
University of Washington Tacoma
UW Tacoma Digital Commons

School of Engineering and Technology Publications School of Engineering and Technology

2013

Service Isolation vs. Consolidation: Implications
for Iaas Cloud Application Deployment
Wes Lloyd
University of Washington Tacoma, wlloyd@uw.edu

Shrideep Pallickara

Olaf David

Jim Lyon

Mazdak Arabi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/tech_pub

This Conference Proceeding is brought to you for free and open access by the School of Engineering and Technology at UW Tacoma Digital
Commons. It has been accepted for inclusion in School of Engineering and Technology Publications by an authorized administrator of UW Tacoma
Digital Commons.

Recommended Citation
Lloyd, Wes; Pallickara, Shrideep; David, Olaf; Lyon, Jim; Arabi, Mazdak; and Rojas, Ken, "Service Isolation vs. Consolidation:
Implications for Iaas Cloud Application Deployment" (2013). School of Engineering and Technology Publications. 16.
https://digitalcommons.tacoma.uw.edu/tech_pub/16

https://digitalcommons.tacoma.uw.edu?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/institute_tech?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub/16?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and Ken Rojas

This conference proceeding is available at UW Tacoma Digital Commons: https://digitalcommons.tacoma.uw.edu/tech_pub/16

https://digitalcommons.tacoma.uw.edu/tech_pub/16?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages


1 
 

Service Isolation vs. Consolidation:  
Implications for IaaS Cloud Application Deployment 

Wes Lloyd1,2, Shrideep Pallickara1, Olaf David1,2,          
Jim Lyon2, Mazdak Arabi2 

1Department of Computer Science 
2

Colorado State University, Fort Collins, USA  
Department of Civil and Environmental Engineering 

wes.lloyd, shrideep.pallickara, olaf.david, jim.lyon, 
mazdak.arabi@colostate.edu 

Ken Rojas 
USDA-Natural Resource Conservation Service 

Fort Collins, Colorado USA 
Ken.Rojas@ftc.usda.gov 

 
 

 
Abstract— Service isolation, achieved by deploying components 
of multi-tier applications using separate virtual machines 
(VMs), is a common “best” practice.  Various advantages cited 
include simpler deployment architectures, easier resource 
scalability for supporting dynamic application throughput 
requirements, and support for component-level fault tolerance.  
This paper presents results from an empirical study which 
investigates the performance implications of component 
placement for deployments of multi-tier applications to 
Infrastructure-as-a-Service (IaaS) clouds.  Relationships 
between performance and resource utilization (CPU, disk, 
network) are investigated to better understand the implications 
which result from how applications are deployed.  All possible 
deployments for two variants of a multi-tier application were 
tested, one computationally bound by the model, the other 
bound by a geospatial database.  The best performing 
deployments required as few as 2 VMs, half the number 
required for service isolation, demonstrating potential cost 
savings with service consolidation.  Resource use (CPU time, 
disk I/O, and network I/O) varied based on component 
placement and VM memory allocation.  Using separate VMs to 
host each application component resulted in performance 
overhead of ~1-2%.  Relationships between resource utilization 
and performance were harnessed to build a multiple linear 
regression model to predict performance of component 
deployments.  CPU time, disk sector reads, and disk sector 
writes are identified as the most powerful performance 
predictors for component deployments.   

Keywords Service Isolation; Service Composition; 
Infrastructure-as-a-Service; Provisioning; Virtualization; Multi-
Tenancy; Resource Management and Performance; 

I.  INTRODUCTION 
Migration of multi-tier client/server applications to 

Infrastructure-as-a-Service (IaaS) clouds involves deploying 
components of application infrastructure to one or more 
virtual machine (VM) images.  Images are used to instantiate 
VMs to provide the application’s cloud-based infrastructure.  
Application components consist of infrastructure elements 
such as web/application servers, proxy servers, NO SQL 
databases, distributed caches, relational databases, file 
servers and others.  Service isolation refers to the total 
separation of application components with deployment using 
separate VMs.  VMs are then hosted by one or more physical 
machines in an IaaS cloud.  The non-determinism of the 

mapping of VMs to physical hosts is a concept known as 
provisioning variation, which may lead to unpredictable 
performance behavior [1-2].  Service isolation provides 
application components with their own explicit sandboxes to 
operate in with a separate VM and operating system 
instance.  With hardware virtualization isolation can be 
accomplished many times for each component of an 
application across a cluster of physical servers.  Before 
server virtualization, service isolation of application 
components using physical machines required significant 
server capacity.   

 

Methods to assess performance effects from VM 
interference and investigation of approaches to better 
manage multiplexing resources of physical hosts are active 
areas of research [8-10, 26, 33-35].  Physical resources 
including CPU, disk, and network I/O bandwidth are shared 
and appropriate quantities must be allocated to meet 
application service-level agreements (SLAs).  With current 
virtualization technology, only memory isolation is 
guaranteed.  VMs reserve a fixed amount of memory for 
exclusive use which is not released until shutdown.  
Processor, network I/O, and disk I/O resources are 
multiplexed and sharing is coordinated by the virtualization 
hypervisor.  Popular virtualization hypervisors include 
kernel-based VMs (KVM), Xen, and the VMware ESX 
hypervisor.  Hypervisors vary with respect to methods used 
to multiplex resources.  Some allow pinning VMs to operate 
using specific CPU cores to guarantee resource availability, 
but CPU caches must be shared [26].   

