100 research outputs found

    Performance Analysis and Design of Mobile Ad-Hoc Networks

    Get PDF
    We focus on the performance analysis and design of a wireless ad-hoc network using a virtual-circuit or reservation based medium access layer. In a reservation based MAC network, source nodes reserve a session's link capacity end-to-end over the entire path before sending traffic over the established path. An example of a generic reservation based MAC protocol is Unifying Slot Assignment Protocol (USAP). Any reservation based medium access protocol (including USAP) uses a simple set of rules to determine the cells or timeslots available at a node to reserve link capacity along the path to the next node. Given inputs of node locations, traffic pattern between nodes and link propagation matrices, we develop models to estimate blocking probability and throughput for reservation based wireless ad-hoc networks. These models are based on extending reduced load loss network models for a wireless network. For generic USAP with multiple frequency channels, the key effect of multiuser interference on a link is modeled via reduced available link capacity where the effects of transmissions and receptions in the link neighborhood are modeled using USAP reservation rules. We compare our results with simulation and obtain good results using our extended reduced load loss network models but with reduced available link capacity distribution obtained by simulation. For the case of generic USAP using a single frequency channel, we develop models for unicast traffic using reduced load loss network models but with the sharing of the wireless medium between a node and its neighbors modeled by considering cliques of neighboring interfering links around a particular link. We compare results of this model with simulation and show good match. We also develop models to calculate source-destination throughput for the reservation MAC as used in the Joint Tactical Radio System to support both unicast and multicast traffic. These models are based on extending reduced load loss network models for wireless multicast traffic with the sharing of the wireless medium between a node and its (upto 2 hop) neighbors modeled by considering cliques of interfering nodes around a particular node. We compare results of this model with simulation and show good match with simulation. Once we have developed models to estimate throughput and blocking probabilities, we use these models to optimize total network throughput. In order to optimize total throughput, we compute throughput sensitivities of the reduced load loss network model using an implied cost formulation and use these sensitivities to choose the routing probabilities among multiple paths so that total network throughput is maximized. In any network scenario, MANETs can get disconnected into clusters. As part of the MANET design problem, we look at the problem of establishing network connectivity and satisfying required traffic capacity between disconnected clusters by placing a minimum number of advantaged high flying Aerial Platforms (APs) as relay nodes at appropriate places. We also extend the connectivity solution in order to make the network single AP survivable. The problem of providing both connectivity and required capacity between disconnected ground clusters (which contain nodes that can communicate directly with each other) is formulated as a summation-form clustering problem of the ground clusters with the APs along with inter-AP distance constraints that make the AP network connected and with complexity costs that take care of ground cluster to AP capacity constraints. The resultant clustering problem is solved using Deterministic Annealing to find (near) globally optimal solutions for the minimum number and locations of the APs to establish connectivity and provide required traffic capacity between disconnected clusters. The basic connectivity constraints are extended to include conditions that make the resultant network survivable to a single AP failure. In order to make the network single AP survivable, we extend the basic connectivity solution by adding another summation form constraint so that the AP network forms a biconnected network and also by making sure that each ground cluster is connected to atleast two APs. We establish the validity of our algorithms by comparing them with optimal exhaustive search algorithms and show that our algorithms are near-optimal for the problem of establishing connectivity between disconnected clusters

    Performance evaluation of multicast networks and service differentiation mechanisms in IP networks

    Get PDF
    The performance of a communication network depends on how well the network is designed in terms of delivering the level of service required by a given type of traffic. The field of teletraffic theory is concerned with quantifying the three-way relationship between the network, its level of service and the traffic arriving at the network. In this thesis, we study three different problems concerning this three-way relationship and present models to assist in designing and dimensioning networks to satisfy the different quality of service demands. In the first part of the thesis, we consider service differentiation mechanisms in packet-switched IP networks implementing a Differentiated Services (DiffServ) architecture. We study how bandwidth can be divided in a weighted fair manner between persistent elastic TCP flows, and between these TCP flows and streaming real-time UDP flows. To this end, we model the traffic conditioning and scheduling mechanisms on the packet and the flow level. We also model the interaction of these DiffServ mechanisms with the TCP congestion control mechanism and present closed-loop models for the sending rate of a TCP flow that reacts to congestion signals from the network. In the second part, we concentrate on non-persistent elastic TCP traffic in IP networks and study how flows can be differentiated in terms of mean delay by giving priority to flows based on their age. We study Multi Level Processor Sharing (MLPS) disciplines, where jobs are classified into levels based on their age or attained service. Between levels, a strict priority discipline is applied; the level containing the youngest jobs has the highest priority. Inside a particular level, any scheduling discipline could be used. We present an implementation proposal of a two-level discipline, PS+PS, with the Processor Sharing discipline used inside both levels. We prove that, as long as the hazard rate of the job-size distribution is decreasing, which is the case for Internet traffic, PS+PS, and any MLPS discipline that favors young jobs, is better than PS with respect to overall mean delay. In the final part, we study distribution-type streaming traffic in a multicast network, where there is, at most, one copy of each channel transmission in each network link, and quantify the blocking probability. We derive an exact blocking probability algorithm for multicast traffic in a tree network based on the convolution and truncation algorithm for unicast traffic. We present a new convolution operation, the OR-convolution, to suit the transmission principle of multicast traffic, and a new truncation operator to take into account the case of having both unicast and multicast traffic in the network. We also consider different user models derived from the single-user model.reviewe

