
University of Washington Tacoma
UW Tacoma Digital Commons

School of Engineering and Technology Publications School of Engineering and Technology

2013

Service Isolation vs. Consolidation: Implications
for Iaas Cloud Application Deployment
Wes Lloyd
University of Washington Tacoma, wlloyd@uw.edu

Shrideep Pallickara

Olaf David

Jim Lyon

Mazdak Arabi

See next page for additional authors

Follow this and additional works at: https://digitalcommons.tacoma.uw.edu/tech_pub

This Conference Proceeding is brought to you for free and open access by the School of Engineering and Technology at UW Tacoma Digital
Commons. It has been accepted for inclusion in School of Engineering and Technology Publications by an authorized administrator of UW Tacoma
Digital Commons.

Recommended Citation
Lloyd, Wes; Pallickara, Shrideep; David, Olaf; Lyon, Jim; Arabi, Mazdak; and Rojas, Ken, "Service Isolation vs. Consolidation:
Implications for Iaas Cloud Application Deployment" (2013). School of Engineering and Technology Publications. 16.
https://digitalcommons.tacoma.uw.edu/tech_pub/16

https://digitalcommons.tacoma.uw.edu?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/institute_tech?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.tacoma.uw.edu/tech_pub/16?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

Authors
Wes Lloyd, Shrideep Pallickara, Olaf David, Jim Lyon, Mazdak Arabi, and Ken Rojas

This conference proceeding is available at UW Tacoma Digital Commons: https://digitalcommons.tacoma.uw.edu/tech_pub/16

https://digitalcommons.tacoma.uw.edu/tech_pub/16?utm_source=digitalcommons.tacoma.uw.edu%2Ftech_pub%2F16&utm_medium=PDF&utm_campaign=PDFCoverPages

1

Service Isolation vs. Consolidation:
Implications for IaaS Cloud Application Deployment

Wes Lloyd1,2, Shrideep Pallickara1, Olaf David1,2,
Jim Lyon2, Mazdak Arabi2

1Department of Computer Science
2

Colorado State University, Fort Collins, USA
Department of Civil and Environmental Engineering

wes.lloyd, shrideep.pallickara, olaf.david, jim.lyon,
mazdak.arabi@colostate.edu

Ken Rojas
USDA-Natural Resource Conservation Service

Fort Collins, Colorado USA
Ken.Rojas@ftc.usda.gov

Abstract— Service isolation, achieved by deploying components
of multi-tier applications using separate virtual machines
(VMs), is a common “best” practice. Various advantages cited
include simpler deployment architectures, easier resource
scalability for supporting dynamic application throughput
requirements, and support for component-level fault tolerance.
This paper presents results from an empirical study which
investigates the performance implications of component
placement for deployments of multi-tier applications to
Infrastructure-as-a-Service (IaaS) clouds. Relationships
between performance and resource utilization (CPU, disk,
network) are investigated to better understand the implications
which result from how applications are deployed. All possible
deployments for two variants of a multi-tier application were
tested, one computationally bound by the model, the other
bound by a geospatial database. The best performing
deployments required as few as 2 VMs, half the number
required for service isolation, demonstrating potential cost
savings with service consolidation. Resource use (CPU time,
disk I/O, and network I/O) varied based on component
placement and VM memory allocation. Using separate VMs to
host each application component resulted in performance
overhead of ~1-2%. Relationships between resource utilization
and performance were harnessed to build a multiple linear
regression model to predict performance of component
deployments. CPU time, disk sector reads, and disk sector
writes are identified as the most powerful performance
predictors for component deployments.

Keywords Service Isolation; Service Composition;
Infrastructure-as-a-Service; Provisioning; Virtualization; Multi-
Tenancy; Resource Management and Performance;

I. INTRODUCTION
Migration of multi-tier client/server applications to

Infrastructure-as-a-Service (IaaS) clouds involves deploying
components of application infrastructure to one or more
virtual machine (VM) images. Images are used to instantiate
VMs to provide the application’s cloud-based infrastructure.
Application components consist of infrastructure elements
such as web/application servers, proxy servers, NO SQL
databases, distributed caches, relational databases, file
servers and others. Service isolation refers to the total
separation of application components with deployment using
separate VMs. VMs are then hosted by one or more physical
machines in an IaaS cloud. The non-determinism of the

mapping of VMs to physical hosts is a concept known as
provisioning variation, which may lead to unpredictable
performance behavior [1-2]. Service isolation provides
application components with their own explicit sandboxes to
operate in with a separate VM and operating system
instance. With hardware virtualization isolation can be
accomplished many times for each component of an
application across a cluster of physical servers. Before
server virtualization, service isolation of application
components using physical machines required significant
server capacity.