 

Service isolation has been suggested as a best practice for 
deploying components of multi-tier applications across VMs 
An Amazon Web Services best practices white paper 
suggests decoupling components by “bundling the logical 
construct of a component into an Amazon Machine Image so 
that it can be deployed more often” [36].  This loose 
component coupling which isolates the various layers of an 
application to enable horizontal scaling (increasing the # of 
VMs) is encouraged in the white paper to enable easy 
resource scalability.  Service isolation enables scalability and 
supports fault tolerance at the component level.  Isolating 
components may reduce inter-component interference 
allowing them to run more efficiently though this isolation is 
only at the guest operating system level as VMs share 
physical hardware resources and compete for CPU, disk, and 
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network bandwidth.  Service isolation adds an abstraction 
layer above the physical hardware which introduces 
overhead potentially degrading performance.  Deploying all 
application components using separate VMs may increase 
network traffic, particularly when VMs are hosted by 
separate physical machines.  Component deployment should 
be done carefully considering both virtualization overhead 
and the effects of physical placement.  Consolidating key 
components together on a single VM guarantees they will 
not be physically separated when deployed providing an 
opportunity for potential performance improvements which 
may potentially provide performance enhancements.  User 
control of VM placement is not always provided by IaaS 
clouds resulting in provisioning variation which has been 
shown to result in inconsistent performance [1-3].     

This paper presents results of our investigation on the 
implications of isolation versus consolidation for deploying 
components of multi-tier applications to IaaS clouds.  The 
following research questions are investigated: 
 

RQ-1) 

RQ-2) 

What are the impacts on resource utilization and 
application performance resulting from different 
component deployments (isolation versus 
consolidation) for multi-tier applications?  How 
does increasing VM memory allocation impact 
Performance? 

RQ-3) 

How much overhead results from VM service 
isolation? 

 

Can VM resource utilization data be used to build 
models to predict performance of component 
deployments? 

This paper presents a thorough and detailed investigation 
on how the deployment of multi-tier application 
components impacts application performance and resource 
consumption (CPU, disk, network).  This work extends 
prior research on provisioning variation and heterogeneity 
of cloud-based resources.  Relationships between 
component placement, resource utilization and application 
performance are investigated.  Benchmarks are made to 
measure performance effects of increasing VM memory 
allocation and to quantify overhead of service isolation.  
This work leads to the development of a multiple linear 
regression model using resource utilization statistics to 
predict performance of application component deployments.  
Our approach for collecting application resource utilization 
data discussed in section III to construct performance 
model(s) uses a simple Linux script and can be generalized 
to any multi-tier application.  Supporting autonomic 
identification of good component deployments through 
modeling can help reduce application hosting costs (# of 
VMs) and improve management and load balancing of 
physical cloud resources without sacrificing performance 
goals.   

II. RELATED WORK 
Rouk first identified the challenge of finding ideal service 

compositions for creating virtual machine images in cloud 
environments in [4].  Schad et al. [2] demonstrated the 

unpredictability of Amazon EC2 VM performance caused by 
contention for physical machine resources and provisioning 
variation of VMs.  Using a Xen-based private cloud Rehman 
et al. tested the effects of resource contention on Hadoop-
based MapReduce performance by using IaaS-based cloud 
VMs to host worker nodes [1].  They tested provisioning 
variation of three different deployment schemes of VM-
hosted Hadoop worker nodes and observed performance 
degradation when too many worker nodes were physically 
co-located.  Their work investigated VM deployments not 
for multi-tier application(s), but for MapReduce jobs where 
all VMs were homogeneous in nature.  Multi-tier 
applications with many heterogeneous components present a 
more complex challenge for resource provisioning than 
studied by Rehman et al.  Zaharia et al. identified that 
Hadoop's scheduler can cause severe performance 
degradation from being unaware of resource contention 
when Hadoop nodes are hosted by Amazon EC2 VMs [3].  
They improved upon Hadoop's scheduler with the Longest 
Approximate Time to End (LATE) scheduling algorithm 
which better addresses performance variations of 
heterogeneous Amazon EC2 VMs.  Their work also did not 
consider hosting of heterogeneous components.   

 

Camargos et al. investigated performance of 
virtualization hypervisors for virtualizing Linux servers with 
numerous performance benchmarks for CPU, file and 
network I/O [5].  Hypervisors tested included Xen, KVM, 
VirtualBox, and two container based virtualization 
approaches OpenVZ and Linux V-Server.  Their benchmarks 
targeted different parts of the system using kernel 
compilation, file transfers, and file compression.  Armstrong 
and Djemame investigated performance of VM image 
propagation using Nimbus and OpenNebula, two IaaS cloud 
infrastructure managers [6].  Additionally they benchmarked 
Xen and KVM paravirtualized I/O.  Jayasinghe et al. 
investigated performance implications of deploying the 
RUBBoS n-tier e-commerce system using three different 
IaaS clouds: Amazon EC2, Emulab, and Open Cirrus [7].  
They tested horizontal scaling, changing the number of VMs 
for each component, and vertical scaling, varying the 
resource allocations of VMs.  They deployed components 
using separate VMs for full service isolation and did not 
investigate consolidation of components.  Matthews et al. 
developed a VM isolation benchmark which quantified the 
isolation level when co-located VMs ran several conflicting 
tasks [8].  They tested VMWare, Xen, and OpenVZ 
hypervisors to quantify isolation.  Somani and Chaudhary 
benchmarked Xen VM performance with two and four co-
located VMs running CPU, disk, or network intensive tasks 
on a single physical host [9].  They benchmarked the Simple 
Earliest Deadline First (SEDF) I/O credit scheduler vs. the 
default Xen credit scheduler.  Physical resource contention 
was investigated when running different co-located tasks, a 
scenario which may occur for component deployments of 
multi-tier applications.  Raj et al. improved hardware level 
cache management of the Hyper-V hypervisor introducing 
VM core assignment and cache portioning to reduce inter-
VM conflicts from sharing the same hardware caches.  These 
improvements were shown to improve VM isolation [10].   
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Niehörster et al. developed an autonomic system using 
support vector machines (SVM) where service specific 
agents were used to provide horizontal and vertical scaling of 
virtualization resources hosted by an IaaS Eucalyptus cloud 
[11].  Their agents scaled # of VMs, memory, and virtual 
core allocations to meet quality-of-service goals using their 
SVM modeling approach.  They applied their approach to 
scale the number of modeling engines for GROMACS, a 
molecular dynamics simulation and also to scale Apache 
web application servers to meet QoS goals.  Sharma et al. 
investigated implications of physical placement of non-
parallel tasks and their resource requirements to build 
performance model(s) to aid task scheduling and distribution 
on compute clusters [32].  Like Sharma we are interested in 
understanding implications of resource requirements and 
physical host location but for application components, not 
non-parallel sequential tasks.  RQ-3 specifically investigates 
building performance models which could aid component 
placement. 

