verification. During

abstract verification, the CTAS and MOST protocols satisfied their respective prop-

erties, with a cutoff number 1. For Futurebus+ protocol, a finite counter-example of

length 34 was obtained, with cutoff number 1. However, our spuriousness check proce-

dure (see Sec. 6.2) found this counter-example to be spurious. Using our abstraction-

refinement approach (see Sec. 6.3), we obtained a new cutoff number of 2 for process-

type Cache. Subsequently, verification with an unbounded number of caches in Fu-

turebus+ protocol also succeeded. For the Java meta-lock protocol also, verification

of mutual exclusion of shared object access by unbounded number of threads suc-

ceeded.
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CHAPTER 9

DISCUSSION AND CONCLUSION

In this thesis, we have presented our research on a usable and efficient verification

framework for concurrent parameterized systems. Our verification method is based

on the principle of abstraction refinement. Our abstraction only keeps the number of

processes for each process type, but abstracts away the individual process identities.

The abstraction was shown to be sound and exact. If a counter-example is found

in model checking and is shown to be spurious, then the abstraction is refined by

increasing the cutoff number for the process type consisting of unbounded number of

processes. Moreover, if a counter-example is non-spurious, then heuristics is used to

construct a small, finite system that is sufficient to exhibit the same counter-example

trace.

We modified Spin to integrate our verification techniques. The modified Spin

(called Spin++) has been successfully used to verify several real-life software systems.

In terms of future works, there are many directions that we can pursue. First of

all, our current verification framework can be extended to handle unbounded data

domain. Many parameterized verification techniques are suitable for analyzing proto-

cols consisting of large, finite-state systems. However, there are systems that cannot

be modeled as finite-state systems, mainly due to unbounded data domains. Our

use of process-count variables (in section 5.4) is a way of handling variables with
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unbounded data domain, provided that the variable refers to process counts of the

other process types. However, for protocols with global or local variables that grow

unbounded regardless of the number of processes in the system, we may consider

integrating predicate abstraction into our current verification framework. The idea

is that, instead of keeping track of the number of processes at each local state, we

keep track of the number of processes at each local state that satisfy or not-satisfy

the given predicates.

Secondly, many distributed protocols, as well as real-life software systems, con-

sist of processes that are not only distinguished by their identities, but also their

connections/communication with other processes within the system (eg. leader elec-

tion in a ring structure, where each process needs to have neighboring information).

Hence, we may consider applying our count abstraction to the number of communi-

cation/association between processes.

Additionally, automatic counter-example explanation techniques may be inte-

grated into our verification for easier debugging.
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