Methods to assess performance effects from VM
interference and investigation of approaches to better
manage multiplexing resources of physical hosts are active
areas of research [8-10, 26, 33-35]. Physical resources
including CPU, disk, and network I/O bandwidth are shared
and appropriate quantities must be allocated to meet
application service-level agreements (SLAs). With current
virtualization technology, only memory isolation is
guaranteed. VMs reserve a fixed amount of memory for
exclusive use which is not released until shutdown.
Processor, network I/O, and disk I/O resources are
multiplexed and sharing is coordinated by the virtualization
hypervisor. Popular virtualization hypervisors include
kernel-based VMs (KVM), Xen, and the VMware ESX
hypervisor. Hypervisors vary with respect to methods used
to multiplex resources. Some allow pinning VMs to operate
using specific CPU cores to guarantee resource availability,
but CPU caches must be shared [26].

Service isolation has been suggested as a best practice for
deploying components of multi-tier applications across VMs
An Amazon Web Services best practices white paper
suggests decoupling components by “bundling the logical
construct of a component into an Amazon Machine Image so
that it can be deployed more often” [36]. This loose
component coupling which isolates the various layers of an
application to enable horizontal scaling (increasing the # of
VMs) is encouraged in the white paper to enable easy
resource scalability. Service isolation enables scalability and
supports fault tolerance at the component level. Isolating
components may reduce inter-component interference
allowing them to run more efficiently though this isolation is
only at the guest operating system level as VMs share
physical hardware resources and compete for CPU, disk, and

mailto:Ken.Rojas@ftc.usda.gov�

2

network bandwidth. Service isolation adds an abstraction
layer above the physical hardware which introduces
overhead potentially degrading performance. Deploying all
application components using separate VMs may increase
network traffic, particularly when VMs are hosted by
separate physical machines. Component deployment should
be done carefully considering both virtualization overhead
and the effects of physical placement. Consolidating key
components together on a single VM guarantees they will
not be physically separated when deployed providing an
opportunity for potential performance improvements which
may potentially provide performance enhancements. User
control of VM placement is not always provided by IaaS
clouds resulting in provisioning variation which has been
shown to result in inconsistent performance [1-3].

This paper presents results of our investigation on the
implications of isolation versus consolidation for deploying
components of multi-tier applications to IaaS clouds. The
following research questions are investigated:

RQ-1)

RQ-2)

What are the impacts on resource utilization and
application performance resulting from different
component deployments (isolation versus
consolidation) for multi-tier applications? How
does increasing VM memory allocation impact
Performance?

RQ-3)

How much overhead results from VM service
isolation?

Can VM resource utilization data be used to build
models to predict performance of component
deployments?

This paper presents a thorough and detailed investigation
on how the deployment of multi-tier application
components impacts application performance and resource
consumption (CPU, disk, network). This work extends
prior research on provisioning variation and heterogeneity
of cloud-based resources. Relationships between
component placement, resource utilization and application
performance are investigated. Benchmarks are made to
measure performance effects of increasing VM memory
allocation and to quantify overhead of service isolation.
This work leads to the development of a multiple linear
regression model using resource utilization statistics to
predict performance of application component deployments.
Our approach for collecting application resource utilization
data discussed in section III to construct performance
model(s) uses a simple Linux script and can be generalized
to any multi-tier application. Supporting autonomic
identification of good component deployments through
modeling can help reduce application hosting costs (# of
VMs) and improve management and load balancing of
physical cloud resources without sacrificing performance
goals.