 

Previous studies have investigated virtualization 
performance issues and autonomic scaling of VMs, but none 
have investigated implications of component placement 
(isolation vs. consolidation) relative to application 
performance and physical resource load balancing (CPU, 
disk, network) for IaaS cloud hosting of multi-tier 
applications. 

III. EXPERIMENTAL INVESTIGATION 

A. Test Application 
For our investigation we utilized two variants of a 

popular soil erosion model known as RUSLE2 (Revised 
Universal Soil Loss Equation – Version 2) [12].  RUSLE2 
contains both empirical and process-based science that 
predicts rill and interrill soil erosion by rainfall and runoff.  
RUSLE2 was developed to guide conservation planning, 
inventory erosion rates, and estimate sediment delivery.  
RUSLE2 is the US Department of Agriculture Natural 
Resources Conservation Service (USDA-NRCS) agency 
standard model for sheet and rill erosion modeling used by 
over 3,000 field offices across the United States.  RUSLE2 
consists of four tiers including an application server, a 
geospatial relational database, a file server, and a logging 
server utilizing a non-network file-based relational database.  
RUSLE2 is a good multi-component application for our 
investigation because with four components (Table I) and 15 
possible deployments (Table II), it is both complex enough 
to be interesting, yet simple enough that brute force testing is 
reasonable to accomplish.  RUSLE2’s architecture is a 
surrogate for traditional client/server architectures having 
both an application and relational database.   

 

RUSLE2 was originally developed as a Windows-based 
Microsoft Visual C++ desktop application and has been 
extended to provide soil erosion modeling as a JAX-RS 
RESTful webservice hosted by Apache Tomcat [16] using 
JSON as the transport protocol for data objects.  To facilitate 
functioning as a web service a command line console was 
added.   The Object Modeling System 3.0 (OMS3) 
framework [13-14] using WINE [15] provides middleware to 

facilitate interacting with the console.  OMS3 was developed 
by the USDA–ARS in cooperation with Colorado State 
University and supports component-oriented simulation 
model development in Java, C/C++ and FORTRAN.  

 

The RUSLE2 web service supports ensemble runs which 
are groups of individual model requests bundled together.  
To invoke the RUSLE2 web service a client sends a JSON 
object with parameters describing land management 
practices, slope length, steepness, latitude, and longitude.  
Model results are returned as JSON objects.  Ensemble runs 
are processed by dividing sets of modeling requests into 
individual requests which are resent to the web service, 
similar to the “map” function of MapReduce.  These requests 
are distributed to worker nodes using a round robin proxy 
server.  Upon completion individual runs of the ensemble are 
“reduced” into a single JSON response object.  A simple test 
generation program was used to create randomized ensemble 
tests.  Latitude and longitude coordinates were randomly 
selected within a bounding box from the state of Tennessee.  
Slope length, steepness, and land management practice 
parameters were randomized.  Randomization of latitude and 
longitude coordinates led to variable geospatial query 
execution times because the polygons intersected with varied 
in complexity.  To verify that our test generation technique 
produced test sets with variable complexity, 20 randomly 
generated 100-model run ensemble tests were run using the 
15 RUSLE2 component deployments twice and average 
execution times were calculated.  Execution speed 
(slow/medium/fast) of ensemble tests was preserved across 
subsequent runs indicating that individual ensembles 
exhibited a complexity-like characteristic (R²=.914, df=18, 
p=5•10-11

TABLE I.  RUSLE2 APPLICATION COMPONENTS 

). 

Component Description  

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object 
Modeling System (OMS 3.0) 

D Database 

Postgresql-8.4, PostGIS 1.4.0-2 
Geospatial database consists of soil data (1.7 million 
shapes, 167 million points), management data (98 
shapes, 489k points), and climate data (31k shapes, 3 
million points), totaling 4.6 GB for the state of TN. 

F File server 
nginx 0.7.62  
Serves XML files which parameterize the RUSLE2 
model.  57,185 XML files consisting of 305MB. 

L Logger 

Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit) 
Custom RESTful JSON-based logging wrapper web 
service.  IA-32libs support operation in 64-bit 
environment. 

