202 research outputs found

    Secure Integration of Desktop Grids and Compute Clusters Based on Virtualization and Meta-Scheduling

    Get PDF
    Reducing the cost for business or scientific computations, is a commonly expressed goal in today’s companies. Using the available computers of local employees or the outsourcing of such computations are two obvious solutions to save money for additional hardware. Both possibilities exhibit security related disadvantages, since the deployed software and data can be copied or tampered if appropriate countermeasures are not taken. In this paper, an approach is presented to let a local desktop machines and remote cluster resources be securely combined into a singel Grid environment. Solutions to several problems in the areas of secure virtual networks, meta-scheduling and accessing cluster schedulers from desktop Grids are proposed

    Archer: A Community Distributed Computing Infrastructure for Computer Architecture Research and Education

    Full text link
    This paper introduces Archer, a community-based computing resource for computer architecture research and education. The Archer infrastructure integrates virtualization and batch scheduling middleware to deliver high-throughput computing resources aggregated from resources distributed across wide-area networks and owned by different participating entities in a seamless manner. The paper discusses the motivations leading to the design of Archer, describes its core middleware components, and presents an analysis of the functionality and performance of a prototype wide-area deployment running a representative computer architecture simulation workload.Comment: 11 pages, 2 figures. Describes the Archer project, http://archer-project.or

    From the oceans to the cloud: Opportunities and challenges for data, models, computation and workflows.

    Get PDF
    © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Vance, T. C., Wengren, M., Burger, E., Hernandez, D., Kearns, T., Medina-Lopez, E., Merati, N., O'Brien, K., O'Neil, J., Potemrag, J. T., Signell, R. P., & Wilcox, K. From the oceans to the cloud: Opportunities and challenges for data, models, computation and workflows. Frontiers in Marine Science, 6(211), (2019), doi:10.3389/fmars.2019.00211.Advances in ocean observations and models mean increasing flows of data. Integrating observations between disciplines over spatial scales from regional to global presents challenges. Running ocean models and managing the results is computationally demanding. The rise of cloud computing presents an opportunity to rethink traditional approaches. This includes developing shared data processing workflows utilizing common, adaptable software to handle data ingest and storage, and an associated framework to manage and execute downstream modeling. Working in the cloud presents challenges: migration of legacy technologies and processes, cloud-to-cloud interoperability, and the translation of legislative and bureaucratic requirements for “on-premises” systems to the cloud. To respond to the scientific and societal needs of a fit-for-purpose ocean observing system, and to maximize the benefits of more integrated observing, research on utilizing cloud infrastructures for sharing data and models is underway. Cloud platforms and the services/APIs they provide offer new ways for scientists to observe and predict the ocean’s state. High-performance mass storage of observational data, coupled with on-demand computing to run model simulations in close proximity to the data, tools to manage workflows, and a framework to share and collaborate, enables a more flexible and adaptable observation and prediction computing architecture. Model outputs are stored in the cloud and researchers either download subsets for their interest/area or feed them into their own simulations without leaving the cloud. Expanded storage and computing capabilities make it easier to create, analyze, and distribute products derived from long-term datasets. In this paper, we provide an introduction to cloud computing, describe current uses of the cloud for management and analysis of observational data and model results, and describe workflows for running models and streaming observational data. We discuss topics that must be considered when moving to the cloud: costs, security, and organizational limitations on cloud use. Future uses of the cloud via computational sandboxes and the practicalities and considerations of using the cloud to archive data are explored. We also consider the ways in which the human elements of ocean observations are changing – the rise of a generation of researchers whose observations are likely to be made remotely rather than hands on – and how their expectations and needs drive research towards the cloud. In conclusion, visions of a future where cloud computing is ubiquitous are discussed.This is PMEL contribution 4873

    Fast and Efficient Malware Detection with Joint Static and Dynamic Features Through Transfer Learning