II. RELATED WORK
Rouk first identified the challenge of finding ideal service

compositions for creating virtual machine images in cloud
environments in [4]. Schad et al. [2] demonstrated the

unpredictability of Amazon EC2 VM performance caused by
contention for physical machine resources and provisioning
variation of VMs. Using a Xen-based private cloud Rehman
et al. tested the effects of resource contention on Hadoop-
based MapReduce performance by using IaaS-based cloud
VMs to host worker nodes [1]. They tested provisioning
variation of three different deployment schemes of VM-
hosted Hadoop worker nodes and observed performance
degradation when too many worker nodes were physically
co-located. Their work investigated VM deployments not
for multi-tier application(s), but for MapReduce jobs where
all VMs were homogeneous in nature. Multi-tier
applications with many heterogeneous components present a
more complex challenge for resource provisioning than
studied by Rehman et al. Zaharia et al. identified that
Hadoop's scheduler can cause severe performance
degradation from being unaware of resource contention
when Hadoop nodes are hosted by Amazon EC2 VMs [3].
They improved upon Hadoop's scheduler with the Longest
Approximate Time to End (LATE) scheduling algorithm
which better addresses performance variations of
heterogeneous Amazon EC2 VMs. Their work also did not
consider hosting of heterogeneous components.

Camargos et al. investigated performance of
virtualization hypervisors for virtualizing Linux servers with
numerous performance benchmarks for CPU, file and
network I/O [5]. Hypervisors tested included Xen, KVM,
VirtualBox, and two container based virtualization
approaches OpenVZ and Linux V-Server. Their benchmarks
targeted different parts of the system using kernel
compilation, file transfers, and file compression. Armstrong
and Djemame investigated performance of VM image
propagation using Nimbus and OpenNebula, two IaaS cloud
infrastructure managers [6]. Additionally they benchmarked
Xen and KVM paravirtualized I/O. Jayasinghe et al.
investigated performance implications of deploying the
RUBBoS n-tier e-commerce system using three different
IaaS clouds: Amazon EC2, Emulab, and Open Cirrus [7].
They tested horizontal scaling, changing the number of VMs
for each component, and vertical scaling, varying the
resource allocations of VMs. They deployed components
using separate VMs for full service isolation and did not
investigate consolidation of components. Matthews et al.
developed a VM isolation benchmark which quantified the
isolation level when co-located VMs ran several conflicting
tasks [8]. They tested VMWare, Xen, and OpenVZ
hypervisors to quantify isolation. Somani and Chaudhary
benchmarked Xen VM performance with two and four co-
located VMs running CPU, disk, or network intensive tasks
on a single physical host [9]. They benchmarked the Simple
Earliest Deadline First (SEDF) I/O credit scheduler vs. the
default Xen credit scheduler. Physical resource contention
was investigated when running different co-located tasks, a
scenario which may occur for component deployments of
multi-tier applications. Raj et al. improved hardware level
cache management of the Hyper-V hypervisor introducing
VM core assignment and cache portioning to reduce inter-
VM conflicts from sharing the same hardware caches. These
improvements were shown to improve VM isolation [10].

3

Niehörster et al. developed an autonomic system using
support vector machines (SVM) where service specific
agents were used to provide horizontal and vertical scaling of
virtualization resources hosted by an IaaS Eucalyptus cloud
[11]. Their agents scaled # of VMs, memory, and virtual
core allocations to meet quality-of-service goals using their
SVM modeling approach. They applied their approach to
scale the number of modeling engines for GROMACS, a
molecular dynamics simulation and also to scale Apache
web application servers to meet QoS goals. Sharma et al.
investigated implications of physical placement of non-
parallel tasks and their resource requirements to build
performance model(s) to aid task scheduling and distribution
on compute clusters [32]. Like Sharma we are interested in
understanding implications of resource requirements and
physical host location but for application components, not
non-parallel sequential tasks. RQ-3 specifically investigates
building performance models which could aid component
placement.

Previous studies have investigated virtualization
performance issues and autonomic scaling of VMs, but none
have investigated implications of component placement
(isolation vs. consolidation) relative to application
performance and physical resource load balancing (CPU,
disk, network) for IaaS cloud hosting of multi-tier
applications.