 

 

Our investigation utilized two variants of RUSLE2 which 
are referred to as “d-bound” for the database bound variant 
and “m-bound” for the model bound variant.  The variants 
are named based on the predominant component requiring 
the largest quantity of execution time.  By testing two 
variants of RUSLE2 the same test harness can be used to 
investigate implications of component deployments for both 
applications.  These application variants provide surrogates 
for two potentially common scenarios in practice: an 
application bound by the database tier, and an application 
bound by the middleware (model) tier.  For the “d-bound” 
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version of RUSLE2 two primary geospatial queries were 
modified to perform a join on a nested query.  The “m-
bound” variant was unmodified.  The “d-bound” application 
exhibits a different application profile than the “m-bound” 
RUSLE2.  On average the “d-bound” application requires 
~2.45x more CPU time than the “m-bound” variant.   

B. Application Services 
Table I describes the application components of 

RUSLE2's application stack. The M component provides 
model computation and web services using Apache Tomcat.  
The D component implements the geospatial database which 
resolves latitude and longitude coordinates to assist in 
providing climate, soil, and management data for RUSLE2 
model runs.  Postgresql with PostGIS extensions were used 
to support geospatial functionality [17-18].  The file server F 
component provides static XML files to RUSLE2 to 
parameterize model runs.  NGINX [19], a lightweight high 
performance web server hosted over 57,000 static XML files 
on average ~5KB each.  The logging L component provided 
historical tracking of modeling activity.  The Codebeamer 
tracking facility which provides an extensive customizable 
GUI and reporting facility was used to log model activity 
[20].  A simple JAX-RS RESTful JSON-based web service 
decoupled logging functions from RUSLE2 by providing a 
logging queue to prevent delays from interfering with model 
execution.  Codebeamer was hosted by the Apache Tomcat 
web application server and used the Derby file-based 
relational database.  Codebeamer, a 32-bit web application, 
required the Linux 32-bit compatibility libraries (ia32-libs) 
to run on 64-bit VMs.  A physical server running the 
HAProxy load balancer provided a public proxy server 
which redirected modeling requests to the VM hosting the 
modeling engine.  HAProxy is a dynamically configurable 
very fast load balancer which supports proxying both TCP 
and HTTP socket-based network traffic [21].   

C. Service Configurations 
RUSLE2’s infrastructure components can be deployed 15 

possible ways using from 1-4 VMs.  Table II shows the 
tested service configurations labeled as SC1-SC15.  To 
create the compositions a composite VM image with all (4) 
application components was used.  An automated test script 
enabled/disabled application components as needed to 
achieve the configurations.  This method allowed automatic 
configuration of all component deployments using a single 
VM image.  Tradeoffs for this approach were that the 
composite image had to be large enough to contain all 
components, and that VMs had installed but non-running 
components. 

 

VMs were deployed in physical isolation with each 
physical machine hosting only one VM.  This simplified the 
experimental setup and isolated VMs supported by 
homogeneous hardware which provided a controlled 
environment to support experimentation without interference 
from external non-application VMs.  For RQ-2 physical 
machines hosted multiple VMs to test the effect of VM 
service isolation.   

 

For the deployment configurations tests, all VMs were 
initially configured to have 8 virtual CPUs, 4 GB memory 
and 10GB of disk space regardless of the number of 
components hosted by each VM.     

 

Table III describes component deployment 
configurations tested for RQ-2 service isolation testing.  
VMs are indicated with [ ]'s.  These tests measured 
application performance variation resulting from using or not 
using separate VMs to isolate application components.   The 
three top performing component deployments identified in 
investigation of RQ-1 were used. 

TABLE II.  TESTED COMPONENT DEPLOYMENTS 

 VM 1 VM 2 VM 3 VM 4 
SC1 MDFL    
SC2 MDF L   
SC3 MD FL   
SC4 MD F L  
SC5 M DFL   
SC6 M DF L  
SC7 M D F L 
SC8 M D FL  
SC9 M DL F  
SC10 MF DL   
SC11 MF D L  
SC12 ML DF   
SC13 ML D F  
SC14 MDL F   
SC15 MLF D   

 

TABLE III.  SERVICE ISOLATION TESTS 

NC NODE 1 NODE 2 NODE 3 
SC11-SI [M] [F] [D] [L] 

SC11 [M F] [D] [L] 
SC2-SI [M] [D] [F] [L]  

SC2 [M D F] [L]  
SC6 [M] [D] [F]  [L] 

SC6-SI [M] [D F] [L] 
 

D. Testing Setup 
A Eucalyptus 2.0 IaaS private cloud [22] was built and 

hosted by Colorado State University consisting of 9 SUN 
X6270 blade servers sharing a private 1 Giga-bit VLAN.  
Servers had dual Intel Xeon X5560-quad core 2.8 GHz 
CPUs, 24GB ram, and two 15000rpm HDDs of 145GB and 
465GB capacity respectively.  The host operating system 
was CentOS 5.6 Linux (2.6.18-274) 64-bit server for the Xen 
hypervisor [23] and Ubuntu Linux 10.10 64-bit server 
(2.6.35-22) for the KVM hypervisor.  VM guests ran Ubuntu 
Linux (2.6.31-22) 64-bit server 9.10.  Eight servers were 
configured as Eucalyptus node-controllers, and one server 
was configured as the Eucalyptus cloud-controller, cluster-
controller, walrus server, and storage-controller.  Eucalyptus 
managed mode networking using a managed Ethernet switch 
was used to isolate VMs onto their own private VLANs.   
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Available versions of the Xen and KVM hypervisors 
were tested to establish which provided the fastest 
performance using SC1 from Table II.  Ten trials of an 
identical 100-model run ensemble test were executed using 
the “m-bound” variant of the RUSLE2 application and 
average ensemble execution times are shown in Table IV.  
Xen 3.4.3 hvm represents the Xen hypervisor running in full 
virtualization mode using CPU virtualization extensions 
similar to the KVM hypervisor.  Xen 3.4.3 using 
paravirtualization was shown to provide the best 
performance and was used for the majority of experimental 
tests.  Our application-based benchmarks of XEN and KVM 
reflect similar results from previous investigations [5-6]. 

