24 research outputs found

    Secure Communication with a Wireless-Powered Friendly Jammer

    Get PDF
    In this paper, we propose to use a wireless-powered friendly jammer to enable secure communication between a source node and destination node, in the presence of an eavesdropper. We consider a two-phase communication protocol with fixed-rate transmission. In the first phase, wireless power transfer is conducted from the source to the jammer. In the second phase, the source transmits the information-bearing signal under the protection of a jamming signal sent by the jammer using the harvested energy in the first phase. We analytically characterize the long-time behavior of the proposed protocol and derive a closed-form expression for the throughput. We further optimize the rate parameters for maximizing the throughput subject to a secrecy outage probability constraint. Our analytical results show that the throughput performance differs significantly between the single-antenna jammer case and the multi-antenna jammer case. For instance, as the source transmit power increases, the throughput quickly reaches an upper bound with single-antenna jammer, while the throughput grows unbounded with multi-antenna jammer. Our numerical results also validate the derived analytical results.Comment: accepted for publication in IEEE Transactions on Wireless Communication

    Principles of Physical Layer Security in Multiuser Wireless Networks: A Survey

    Full text link
    This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical-layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical-layer message authentication is also introduced briefly. The survey concludes with observations on potential research directions in this area.Comment: 23 pages, 10 figures, 303 refs. arXiv admin note: text overlap with arXiv:1303.1609 by other authors. IEEE Communications Surveys and Tutorials, 201

    Securing internet of medical things with friendly-jamming schemes

    Get PDF
    The Internet of Medical Things (IoMT)-enabled e-healthcare can complement traditional medical treatments in a flexible and convenient manner. However, security and privacy become the main concerns of IoMT due to the limited computational capability, memory space and energy constraint of medical sensors, leading to the in-feasibility for conventional cryptographic approaches, which are often computationally-complicated. In contrast to cryptographic approaches, friendly jamming (Fri-jam) schemes will not cause extra computing cost to medical sensors, thereby becoming potential countermeasures to ensure security of IoMT. In this paper, we present a study on using Fri-jam schemes in IoMT. We first analyze the data security in IoMT and discuss the challenges. We then propose using Fri-jam schemes to protect the confidential medical data of patients collected by medical sensors from being eavesdropped. We also discuss the integration of Fri-jam schemes with various communication technologies, including beamforming, Simultaneous Wireless Information and Power Transfer (SWIPT) and full duplexity. Moreover, we present two case studies of Fri-jam schemes in IoMT. The results of these two case studies indicate that the Fri-jam method will significantly decrease the eavesdropping risk while leading to no significant influence on legitimate transmission

    Wireless-powered friendly jammer for physical layer security

    Get PDF
    Exploring a cooperative node as a friendly jammer is an effective means of providing secure communication between a source-destination pair in the presence of an eavesdropper. In this work, we consider the use of a wireless-powered friendly jammer. Without relying on external energy supply, the friendly jammer is powered by the source node via wireless power transfer. We apply a simple time-switching protocol where the power transfer and jammer-assisted secure transmission occur in different time blocks. By investigating the long-term behavior of the communication protocol, we derive a closed-form expression of the throughput. We further optimize the jamming power and the rate parameters for maximizing the throughput subject to a secrecy outage probability constraint.ARC Discovery Projects Grant DP15010390

    Determination of optically stimulated luminescence dosimetric characteristics and suitability for entrance surface dose assessement in diagnostic x-ray examinations

    Get PDF
    The availability of Optically Stimulated Luminescence (OSL) dosimeter system developed by Landauer Inc. (Glenwood IL) has greatly improved radiation dosimetry application in the medical field. Recent studies with OSL dosimeters (nanoDots) gave much emphases to patient radiation exposure in radiotherapy but ignoring the potential risks from radiographic examinations. This study focused on the measurement of entrance surface dose (ESD) resulting from radiographic examination. Monitoring procedures have been developed by the International Atomic Energy Agency (IAEA) to estimate ESD, while considering exposure parameters and patient’s characteristics. However, dosimetric properties of the OSL system must be characterized to ascertain its suitability for ESD measurements in medical radiography due to energy dependence and over-response factors of the Al2O3 material. This thesis consists of three phases: 1) evaluating stability of the new OSL dosimetry system, 2) characterizing the nanoDots in radiographic energy range from 40 kV to 150 kV with typical doses ranging from 0 to 20 mGy, and 3) assessing suitability of the nanoDots for ESD measurement in routine X-ray examinations. The dosimetric characteristics of the nanoDots in the above energy range are presented in this study, including repeatability, reproducibility, signal depletion, element correction factor, linearity, angular and energy dependence, and dose measurement accuracy. Experimental results showed repeatability of below 5% and reproducibility of less than 2%. OSL signals after sequential readouts were reduced by approximately 0.5% per readout and having good linearity for doses between 5 – 20 mGy. The nanoDots OSL dosimeter showed significant angular and energy dependence in this energy range, and corresponding energy correction factors were determined in the range of 0.76 – 1.12. ESDs were determined in common diagnostic X-ray examinations using three different methods including direct (measured on phantom/patient) and indirect (without phantom) measurements with nanoDots OSL dosimeters, and CALDose_X 5.0 software calculations. Results from direct and indirect ESD measurements showed good agreement within relative uncertainties of 5.9% and 12%, respectively, in accordance with the International Electrotechnical Commission (IEC) 61674 specifications. However, the measured results were below ESDs calculated with CALDose_X 5.0 software. Measured eye and gonad doses were found to be significant compared to ESDs during anterior-posterior (AP) abdomen and AP skull examinations, respectively. The results obtained in this research work indicate the suitability of utilizing nanoDots OSL dosimeter for entrance surface dose assessment during diagnostic X-ray examinations