III. EXPERIMENTAL INVESTIGATION

A. Test Application
For our investigation we utilized two variants of a

popular soil erosion model known as RUSLE2 (Revised
Universal Soil Loss Equation – Version 2) [12]. RUSLE2
contains both empirical and process-based science that
predicts rill and interrill soil erosion by rainfall and runoff.
RUSLE2 was developed to guide conservation planning,
inventory erosion rates, and estimate sediment delivery.
RUSLE2 is the US Department of Agriculture Natural
Resources Conservation Service (USDA-NRCS) agency
standard model for sheet and rill erosion modeling used by
over 3,000 field offices across the United States. RUSLE2
consists of four tiers including an application server, a
geospatial relational database, a file server, and a logging
server utilizing a non-network file-based relational database.
RUSLE2 is a good multi-component application for our
investigation because with four components (Table I) and 15
possible deployments (Table II), it is both complex enough
to be interesting, yet simple enough that brute force testing is
reasonable to accomplish. RUSLE2’s architecture is a
surrogate for traditional client/server architectures having
both an application and relational database.

RUSLE2 was originally developed as a Windows-based
Microsoft Visual C++ desktop application and has been
extended to provide soil erosion modeling as a JAX-RS
RESTful webservice hosted by Apache Tomcat [16] using
JSON as the transport protocol for data objects. To facilitate
functioning as a web service a command line console was
added. The Object Modeling System 3.0 (OMS3)
framework [13-14] using WINE [15] provides middleware to

facilitate interacting with the console. OMS3 was developed
by the USDA–ARS in cooperation with Colorado State
University and supports component-oriented simulation
model development in Java, C/C++ and FORTRAN.

The RUSLE2 web service supports ensemble runs which
are groups of individual model requests bundled together.
To invoke the RUSLE2 web service a client sends a JSON
object with parameters describing land management
practices, slope length, steepness, latitude, and longitude.
Model results are returned as JSON objects. Ensemble runs
are processed by dividing sets of modeling requests into
individual requests which are resent to the web service,
similar to the “map” function of MapReduce. These requests
are distributed to worker nodes using a round robin proxy
server. Upon completion individual runs of the ensemble are
“reduced” into a single JSON response object. A simple test
generation program was used to create randomized ensemble
tests. Latitude and longitude coordinates were randomly
selected within a bounding box from the state of Tennessee.
Slope length, steepness, and land management practice
parameters were randomized. Randomization of latitude and
longitude coordinates led to variable geospatial query
execution times because the polygons intersected with varied
in complexity. To verify that our test generation technique
produced test sets with variable complexity, 20 randomly
generated 100-model run ensemble tests were run using the
15 RUSLE2 component deployments twice and average
execution times were calculated. Execution speed
(slow/medium/fast) of ensemble tests was preserved across
subsequent runs indicating that individual ensembles
exhibited a complexity-like characteristic (R²=.914, df=18,
p=5•10-11

TABLE I. RUSLE2 APPLICATION COMPONENTS

).

Component Description

M Model Apache Tomcat 6.0.20, Wine 1.0.1, RUSLE2, Object
Modeling System (OMS 3.0)

D Database

Postgresql-8.4, PostGIS 1.4.0-2
Geospatial database consists of soil data (1.7 million
shapes, 167 million points), management data (98
shapes, 489k points), and climate data (31k shapes, 3
million points), totaling 4.6 GB for the state of TN.

F File server
nginx 0.7.62
Serves XML files which parameterize the RUSLE2
model. 57,185 XML files consisting of 305MB.

L Logger

Codebeamer 5.5 w/ Derby DB, Tomcat (32-bit)
Custom RESTful JSON-based logging wrapper web
service. IA-32libs support operation in 64-bit
environment.

Our investigation utilized two variants of RUSLE2 which
are referred to as “d-bound” for the database bound variant
and “m-bound” for the model bound variant. The variants
are named based on the predominant component requiring
the largest quantity of execution time. By testing two
variants of RUSLE2 the same test harness can be used to
investigate implications of component deployments for both
applications. These application variants provide surrogates
for two potentially common scenarios in practice: an
application bound by the database tier, and an application
bound by the middleware (model) tier. For the “d-bound”

4

version of RUSLE2 two primary geospatial queries were
modified to perform a join on a nested query. The “m-
bound” variant was unmodified. The “d-bound” application
exhibits a different application profile than the “m-bound”
RUSLE2. On average the “d-bound” application requires
~2.45x more CPU time than the “m-bound” variant.