TABLE IV.  HYPERVISOR PERFORMANCE 

Hypervisor 

 

 

 

Avg. Time (sec) Performance 
Physical server 15.65 100% 

Xen 3.1 25.39 162.24% 
Xen 3.4.3 23.35 149.20% 
Xen 4.0.1 26.2 167.41% 
Xen 4.1.1 27.04 172.78% 

Xen 3.4.3 hvm 32.1 205.11% 
KVM disk virtio 31.86 203.58% 
KVM no virtio 32.39 206.96% 
KVM net virtio 35.36 225.94% 

           
The Linux virtual memory drop_caches function was 

used to clear all caches, dentries and inodes before each 
ensemble test to negate training effects from repeating 
identical ensemble tests.  This cache-flushing technique was 
verified by observing CPU, file I/O, and network I/O 
utilization for the automated tests with and without cache 
clearing.  When caches were not cleared, total disk sector 
reads decreased after the system was initially exposed to the 
same ensemble test.  When caches were force-cleared for 
each ensemble run, the system reread data.  As the test 
harness was exercised we observed that Codebeamer’s 
Derby database grew large resulting in performance 
degradations.  To eliminate decreased performance from log 
file and database growth our test script deleted log files and 
removed and reinstalled Codebeamer after each ensemble 
run.  These steps prevented out of disk space errors and 
allowed uninterrupted testing without intervention.  

 

VM resource utilization statistics were captured using a 
profiling script to capture CPU time, disk sector reads and 
writes (disk sector=512 bytes), and network bytes 
sent/received.  To determine resource utilization of the 
component deployments (Table II), resource utilization 
statistics were totaled from all VMs hosting the application.   

IV. EXPERIMENTAL RESULTS 
Table V summarizes tests in this study totaling more than 

3,720 ensemble runs consisting of over 372,000 individual 
model runs.  Subsections A, B, and C report results for our 
investigation of RQ-1. Characteristics of the resource 

utilization of the component deployments are reported in 
subsection A followed by performance results of the 
deployments in subsection B.  Subsection C reports 
performance when VM memory was increased from 4GB to 
10GB and Subsection D describes results from an 
experiment which measured overhead resulting from service 
isolation (RQ-2), the use of separate VMs to isolate 
application components.  Subsection E concludes by 
presenting results of using a multiple linear regression 
model with resource utilization statistics as independent 
variables to predict performance for component 
deployments (RQ-3). 

TABLE V.  SUMMARY OF TESTS 

Model Trials Ensembles 
/Trial 

Service 
Comps. 

Model 
Runs 

Ens. 
Runs 

m-bound  
4GB same 2 20 15 60k 600 

d-bound 
 4GB same 2 20 15 60k 600 

m-bound  
4GB diff 1 20 15 30k 300 

d-bound  
4GB diff 1 20 15 30k 300 

m-bound  
10GB same 1 20 15 30k 300 

d-bound  
10GB same 1 20 15 30k 300 

m-bound 10GB 
diff (kvm) 1 20 15 30k 300 

d-bound 10GB 
diff (kvm) 1 20 15 30k 300 

m-bound  
4GB diff 3 20 6 36k 360 

m-bound  
4GB same 3 20 6 36k 360 

Totals     372,000 3,720 
 

A. Component Deployment Resource Utilization 
Resource utilization statistics were captured for all 

component deployments to investigate how resource use 
varied.  To validate component deployments exhibited 
consistent resource utilization behavior, linear regression 
was used to compare two test runs consisting of 20 different 
100-model run ensembles using the “m-bound” model with 
4GB VMs.  Comparing resource utilization data, CPU time 
had the poorest correlation (R²=0.358316, df=13, p=.018), 
followed by disk sector reads (R²=0.432673, df=13, 
p=.00769), and disk sector writes (R²=0.773122, df=13, 
p=.000016).  Network bytes received and network bytes 
sent correlated very strongly between identical test runs at 
(R²=0.999808, df=13, p=1.52•10-25) and (R²=0.999797, 
df=13, p=2.14•10-25

 

).  Network utilization appeared similar 
for both model types as they communicated the same 
information.  For the “d-bound” model D performed many 
more queries but this additional computation was 
independent of the other components M, F, and L.  

To determine why CPU time had a weak correlation 
between tests, CPU utilization data for the SC7 deployment 



6 
 

was studied.  SC7 isolates each component onto a separate 
VM enabling collection of resource utilization statistics per 
component.  CPU time was less consistent because of the L 
Codebeamer logging component’s behavior.  L spent about 
11 seconds of total CPU time per ensemble test, but CPU 
utilization for L was inconsistent between ensemble tests 
(R²=0.06218, df=13, p=.289).  Comparing CPU utilization 
for the M, F, and D components, a strong correlation was 
observed between ensemble tests (R²=0.885884, df=13, 
p=6.43•10-10

 

).  By ignoring the L component’s CPU 
utilization behavior, component deployments had 
statistically consistent resource utilization behavior. 

