29 research outputs found

    Carnegie Mellon Team Tartan: Mission-level Robustness with Rapidly Deployed Autonomous Aerial Vehicles in the MBZIRC 2020

    Full text link
    For robotics systems to be used in high risk, real-world situations, they have to be quickly deployable and robust to environmental changes, under-performing hardware, and mission subtask failures. Robots are often designed to consider a single sequence of mission events, with complex algorithms lowering individual subtask failure rates under some critical constraints. Our approach is to leverage common techniques in vision and control and encode robustness into mission structure through outcome monitoring and recovery strategies, aided by a system infrastructure that allows for quick mission deployments under tight time constraints and no central communication. We also detail lessons in rapid field robotics development and testing. Systems were developed and evaluated through real-robot experiments at an outdoor test site in Pittsburgh, Pennsylvania, USA, as well as in the 2020 Mohamed Bin Zayed International Robotics Challenge. All competition trials were completed in fully autonomous mode without RTK-GPS. Our system led to 4th place in Challenge 2 and 7th place in the Grand Challenge, and achievements like popping five balloons (Challenge 1), successfully picking and placing a block (Challenge 2), and dispensing the most water autonomously with a UAV of all teams onto an outdoor, real fire (Challenge 3).Comment: 28 pages, 26 figures. To appear in Field Robotics, Special Issues on MBZIRC 202

    System Architectures for Cooperative Teams of Unmanned Aerial Vehicles Interacting Physically with the Environment

    Get PDF
    Unmanned Aerial Vehicles (UAVs) have become quite a useful tool for a wide range of applications, from inspection & maintenance to search & rescue, among others. The capabilities of a single UAV can be extended or complemented by the deployment of more UAVs, so multi-UAV cooperative teams are becoming a trend. In that case, as di erent autopilots, heterogeneous platforms, and application-dependent software components have to be integrated, multi-UAV system architectures that are fexible and can adapt to the team's needs are required. In this thesis, we develop system architectures for cooperative teams of UAVs, paying special attention to applications that require physical interaction with the environment, which is typically unstructured. First, we implement some layers to abstract the high-level components from the hardware speci cs. Then we propose increasingly advanced architectures, from a single-UAV hierarchical navigation architecture to an architecture for a cooperative team of heterogeneous UAVs. All this work has been thoroughly tested in both simulation and eld experiments in di erent challenging scenarios through research projects and robotics competitions. Most of the applications required physical interaction with the environment, mainly in unstructured outdoors scenarios. All the know-how and lessons learned throughout the process are shared in this thesis, and all relevant code is publicly available.Los vehículos aéreos no tripulados (UAVs, del inglés Unmanned Aerial Vehicles) se han convertido en herramientas muy valiosas para un amplio espectro de aplicaciones, como inspección y mantenimiento, u operaciones de rescate, entre otras. Las capacidades de un único UAV pueden verse extendidas o complementadas al utilizar varios de estos vehículos simultáneamente, por lo que la tendencia actual es el uso de equipos cooperativos con múltiples UAVs. Para ello, es fundamental la integración de diferentes autopilotos, plataformas heterogéneas, y componentes software -que dependen de la aplicación-, por lo que se requieren arquitecturas multi-UAV que sean flexibles y adaptables a las necesidades del equipo. En esta tesis, se desarrollan arquitecturas para equipos cooperativos de UAVs, prestando una especial atención a aplicaciones que requieran de interacción física con el entorno, cuya naturaleza es típicamente no estructurada. Primero se proponen capas para abstraer a los componentes de alto nivel de las particularidades del hardware. Luego se desarrollan arquitecturas cada vez más avanzadas, desde una arquitectura de navegación para un único UAV, hasta una para un equipo cooperativo de UAVs heterogéneos. Todo el trabajo ha sido minuciosamente probado, tanto en simulación como en experimentos reales, en diferentes y complejos escenarios motivados por proyectos de investigación y competiciones de robótica. En la mayoría de las aplicaciones se requería de interacción física con el entorno, que es normalmente un escenario en exteriores no estructurado. A lo largo de la tesis, se comparten todo el conocimiento adquirido y las lecciones aprendidas en el proceso, y el código relevante está publicado como open-source

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    From ERL to MBZIRC: Development of An Aerial-Ground Robotic Team for Search and Rescue