B. Application Services
Table I describes the application components of

RUSLE2's application stack. The M component provides
model computation and web services using Apache Tomcat.
The D component implements the geospatial database which
resolves latitude and longitude coordinates to assist in
providing climate, soil, and management data for RUSLE2
model runs. Postgresql with PostGIS extensions were used
to support geospatial functionality [17-18]. The file server F
component provides static XML files to RUSLE2 to
parameterize model runs. NGINX [19], a lightweight high
performance web server hosted over 57,000 static XML files
on average ~5KB each. The logging L component provided
historical tracking of modeling activity. The Codebeamer
tracking facility which provides an extensive customizable
GUI and reporting facility was used to log model activity
[20]. A simple JAX-RS RESTful JSON-based web service
decoupled logging functions from RUSLE2 by providing a
logging queue to prevent delays from interfering with model
execution. Codebeamer was hosted by the Apache Tomcat
web application server and used the Derby file-based
relational database. Codebeamer, a 32-bit web application,
required the Linux 32-bit compatibility libraries (ia32-libs)
to run on 64-bit VMs. A physical server running the
HAProxy load balancer provided a public proxy server
which redirected modeling requests to the VM hosting the
modeling engine. HAProxy is a dynamically configurable
very fast load balancer which supports proxying both TCP
and HTTP socket-based network traffic [21].

C. Service Configurations
RUSLE2’s infrastructure components can be deployed 15

possible ways using from 1-4 VMs. Table II shows the
tested service configurations labeled as SC1-SC15. To
create the compositions a composite VM image with all (4)
application components was used. An automated test script
enabled/disabled application components as needed to
achieve the configurations. This method allowed automatic
configuration of all component deployments using a single
VM image. Tradeoffs for this approach were that the
composite image had to be large enough to contain all
components, and that VMs had installed but non-running
components.

VMs were deployed in physical isolation with each
physical machine hosting only one VM. This simplified the
experimental setup and isolated VMs supported by
homogeneous hardware which provided a controlled
environment to support experimentation without interference
from external non-application VMs. For RQ-2 physical
machines hosted multiple VMs to test the effect of VM
service isolation.

For the deployment configurations tests, all VMs were
initially configured to have 8 virtual CPUs, 4 GB memory
and 10GB of disk space regardless of the number of
components hosted by each VM.

Table III describes component deployment
configurations tested for RQ-2 service isolation testing.
VMs are indicated with []'s. These tests measured
application performance variation resulting from using or not
using separate VMs to isolate application components. The
three top performing component deployments identified in
investigation of RQ-1 were used.

TABLE II. TESTED COMPONENT DEPLOYMENTS

 VM 1 VM 2 VM 3 VM 4
SC1 MDFL
SC2 MDF L
SC3 MD FL
SC4 MD F L
SC5 M DFL
SC6 M DF L
SC7 M D F L
SC8 M D FL
SC9 M DL F
SC10 MF DL
SC11 MF D L
SC12 ML DF
SC13 ML D F
SC14 MDL F
SC15 MLF D

TABLE III. SERVICE ISOLATION TESTS

NC NODE 1 NODE 2 NODE 3
SC11-SI [M] [F] [D] [L]

SC11 [M F] [D] [L]
SC2-SI [M] [D] [F] [L]

SC2 [M D F] [L]
SC6 [M] [D] [F] [L]

SC6-SI [M] [D F] [L]

D. Testing Setup
A Eucalyptus 2.0 IaaS private cloud [22] was built and

hosted by Colorado State University consisting of 9 SUN
X6270 blade servers sharing a private 1 Giga-bit VLAN.
Servers had dual Intel Xeon X5560-quad core 2.8 GHz
CPUs, 24GB ram, and two 15000rpm HDDs of 145GB and
465GB capacity respectively. The host operating system
was CentOS 5.6 Linux (2.6.18-274) 64-bit server for the Xen
hypervisor [23] and Ubuntu Linux 10.10 64-bit server
(2.6.35-22) for the KVM hypervisor. VM guests ran Ubuntu
Linux (2.6.31-22) 64-bit server 9.10. Eight servers were
configured as Eucalyptus node-controllers, and one server
was configured as the Eucalyptus cloud-controller, cluster-
controller, walrus server, and storage-controller. Eucalyptus
managed mode networking using a managed Ethernet switch
was used to isolate VMs onto their own private VLANs.