    Full text link
    In malware detection, dynamic analysis extracts the runtime behavior of malware samples in a controlled environment and static analysis extracts features using reverse engineering tools. While the former faces the challenges of anti-virtualization and evasive behavior of malware samples, the latter faces the challenges of code obfuscation. To tackle these drawbacks, prior works proposed to develop detection models by aggregating dynamic and static features, thus leveraging the advantages of both approaches. However, simply concatenating dynamic and static features raises an issue of imbalanced contribution due to the heterogeneous dimensions of feature vectors to the performance of malware detection models. Yet, dynamic analysis is a time-consuming task and requires a secure environment, leading to detection delays and high costs for maintaining the analysis infrastructure. In this paper, we first introduce a method of constructing aggregated features via concatenating latent features learned through deep learning with equally-contributed dimensions. We then develop a knowledge distillation technique to transfer knowledge learned from aggregated features by a teacher model to a student model trained only on static features and use the trained student model for the detection of new malware samples. We carry out extensive experiments with a dataset of 86709 samples including both benign and malware samples. The experimental results show that the teacher model trained on aggregated features constructed by our method outperforms the state-of-the-art models with an improvement of up to 2.38% in detection accuracy. The distilled student model not only achieves high performance (97.81% in terms of accuracy) as that of the teacher model but also significantly reduces the detection time (from 70046.6 ms to 194.9 ms) without requiring dynamic analysis.Comment: Accepted for presentation and publication at the 21st International Conference on Applied Cryptography and Network Security (ACNS 2023

    Service Isolation vs. Consolidation: Implications for Iaas Cloud Application Deployment

    Get PDF
    Service isolation, achieved by deploying components of multi -tier applications using separate virtual machines (VMs), is a common \u27best\u27 practice. Various advantages cited include simpler deployment architectures, easier resource scalability for supporting dynamic application throughput requirements, and support for component-level fault tolerance . This paper presents results from an empirical study which investigates the performance implications of component placement for deployments of multi -tier applications to Infrastructure-as-a- Service (IaaS) clouds. Relationship s between performance and resource utilization (CPU, disk, network) are investigated to better understand the implications which result from how applications are deployed. All possible deployments for two variants of a multi -tier application were tested, one computationally bound by the model, the other bound by a geospatial database. The best performing deployments required as few as 2 VMs, half the number required for service isolation, demonstrating potential cost savings with service consolidation. Resource use (CPU time, disk I/O, and network I/O) varied based on component placement and VM memory allocation. Using separate VMs to host each application component resulted in performance overhead of ~1 -2%. Relationships between resource utilization an d performance were harnessed to build a multiple linear regression model to predict performance of component deployments. CPU time, disk sector reads, and disk sector writes are identified as the most powerful performance predictors for component deployments

    Migration of Multi-Tier Applications to Infrastructure-As-A-Service Clouds: An Investigation Using Kernel-Based Virtual Machines

    Get PDF
    To investigate challenges of multi -tier application migration to Infrastructure -as-a- Service (IaaS) clouds we performed an experimental investigation by deploying a processor bound and input -output bound variant of the RUSLE2 erosion model to an IaaS base d private cloud. Scaling the applications to achieve optimal system throughput is complex and involves much more than simply increasing the number of allotted virtual machines (VMs). While scaling the application variants a series of bottlenecks were encountered unique to an application\u27s processing, I/O, and memory requirements, herein referred to as an application\u27s profile. To investigate the impact of provisioning variation for hosting multi -tier applications we tested four schemes of VM deployments across the physical nodes of our cloud. Performance degradation was more pronounced when multiple I/O or CPU resource intensive application components were co -located on the same physical hardware. We investigated the virtualization overhead incurred using Kernel -based virtual machines (KVM) by deploying our application variants to both physical and virtual machines. Overhead varied based on the unique characteristics of each application\u27s profile. We observed ~112% overhead for the input/output bound application and just ~ 10 % overhead for the processor bound application. Understanding an application\u27s profile was found to be important for optimal IaaS -based cloud migration and scaling
    • …
    corecore