Application performance and resource utilization varied 
based on the component deployment configuration.   
Comparing resource utilization among deployments for the 
“m-bound” model, network bytes sent/received varied by 
~144%, disk sector writes by ~22%, disk sector reads by 
~15% and CPU time by ~6.5% as shown in table VI.  
Comparing the fastest and slowest deployments the 
performance variation was ~3.2 seconds nearly 14% of the 
average ensemble execution time for all deployments.  
Resource utilization differences among deployments of the 
“d-bound” model was greater than “m-bound” with ~820% 
for disk sector reads, ~145% for network bytes 
sent/received, 111% for disk sector writes but only ~5.5% 
for CPU time as shown in Table VII.  “D-bound” model 
performance comparing the fastest versus slowest 
deployments varied by 25.7% (>34 seconds).   

TABLE VI.  “M-BOUND” DEPLOYMENT VARIATION 

Parameter M-bound Deployment 
Difference 

 Avg. ensemble (sec) 23.4 13.7% (3.2 sec) 
Avg. CPU time (sec) 11.7 6.5% 

Avg. disk sector reads 57,675 14.8% 
Avg. disk sector writes 286,297 21.8% 

Avg. network bytes rec'd 9,019,414 144.9% 
Avg. network bytes sent 9,037,774 143.7% 

TABLE VII.  “D-BOUND” DEPOLYMENT VARIATION 

Parameter D-bound Deployment 
Difference 

 Avg. ensemble (sec) 133.4 25.7% (34.3 sec) 
Avg. CPU time (sec) 27.8 5.5% 

Avg. disk sector reads 2,836,144 819.6% 
Avg. disk sector writes 246,364 111.1% 

Avg. network bytes rec'd 9,269,763 145.0% 
Avg. network bytes sent 9,280,216 143.9% 
Comparing both applications a ~138% increase in CPU 

time was observed for the “d-bound” model vs. the “m-
bound”.  Network utilization increased ~3% and disk sector 
reads where the M and D components were co-located 
increased 24,000%, but decreased 87% for deployments 
where M and D were not co-located.  Network utilization 

likely increased for the “d-bound” model due to the longer 
duration of ensemble runs.  More network traffic occurred 
as a result of having network connections open longer. 

 

Figure 1 shows resource utilization variation for 
component deployments of the “m-bound” model.  Resource 
utilization statistics were totaled from all VMs comprising 
individual component deployments.  The graph shows the 
absolute value of the deviation from average resource 
utilization for the component deployments (SC1 – SC15).  
The graph does not express positive/negative deviation from 
average but the magnitude of deviation.  Larger boxes 
indicate a greater deviation from average resource utilization 
and smaller boxes indicate performance close to the average. 

Figure 1.  Resource Utilization Variation of Component Deployments 

 

Figure 2.  4GB VM “M-bound” Component Deployment                 
Performance Regression Plot 

B. Component Deployment Performance  
To verify that component deployments performed 

consistently two identical tests consisting of 20 runs of the 
same 100-model run ensemble test were performed using 
the 15 component deployments.  The regression plot in 
Figure 2 compares the behavior of the two repeated test sets.  
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Linear regression confirms the consistency of component 
deployment performance for repeated test sets 
(R²=0.949674, df=13, p=8.09•10-10).  The three ellipses in 
the graph identify three different performance groups from 
left to right: fast, medium and slow.  Performance 
consistency of "d-bound" tests was verified using the same 
linear regression technique.  The consistency was not as 
strong due to higher variance of "d-bound" model execution 
times but was statistically significant (R²=0.81501, df=13, 
p=4.08•10-6

Figure 3.  Performance Comparison – Randomized Ensembles 

). 

TABLE VIII.  PERFORMANCE DIFFERENCES – RANDOMIZED ENSEMBLES 

composition   m-bound rank d-bound rank 
SC1 7.59% 14 4.46% 9 
SC2 -6.06% 1 -13.35% 1 
SC3 -0.80% 10 -12.64% 3 
SC4 -3.74% 6 -12.81% 2 
SC5 -1.13% 9 -2.64% 8 
SC6 -5.50% 2 -5.40% 4 
SC7 -4.38% 4 7.98% 12 
SC8 -2.21% 8 10.44% 14 
SC9 -2.92% 7 -3.16% 6 

SC10 -4.21% 5 -2.84% 7 
SC11 -5.20% 3 7.72% 11 
SC12 6.74% 11 -4.98% 5 
SC13 7.63% 15 8.57% 13 
SC14 6.97% 12 6.28% 10 
SC15 7.22% 13 12.36% 15 

 

To simulate a production modeling web service 20 
randomized 100-model run ensembles were generated (2,000 
unique requests) and used to benchmark each of the 15 
component deployments.  Figure 3 shows the performance 
comparison of the “m-bound” vs. “d-bound” model using 20 
different ensemble tests.  Performance differences from 
average and overall rankings are shown in table VIII.   

 

Service compositions for the “m-bound” application with 
random ensembles can be grouped into three categories of 
performance fast {SC2, SC4, SC6, SC7, SC9, SC10, SC11}, 
medium {SC3, SC5, SC8}, and slow {SC1, SC12, SC13, 

SC14, SC15}.  Compositions with M and L components co-
located performed slower in all cases averaging 7.25% 
slower, about 1.7 seconds.  When compositions had M and L 
co-located CPU time increased 14.6%, disk sector writes 
18.4%, and network data sent/received about 3% versus 
compositions where M and L were separate.   