    Beamforming and non-orthogonal multiple access for rate and secrecy enhancement of fifth generation communication system

    Get PDF
    The fifth-generation (5G) communication systems have many anticipated functionalities and requirements such as high data rate, massive connectivity, wide coverage area, low latency and enhanced secrecy performance. In order to meet these criteria, communication schemes that combine 5G key enabling technologies need to be investigated. In this thesis, a novel communication system that merges non-orthogonal multiple access (NOMA), energy harvesting, beamforming, and full-duplex (FD) techniques in order to enhance both capacity and secrecy of 5G system is introduced. In the capacity improving scheme, NOMA is first combined with beamforming to serve more than one user in each beamforming vector. Next, simultaneous wireless information and power transfer (SWIPT) technique is exploited to encourage the strong user (user with better channel condition) to relay the information messages of the weak user (user with poor channel condition) in FD manner. The total sum rate maximisation problem is formulated and solved by means of convex-concave procedure. The system performance is also analysed by deriving the outage probability of both users. Additionally, the model is extended to a more general case wherein the users are moving, and the outage probability of this dynamic topology is provided by means of the stochastic geometry framework. Novel secure schemes are also introduced to safeguard legitimate users’ information from internal and external eavesdroppers. In the internal eavesdropper’s case, artificial signal concept is adopted to protect NOMA’s weak user’s information from being intercepted by the strong user. The secrecy outage probability of theweak user is derived and validated. In addition, game theory discipline is exploited to provide an efficient eavesdropping avoidance algorithm. Null-steering beamforming is adopted in the external eavesdropper’s case in two different schemes namely self and nonself-cooperative jamming. In self-cooperative strategy, the base station applies the null-steering jamming to impair the eavesdropper channel, while sending the information-bearing signals to the intended legitimate users. Whereas in the nonself-cooperative jamming scheme, the base station provides the helpers with the required information and power by means of SWIPT technique in the first phase. The helpers deploy null-steering beamforming to jam the eavesdropper during the information exchange between the base station and the intended users in the second phase. The secrecy outage probability of the legitimate users is derived in both jamming schemes. Game theory is also introduced to the nonself-cooperative jamming scheme for further improvements on the secrecy outage behaviour and the economic revenue of the system. The proposed capacity enhancing scheme demonstrates about 200% higher sum rate when compared with the non-cooperative and half-duplex cooperative NOMA systems. In addition, the novel secure scheme in the internal eavesdropper case is proven to enhance the information security of the weak user without compromising the functionalities of the strong user or NOMA superiority over orthogonal multiple access systems. Null-steering based jamming system also illustrates improved secrecy performance in the external eavesdropper case when compared to the conventional jamming schemes. Numerical simulations are carried out in order to validate the derived closed-form expressions and to illustrate the performance enhancement achieved by the proposed schemes where the rate is increased by 200% and the secrecy outage probability is decreased by 33% when compared to the baseline systems

    IRS-Aided Uplink Security Enhancement via Energy-Harvesting Jammer

    Get PDF
    In this paper, we investigate the security enhancement by combining intelligent reflecting surface (IRS) and energy harvesting (EH) jammer for the uplink transmission. Specifically, we propose an IRS-aided secure scheme for the uplink transmission via an EH jammer, to fight against the malicious eavesdropper. The proposed scheme can be divided into an energy transfer (ET) phase and an information transmission (IT) phase. In the first phase, the friendly EH jammer harvests energy from the base station (BS) aided by IRS. We maximize the harvested energy of jammer by obtaining the closed-form solution to the phase-shift matrix of IRS. In the second phase, the user transmits confidential information to the BS while the jamming is generated to confuse the eavesdropper without affecting the legitimate transmission. The phase-shift matrix of IRS and time switching factor are jointly optimized to maximize the secrecy rate. To tackle the non-convex problem, we first decompose it into two sub-problems. The one of IRS can be approximated to convex with fixed time switching factor. Then, the time switching factor can be solved by Lagrange duality. Thus, the solution to the original problem can be obtained by alternately optimizing these two sub-problems. Simulation results show that the proposed Jammer-IRS assisted secure transmission scheme can significantly enhance the uplink security

    Physical layer security solutions against passive and colluding eavesdroppers in large wireless networks and impulsive noise environments