5

Available versions of the Xen and KVM hypervisors
were tested to establish which provided the fastest
performance using SC1 from Table II. Ten trials of an
identical 100-model run ensemble test were executed using
the “m-bound” variant of the RUSLE2 application and
average ensemble execution times are shown in Table IV.
Xen 3.4.3 hvm represents the Xen hypervisor running in full
virtualization mode using CPU virtualization extensions
similar to the KVM hypervisor. Xen 3.4.3 using
paravirtualization was shown to provide the best
performance and was used for the majority of experimental
tests. Our application-based benchmarks of XEN and KVM
reflect similar results from previous investigations [5-6].

TABLE IV. HYPERVISOR PERFORMANCE

Hypervisor

Avg. Time (sec) Performance
Physical server 15.65 100%

Xen 3.1 25.39 162.24%
Xen 3.4.3 23.35 149.20%
Xen 4.0.1 26.2 167.41%
Xen 4.1.1 27.04 172.78%

Xen 3.4.3 hvm 32.1 205.11%
KVM disk virtio 31.86 203.58%
KVM no virtio 32.39 206.96%
KVM net virtio 35.36 225.94%

The Linux virtual memory drop_caches function was

used to clear all caches, dentries and inodes before each
ensemble test to negate training effects from repeating
identical ensemble tests. This cache-flushing technique was
verified by observing CPU, file I/O, and network I/O
utilization for the automated tests with and without cache
clearing. When caches were not cleared, total disk sector
reads decreased after the system was initially exposed to the
same ensemble test. When caches were force-cleared for
each ensemble run, the system reread data. As the test
harness was exercised we observed that Codebeamer’s
Derby database grew large resulting in performance
degradations. To eliminate decreased performance from log
file and database growth our test script deleted log files and
removed and reinstalled Codebeamer after each ensemble
run. These steps prevented out of disk space errors and
allowed uninterrupted testing without intervention.

VM resource utilization statistics were captured using a
profiling script to capture CPU time, disk sector reads and
writes (disk sector=512 bytes), and network bytes
sent/received. To determine resource utilization of the
component deployments (Table II), resource utilization
statistics were totaled from all VMs hosting the application.

IV. EXPERIMENTAL RESULTS
Table V summarizes tests in this study totaling more than

3,720 ensemble runs consisting of over 372,000 individual
model runs. Subsections A, B, and C report results for our
investigation of RQ-1. Characteristics of the resource

utilization of the component deployments are reported in
subsection A followed by performance results of the
deployments in subsection B. Subsection C reports
performance when VM memory was increased from 4GB to
10GB and Subsection D describes results from an
experiment which measured overhead resulting from service
isolation (RQ-2), the use of separate VMs to isolate
application components. Subsection E concludes by
presenting results of using a multiple linear regression
model with resource utilization statistics as independent
variables to predict performance for component
deployments (RQ-3).

TABLE V. SUMMARY OF TESTS

Model Trials Ensembles
/Trial

Service
Comps.

Model
Runs

Ens.
Runs

m-bound
4GB same 2 20 15 60k 600

d-bound
 4GB same 2 20 15 60k 600

m-bound
4GB diff 1 20 15 30k 300

d-bound
4GB diff 1 20 15 30k 300

m-bound
10GB same 1 20 15 30k 300

d-bound
10GB same 1 20 15 30k 300

m-bound 10GB
diff (kvm) 1 20 15 30k 300

d-bound 10GB
diff (kvm) 1 20 15 30k 300

m-bound
4GB diff 3 20 6 36k 360

m-bound
4GB same 3 20 6 36k 360

Totals 372,000 3,720

A. Component Deployment Resource Utilization
Resource utilization statistics were captured for all

component deployments to investigate how resource use
varied. To validate component deployments exhibited
consistent resource utilization behavior, linear regression
was used to compare two test runs consisting of 20 different
100-model run ensembles using the “m-bound” model with
4GB VMs. Comparing resource utilization data, CPU time
had the poorest correlation (R²=0.358316, df=13, p=.018),
followed by disk sector reads (R²=0.432673, df=13,
p=.00769), and disk sector writes (R²=0.773122, df=13,
p=.000016). Network bytes received and network bytes
sent correlated very strongly between identical test runs at
(R²=0.999808, df=13, p=1.52•10-25) and (R²=0.999797,
df=13, p=2.14•10-25

). Network utilization appeared similar
for both model types as they communicated the same
information. For the “d-bound” model D performed many
more queries but this additional computation was
independent of the other components M, F, and L.