    Modelling, Dimensioning and Optimization of 5G Communication Networks, Resources and Services

    Get PDF
    This reprint aims to collect state-of-the-art research contributions that address challenges in the emerging 5G networks design, dimensioning and optimization. Designing, dimensioning and optimization of communication networks resources and services have been an inseparable part of telecom network development. The latter must convey a large volume of traffic, providing service to traffic streams with highly differentiated requirements in terms of bit-rate and service time, required quality of service and quality of experience parameters. Such a communication infrastructure presents many important challenges, such as the study of necessary multi-layer cooperation, new protocols, performance evaluation of different network parts, low layer network design, network management and security issues, and new technologies in general, which will be discussed in this book

    Improving Network Performance, Security and Robustness in Hybrid Wireless Networks Using a Satellite Overlay

    Get PDF
    In this thesis we propose that the addition of a satellite overlay to large or dense wireless networks will result in improvement in application performance and network reliability, and also enable efficient security solutions that are well-suited for wireless nodes with limited resources. We term the combined network as a hybrid wireless network. Through analysis, network modeling and simulation, we quantify the improvement in end-to-end performance in such networks, compared to flat wireless networks. We also propose a new analytical method for modeling and estimating the performance of hybrid wireless networks. We create a loss network model for hybrid networks using the hierarchical reduced loss network model, adapted for packet-switched networks. Applying a fixed point approximation method on the set of relations modeling the hierarchical loss network, we derive a solution that converges to a fixed point for the parameter set. We analyze the sensitivity of the performance metric to variations in the network parameters by applying Automatic Differentiation to the performance model. We thus develop a method for parameter optimization and sensitivity analysis of protocols for designing hybrid networks. We investigate how the satellite overlay can help to implement better solutions for secure group communications in hybrid wireless networks. We propose a source authentication protocol for multicast communications that makes intelligent use of the satellite overlay, by modifying and extending TESLA certificates. We also propose a probabilistic non-repudiation technique that uses the satellite as a proxy node. We describe how the authentication protocol can be integrated with a topology-aware hierarchical multicast routing protocol to design a secure multicast routing protocol that is robust to active attacks. Lastly, we examine how the end-to-end delay is adversely affected when IP Security protocol (IPSEC) and Secure Socket Layer protocol (SSL) are applied to unicast communications in hybrid networks. For network-layer security with low delay, we propose the use of the Layered IPSEC protocol, with a modified Internet Key Exchange protocol. For secure web browsing with low delay, we propose the Dual-mode SSL protocol. We present simulation results to quantify the performance improvement with our proposed protocols, compared to the traditional solutions

    Efficient compression of motion compensated residuals

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    A flexible, abstract network optimisation framework and its application to telecommunications network design and configuration problems

    Get PDF
    A flexible, generic network optimisation framework is described. The purpose of this framework is to reduce the effort required to solve particular network optimisation problems. The essential idea behind the framework is to develop a generic network optimisation problem to which many network optimisation problems can be mapped. A number of approaches to solve this generic problem can then be developed. To solve some specific network design or configuration problem the specific problem is mapped to the generic problem and one of the problem solvers is used to obtain a solution. This solution is then mapped back to the specific problem domain. Using the framework in this way, a network optimisation problem can be solved using less effort than modelling the problem and developing some algorithm to solve the model. The use of the framework is illustrated in two separate problems: design of an enterprise network to accommodate voice and data traffic and configuration of a core diffserv/MPLS network. In both cases, the framework enabled solutions to be found with less effort than would be required if a more direct approach was used

    Wavelets and Subband Coding

    Get PDF
    First published in 1995, Wavelets and Subband Coding offered a unified view of the exciting field of wavelets and their discrete-time cousins, filter banks, or subband coding. The book developed the theory in both continuous and discrete time, and presented important applications. During the past decade, it filled a useful need in explaining a new view of signal processing based on flexible time-frequency analysis and its applications. Since 2007, the authors now retain the copyright and allow open access to the book
    • 

    corecore