    Get PDF
    Wireless networks have experienced rapid evolutions toward sustainability, scalability and interoperability. The digital economy is driven by future networked societies to a more holistic community of intelligent infrastructures and connected services for a more sustainable and smarter society. Furthermore, an enormous amount of sensitive and confidential information, e.g., medical records, electronic media, financial data, and customer files, is transmitted via wireless channels. The implementation of higher layer key distribution and management was challenged by the emergence of these new advanced systems. In order to resist various malicious abuses and security attacks, physical layer security (PLS) has become an appealing alternative. The basic concept behind PLS is to exploit the characteristics of wireless channels for the confidentiality. Its target is to blind the eavesdroppers such that they cannot extract any confidential information from the received signals. This thesis presents solutions and analyses to improve the PLS in wireless networks. In the second chapter, we investigate the secrecy capacity performance of an amplify-andforward (AF) dual-hop network for both distributed beamforming (DBF) and opportunistic relaying (OR) techniques. We derive the capacity scaling for two large sets; trustworthy relays and untrustworthy aggressive relays cooperating together with a wire-tapper aiming to intercept the message. We show that the capacity scaling in the DBF is lower bounded by a value which depends on the ratio between the number of the trustworthy and the untrustworthy aggressive relays, whereas the capacity scaling of OR is upper bounded by a value depending on the number of relays as well as the signal to noise ratio (SNR). In the third chapter, we propose a new location-based multicasting technique, for dual phase AF large networks, aiming to improve the security in the presence of non-colluding passive eavesdroppers. We analytically demonstrate that the proposed technique increases the security by decreasing the probability of re-choosing a sector that has eavesdroppers, for each transmission time. Moreover, we also show that the secrecy capacity scaling of our technique is the same as for broadcasting. Hereafter, the lower and upper bounds of the secrecy outage probability are calculated, and it is shown that the security performance is remarkably enhanced, compared to the conventional multicasting technique. In the fourth chapter, we propose a new cooperative protocol, for dual phase amplify-andforward large wireless sensor networks, aiming to improve the transmission security while taking into account the limited capabilities of the sensor nodes. In such a network, a portion of the K relays can be potential passive eavesdroppers. To reduce the impact of these untrustworthy relays on the network security, we propose a new transmission protocol, where the source agrees to share with the destination a given channel state information (CSI) of source-trusted relay-destination link to encode the message. Then, the source will use this CSI again to map the right message to a certain sector while transmitting fake messages to the other sectors. Adopting such a security protocol is promising because of the availability of a high number of cheap electronic sensors with limited computational capabilities. For the proposed scheme, we derived the secrecy outage probability (SOP) and demonstrated that the probability of receiving the right encoded information by an untrustworthy relay is inversely proportional to the number of sectors. We also show that the aggressive behavior of cooperating untrusted relays is not effective compared to the case where each untrusted relay is trying to intercept the transmitted message individually. Fifth and last, we investigate the physical layer security performance over Rayleigh fading channels in the presence of impulsive noise, as encountered, for instance, in smart grid environments. For this scheme, secrecy performance metrics were considered with and without destination assisted jamming at the eavesdropper’s side. From the obtained results, it is verified that the SOP, without destination assisted jamming, is flooring at high signal-to-noise-ratio values and that it can be significantly improved with the use of jamming

    Overview of RIS-Enabled Secure Transmission in 6G Wireless Networks

    Full text link
    As sixth-generation (6G) wireless communication networks evolve, privacy concerns are expected due to the transmission of vast amounts of security-sensitive private information. In this context, a reconfigurable intelligent surface (RIS) emerges as a promising technology capable of enhancing transmission efficiency and strengthening information security. This study demonstrates how RISs can play a crucial role in making 6G networks more secure against eavesdropping attacks. We discuss the fundamentals, and standardization aspects of RISs, along with an in-depth analysis of physical-layer security (PLS). Our discussion centers on PLS design using RIS, highlighting aspects like beamforming, resource allocation, artificial noise, and cooperative communications. We also identify the research issues, propose potential solutions, and explore future perspectives. Finally, numerical results are provided to support our discussions and demonstrate the enhanced security enabled by RIS.Comment: Accepted for Digital Communications and Networks(DCN

    Security–reliability analysis of AF full-duplex relay networks using self-energy recycling and deep neural networks

    Get PDF
    This paper investigates the security-reliability of simultaneous wireless information and power transfer (SWIPT)-assisted amplify-and-forward (AF) full-duplex (FD) relay networks. In practice, an AF-FD relay harvests energy from the source (S) using the power-splitting (PS) protocol. We propose an analysis of the related reliability and security by deriving closed-form formulas for outage probability (OP) and intercept probability (IP). The next contribution of this research is an asymptotic analysis of OP and IP, which was generated to obtain more insight into important system parameters. We validate the analytical formulas and analyze the impact on the key system parameters using Monte Carlo simulations. Finally, we propose a deep learning network (DNN) with minimal computation complexity and great accuracy for OP and IP predictions. The effects of the system’s primary parameters on OP and IP are examined and described, along with the numerical data.Web of Science2317art. no. 761
    corecore