 

Our results demonstrate variation in both resource 
utilization and application performance resulting from how 
components were deployed.  Top performing deployments 
for both model variants utilized either two or three VMs.  
Service isolation (SC7) did not equate to best performance 
for either model.  SC7 was ranked 4th fastest for the “m-
bound” model and 12th

C. Increasing VM Memory 

 for the “d-bound” model.  Prior to 
testing the authors posited that application service isolation 
(SC5), total service isolation (SC7), and geospatial database 
isolation (SC15) could potentially be the fastest 
deployments.  None of these deployments were top 
performers demonstrating that testing may be necessary to 
determine the best placements when intuition is insufficient.  

In [24] the RUSLE2 model was used to investigate multi-
tier application scaling with components deployed using 
isolated VMs.  VMs hosting the M, F, and L components 
were allocated 2GB memory, and the D component VM was 
allocated 4GB.  To avoid performance degradation due to 
memory contention, VM memory was increased to 10GB 
equal to the total allocation provided for previous testing in 
isolation [24].  Intuition suggests increasing VM memory 
should result in a performance improvement or no negative 
effect on performance.  20 runs of an identical 100-model 
run ensemble were repeated for all 15 component 
deployments using 10GB VMs.  Figure 4 shows 
performance changes resulting from increasing VM memory 
allocation from 4GB to 10GB for both the “m-bound” and 
“d-bound” applications.   

 
Figure 4.      10GB VM Performance Change (seconds) 

    For the “m-bound” application using 10GB VMs resulted 
in average ensemble performance .727 seconds       (-3.24%) 
slower than with 4GB VMs.  The SC11 composition 
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performed best at 6.7% faster than the average 10GB “m-
bound” ensemble test, or about .5 seconds faster than when 
using VMs with 4GB memory.  SC1, total service 
combination, performed the slowest at 8.9% slower than 
average, 3.1 seconds longer than with 4GB VMs.  Only “m-
bound” application component deployments which 
combined M and L components on the same VM experienced 
performance degradation.  Both M and L used the Apache 
Tomcat web application server, but L used a 32-bit version 
for hosting Codebeamer which required ia32 Linux 32-bit 
compatibility libraries to run on a 64-bit VM.  These 
observed performance degradations may have resulted from 
virtualization of the ia32 library as 32-bit Linux only 
natively addresses up to 4GB ram.   
 

    The “d-bound” application using 10GB VMs performed 
on average 3.24 seconds (2.46%) faster than when using 
4GB VMs.  More available memory improved database 
query performance.  SC4 performed best at 12.5% faster or 
about 11.2 seconds faster.   SC7, total service isolation, 
performed the slowest at 12.6% slower than average 
equaling about 4.2 seconds longer than tests with 4GB 
VMs. 

    To confirm this result was not unique to the XEN 
hypervisor and the use of an identical 100-model run 
ensemble 20 times, we repeated this test using the KVM 
hypervisor with 20 different ensembles.  Results were 
similar.  The “m-bound” model’s 15 component 
deployments performed on average 342 ms slower (-1.13%) 
with 10GB VMs and the “d-bound” model performed 3.24 
seconds (2.46%) faster on average.  Our results demonstrate 
that increasing VM memory allocation can result in non-
intuitive changes to application performance with some 
deployments experiencing performance changes exceeding 
+/-10%. 

D. Service Isolation Performance Tests 
To investigate overhead resulting from the use of 

separate VMs to host application components the three 
highest performing component deployments for the “m-
bound” model were studied.  Components were deployed 
using the SC2, SC6, and SC11 configurations with and 
without using separate VMs to host individual components.   
60 runs of the same 100-model run ensemble and also 3 runs 
using 20 different 100-model run ensembles for each 
composition were completed.  The percentage performance 
change resulting from service isolation is shown in Figure 5.   

 

In all configurations but one, service isolation resulted in 
overhead and performance degradation compared with 
deployments which combined multiple components on VMs.  
The average overhead from service isolation was ~1%.  For 
tests using different ensembles the normalized performance 
degradation observed for service isolation deployments was 
1.2%, .3%, and 2.4%.  For same ensemble tests performance 
degradation was 1.1%, -.6%, and 1.4%.  The same result was 
reproduced using KVM as the hypervisor with an average 
observed performance degradation of 2.4% using separate 
VMs.  Although the measured performance overhead was 

not large, it is important to consider that using additional 
VMs incurs higher hosting costs without performance 
benefits.  The isolated nature of our test configuration using 
isolated physical hardware running no other applications 
allows us to be certain that observed overhead was entirely 
from VM-level service isolation.   

 

 
Figure 5.  Performance Overhead From Service Isolation 

E. Predictive Model 
Resource utilization data was collected for CPU time, 

disk sector reads/writes, and network bytes sent/received as 
described in subsection A.  We observed that the resource 
utilization varied for each of the deployments tested.  To test 
whether resource utilization data is useful for predicting 
performance of component deployments in support of RQ-3, 
multiple linear regression (MLR) was used to build 
performance models. 

TABLE IX.  RESOURCE UTILIZATION VARIABLE PREDICTIVE POWER 

Parameter R RMSD 2  
CPU time .7171 887.64 

# Disk sector reads .3714 1323.25 
# Disk sector writes .1441 1544.05 

Network bytes recv'd. .0074 1662.76 
Network bytes sent .0075 1662.68 

Number of VMs .0444 1631.44 
 

 

Multiple linear regression (MLR) is a statistical 
technique used to model the linear relationship between a 
dependent variable and one or more independent variables 
[25].  The dependent variable for our MLR models is 
ensemble execution time and the independent variables were 
VM resource utilization statistics including: CPU time, disk 
sector reads/writes, network bytes sent/received, and the 
number of virtual machines.  Predictors in MLR models may 
be interrelated making evaluation of their individual 
importance challenging.  The “R-squared” value, also known 
as the coefficient of determination, explains the explanatory 
power of the entire model and its independent variables as 
the proportion of variance accounted for.  R-squared values 
were calculated separately for each independent variable 
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using single linear regression models to determine their 
predictive value when used independently.  Root mean 
squared deviation (RMSD) was calculated for each model.  
The RMSD expresses differences between the predicted and 
observed values and serves to provide a measure of model 
accuracy.  Ideally 95% of predictions should be less than +/- 
2 RMSD's from the actual value. 