To determine why CPU time had a weak correlation
between tests, CPU utilization data for the SC7 deployment

6

was studied. SC7 isolates each component onto a separate
VM enabling collection of resource utilization statistics per
component. CPU time was less consistent because of the L
Codebeamer logging component’s behavior. L spent about
11 seconds of total CPU time per ensemble test, but CPU
utilization for L was inconsistent between ensemble tests
(R²=0.06218, df=13, p=.289). Comparing CPU utilization
for the M, F, and D components, a strong correlation was
observed between ensemble tests (R²=0.885884, df=13,
p=6.43•10-10

). By ignoring the L component’s CPU
utilization behavior, component deployments had
statistically consistent resource utilization behavior.

Application performance and resource utilization varied
based on the component deployment configuration.
Comparing resource utilization among deployments for the
“m-bound” model, network bytes sent/received varied by
~144%, disk sector writes by ~22%, disk sector reads by
~15% and CPU time by ~6.5% as shown in table VI.
Comparing the fastest and slowest deployments the
performance variation was ~3.2 seconds nearly 14% of the
average ensemble execution time for all deployments.
Resource utilization differences among deployments of the
“d-bound” model was greater than “m-bound” with ~820%
for disk sector reads, ~145% for network bytes
sent/received, 111% for disk sector writes but only ~5.5%
for CPU time as shown in Table VII. “D-bound” model
performance comparing the fastest versus slowest
deployments varied by 25.7% (>34 seconds).

TABLE VI. “M-BOUND” DEPLOYMENT VARIATION

Parameter M-bound Deployment
Difference

 Avg. ensemble (sec) 23.4 13.7% (3.2 sec)
Avg. CPU time (sec) 11.7 6.5%

Avg. disk sector reads 57,675 14.8%
Avg. disk sector writes 286,297 21.8%

Avg. network bytes rec'd 9,019,414 144.9%
Avg. network bytes sent 9,037,774 143.7%

TABLE VII. “D-BOUND” DEPOLYMENT VARIATION

Parameter D-bound Deployment
Difference

 Avg. ensemble (sec) 133.4 25.7% (34.3 sec)
Avg. CPU time (sec) 27.8 5.5%

Avg. disk sector reads 2,836,144 819.6%
Avg. disk sector writes 246,364 111.1%

Avg. network bytes rec'd 9,269,763 145.0%
Avg. network bytes sent 9,280,216 143.9%
Comparing both applications a ~138% increase in CPU

time was observed for the “d-bound” model vs. the “m-
bound”. Network utilization increased ~3% and disk sector
reads where the M and D components were co-located
increased 24,000%, but decreased 87% for deployments
where M and D were not co-located. Network utilization

likely increased for the “d-bound” model due to the longer
duration of ensemble runs. More network traffic occurred
as a result of having network connections open longer.

Figure 1 shows resource utilization variation for
component deployments of the “m-bound” model. Resource
utilization statistics were totaled from all VMs comprising
individual component deployments. The graph shows the
absolute value of the deviation from average resource
utilization for the component deployments (SC1 – SC15).
The graph does not express positive/negative deviation from
average but the magnitude of deviation. Larger boxes
indicate a greater deviation from average resource utilization
and smaller boxes indicate performance close to the average.

Figure 1. Resource Utilization Variation of Component Deployments

Figure 2. 4GB VM “M-bound” Component Deployment
Performance Regression Plot

B. Component Deployment Performance
To verify that component deployments performed

consistently two identical tests consisting of 20 runs of the
same 100-model run ensemble test were performed using
the 15 component deployments. The regression plot in
Figure 2 compares the behavior of the two repeated test sets.

cpu time disk sector reads disk sector writes network bytes rcvd network bytes sent
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

sc15
sc14
sc13
sc12
sc11
sc10
sc9
sc8
sc7
sc6
sc5
sc4
sc3
sc2
sc1

Resource Type

R
e

so
u

rc
e

 f
o

o
tp

ri
n

t

7

Linear regression confirms the consistency of component
deployment performance for repeated test sets
(R²=0.949674, df=13, p=8.09•10-10). The three ellipses in
the graph identify three different performance groups from
left to right: fast, medium and slow. Performance
consistency of "d-bound" tests was verified using the same
linear regression technique. The consistency was not as
strong due to higher variance of "d-bound" model execution
times but was statistically significant (R²=0.81501, df=13,
p=4.08•10-6

Figure 3. Performance Comparison – Randomized Ensembles

).