    Get PDF
    This chapter describes the efforts of the LARICS team in the 2019 European Robotics League (ERL) Emergency Robots and the 2020 Mohamed Bin Zayed International Robotics Challenge (MBZIRC) robotics competitions. We focus on the implementation of hardware and software modules that enable the deployment of aerial-ground robotic teams in unstructured environments for joint missions. In addition to the overall system specification, we outline the main algorithms for operation in such conditions: autonomous exploration of unknown environments and detection of objects of interest. Analysis of the results shows the success of the developed system in the competition arena of two of the largest outdoor robotics challenges. Throughout the chapter, we highlight the evolution of the robotic system based on the experience gained in the ERL competition. We conclude the chapter with key findings and additional improvement ideas to advance the state of the art in search and rescue applications of heterogeneous robotic teams

    Safe and accurate MAV Control, navigation and manipulation

    Get PDF
    This work focuses on the problem of precise, aggressive and safe Micro Aerial Vehicle (MAV) navigation as well as deployment in applications which require physical interaction with the environment. To address these issues, we propose three different MAV model based control algorithms that rely on the concept of receding horizon control. As a starting point, we present a computationally cheap algorithm which utilizes an approximate linear model of the system around hover and is thus maximally accurate for slow reference maneuvers. Aiming at overcoming the limitations of the linear model parameterisation, we present an extension to the first controller which relies on the true nonlinear dynamics of the system. This approach, even though computationally more intense, ensures that the control model is always valid and allows tracking of full state aggressive trajectories. The last controller addresses the topic of aerial manipulation in which the versatility of aerial vehicles is combined with the manipulation capabilities of robotic arms. The proposed method relies on the formulation of a hybrid nonlinear MAV-arm model which also takes into account the effects of contact with the environment. Finally, in order to enable safe operation despite the potential loss of an actuator, we propose a supervisory algorithm which estimates the health status of each motor. We further showcase how this can be used in conjunction with the nonlinear controllers described above for fault tolerant MAV flight. While all the developed algorithms are formulated and tested using our specific MAV platforms (consisting of underactuated hexacopters for the free flight experiments, hexacopter-delta arm system for the manipulation experiments), we further discuss how these can be applied to other underactuated/overactuated MAVs and robotic arm platforms. The same applies to the fault tolerant control where we discuss different stabilisation techniques depending on the capabilities of the available hardware. Even though the primary focus of this work is on feedback control, we thoroughly describe the custom hardware platforms used for the experimental evaluation, the state estimation algorithms which provide the basis for control as well as the parameter identification required for the formulation of the various control models. We showcase all the developed algorithms in experimental scenarios designed to highlight the corresponding strengths and weaknesses as well as show that the proposed methods can run in realtime on commercially available hardware.Open Acces

    MRS Drone: A Modular Platform for Real-World Deployment of Aerial Multi-Robot Systems

    Full text link
    This paper presents a modular autonomous Unmanned Aerial Vehicle (UAV) platform called the Multi-robot Systems (MRS) Drone that can be used in a large range of indoor and outdoor applications. The MRS Drone features unique modularity with respect to changes in actuators, frames, and sensory configuration. As the name suggests, the platform is specially tailored for deployment within a MRS group. The MRS Drone contributes to the state-of-the-art of UAV platforms by allowing smooth real-world deployment of multiple aerial robots, as well as by outperforming other platforms with its modularity. For real-world multi-robot deployment in various applications, the platform is easy to both assemble and modify. Moreover, it is accompanied by a realistic simulator to enable safe pre-flight testing and a smooth transition to complex real-world experiments. In this manuscript, we present mechanical and electrical designs, software architecture, and technical specifications to build a fully autonomous multi UAV system. Finally, we demonstrate the full capabilities and the unique modularity of the MRS Drone in various real-world applications that required a diverse range of platform configurations.Comment: 49 pages, 39 figures, accepted for publication to the Journal of Intelligent & Robotic System

    Automation and Control

    Get PDF
    Advances in automation and control today cover many areas of technology where human input is minimized. This book discusses numerous types and applications of automation and control. Chapters address topics such as building information modeling (BIM)–based automated code compliance checking (ACCC), control algorithms useful for military operations and video games, rescue competitions using unmanned aerial-ground robots, and stochastic control systems
    corecore