 

A MLR model was built using resource utilization 
variables from the “m-bound” model using Xen 4GB VMs 
with 20 different ensemble tests.  All of our resource 
utilization variables together produced a model which 
accounted for 84% of the variance with a RMSD of only 
~676 ms (R2=.8416, RMSD=664.17 ms).  Table IX shows 
individual R2 values for the resource utilization statistics 
used in a simple linear regression model with ensemble 
execution time to determine how much variance each 
explained.  Additionally the average error (RMSD) is shown.  
The most predictive parameters were CPU time which 
positively correlated with ensemble time and explained over 
70% of the variance (R2=.7171) and disk sector reads 
(R2=.3714) with a negative correlation.  Disk sector writes 
had a positive correlation with ensemble performance 
(R2=.1441), while the number of VMs negatively correlated 
with ensemble time but predicted little variance (R2

 

=.0444).   
Network bytes received/sent both predicted less than 1% of 
the variance. 

We then used our MLR performance model to predict 
performance of component deployments.  Resource 
utilization data used to generate the model was fed back in to 
generate ensemble time predictions.  Average predicted 
ensemble execution times were calculated for each 
component deployment (SC1-SC15) and predicted ranks 
were assigned.  Predicted vs. actual performance ranks are 
shown in table X.  The mean absolute error (MAE) was 462 
ms, and estimated ranks were on average +/-1.33 units from 
the actual ranks.  Eleven predicted ranks for component 
compositions were off by 1 unit or less from their actual 
rank, with six exact predictions for SC2, SC10, SC11, SC13, 
SC14, and SC15.  The top three performing deployments 
were predicted correctly in order.  A second dataset was 
collected by rerunning the 20 ensembles using the 15 
component deployments while collecting resource utilization 
data.  This data was fed into our MLR performance model 
and we observed a MAE of only 324ms.  The average rank 
error was +/- 2 units.  Seven predicted ranks were off by 1 
unit or less from their actual rank, with three exact 
predictions.  The fastest deployment was predicted 
accurately while the second and third fastest were predicted 
as 6th, and 8th

 
. 

Building models to predict component deployment 
performance requires careful consideration of resource 
utilization variables.  Using multiple linear regression was 
helpful to identify which independent variables had the 
greatest impact on deployment performance.  Additional 
work which explores the use of resource utilization statistics 
to predict application deployment performance appears in 
[37].  This work investigates the use of additional 
independent variables including CPU statistics, kernel 

scheduler statistics, and guest/host load averages using both 
MLR and neural networks.  Future work should further 
investigate the use of neural networks, genetic algorithms, 
and/or support vector machines to assess their potential to 
improve performance predictions where available training 
data is non-linear extending related research [11, 27-31].   

TABLE X.  DEPLOYMENT PERFORMANCE RANK PREDICTIONS 

Composition Predicted Rank Actual Rank Rank Error 
SC1 12 15 -3 
SC2 2 2 0 
SC3 7 8 -1 
SC4 6 9 -3 
SC5 10 4 6 
SC6 9 10 -1 
SC7 4 5 -1 
SC8 8 7 1 
SC9 5 6 -1 

SC10 3 3 0 
SC11 1 1 0 
SC12 15 12 3 
SC13 14 14 0 
SC14 13 13 0 
SC15 11 11 0 

 

V. CONCLUSIONS 
(RQ-1) This research investigated the scope of 

performance implications which occur based on how 
components of multi-tier applications are deployed across 
VMs on a private IaaS cloud.  All possible deployments were 
tested for two variants of the RUSLE2 soil erosion model, a 
4-component application. Up to a 14% and 25.7% 
performance variation was observed for the “m-bound” and 
“d-bound” RUSLE2 models respectively.  Significant 
resource utilization (CPU, disk, network) variation was 
observed based on how application components were 
deployed across VMs.  Some configurations reduced overall 
resource consumption while others significantly increased it 
leading to performance degradations.  Increasing VM 
memory allocation did not guarantee performance 
improvements and intuition was insufficient to determine the 
best performing deployments.  Ad hoc worst case scenario 
component placements significantly degraded application 
performance demonstrating consequences for ignoring 
component composition.  Providing VM/application level 
resource load balancing and using compact application 
deployments holds promise for improving application 
performance while lowering hosting costs (# of VMs) for 
applications and should be investigated further for 
supporting application deployment to IaaS clouds.       

 

(RQ-2) Service isolation, the practice of using separate 
VMs to host individual application components, is beneficial 
where scalability of individual components is a priority, but 
results in performance overhead.  We observed up to 2.4% 
average performance overhead from using multiple VMs on 
the same physical host as isolation containers. 
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(RQ-3) Resource utilization statistics are useful for 
building performance models to predict performance of 
component deployments.  Using six resource utilization 
variables our multiple linear regression model accounted for 
84% of the variance in predicting performance of component 
deployments and accurately predicted the top performing 
component deployments.  VM/resource based performance 
models should be investigated further as they hold promise 
to help guide intelligent application deployment and resource 
load balancing for IaaS clouds. 
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