TABLE VIII. PERFORMANCE DIFFERENCES – RANDOMIZED ENSEMBLES

composition m-bound rank d-bound rank
SC1 7.59% 14 4.46% 9
SC2 -6.06% 1 -13.35% 1
SC3 -0.80% 10 -12.64% 3
SC4 -3.74% 6 -12.81% 2
SC5 -1.13% 9 -2.64% 8
SC6 -5.50% 2 -5.40% 4
SC7 -4.38% 4 7.98% 12
SC8 -2.21% 8 10.44% 14
SC9 -2.92% 7 -3.16% 6

SC10 -4.21% 5 -2.84% 7
SC11 -5.20% 3 7.72% 11
SC12 6.74% 11 -4.98% 5
SC13 7.63% 15 8.57% 13
SC14 6.97% 12 6.28% 10
SC15 7.22% 13 12.36% 15

To simulate a production modeling web service 20
randomized 100-model run ensembles were generated (2,000
unique requests) and used to benchmark each of the 15
component deployments. Figure 3 shows the performance
comparison of the “m-bound” vs. “d-bound” model using 20
different ensemble tests. Performance differences from
average and overall rankings are shown in table VIII.

Service compositions for the “m-bound” application with
random ensembles can be grouped into three categories of
performance fast {SC2, SC4, SC6, SC7, SC9, SC10, SC11},
medium {SC3, SC5, SC8}, and slow {SC1, SC12, SC13,

SC14, SC15}. Compositions with M and L components co-
located performed slower in all cases averaging 7.25%
slower, about 1.7 seconds. When compositions had M and L
co-located CPU time increased 14.6%, disk sector writes
18.4%, and network data sent/received about 3% versus
compositions where M and L were separate.

Our results demonstrate variation in both resource
utilization and application performance resulting from how
components were deployed. Top performing deployments
for both model variants utilized either two or three VMs.
Service isolation (SC7) did not equate to best performance
for either model. SC7 was ranked 4th fastest for the “m-
bound” model and 12th

C. Increasing VM Memory

 for the “d-bound” model. Prior to
testing the authors posited that application service isolation
(SC5), total service isolation (SC7), and geospatial database
isolation (SC15) could potentially be the fastest
deployments. None of these deployments were top
performers demonstrating that testing may be necessary to
determine the best placements when intuition is insufficient.

In [24] the RUSLE2 model was used to investigate multi-
tier application scaling with components deployed using
isolated VMs. VMs hosting the M, F, and L components
were allocated 2GB memory, and the D component VM was
allocated 4GB. To avoid performance degradation due to
memory contention, VM memory was increased to 10GB
equal to the total allocation provided for previous testing in
isolation [24]. Intuition suggests increasing VM memory
should result in a performance improvement or no negative
effect on performance. 20 runs of an identical 100-model
run ensemble were repeated for all 15 component
deployments using 10GB VMs. Figure 4 shows
performance changes resulting from increasing VM memory
allocation from 4GB to 10GB for both the “m-bound” and
“d-bound” applications.

Figure 4. 10GB VM Performance Change (seconds)

 For the “m-bound” application using 10GB VMs resulted
in average ensemble performance .727 seconds (-3.24%)
slower than with 4GB VMs. The SC11 composition

8

performed best at 6.7% faster than the average 10GB “m-
bound” ensemble test, or about .5 seconds faster than when
using VMs with 4GB memory. SC1, total service
combination, performed the slowest at 8.9% slower than
average, 3.1 seconds longer than with 4GB VMs. Only “m-
bound” application component deployments which
combined M and L components on the same VM experienced
performance degradation. Both M and L used the Apache
Tomcat web application server, but L used a 32-bit version
for hosting Codebeamer which required ia32 Linux 32-bit
compatibility libraries to run on a 64-bit VM. These
observed performance degradations may have resulted from
virtualization of the ia32 library as 32-bit Linux only
natively addresses up to 4GB ram.

 The “d-bound” application using 10GB VMs performed
on average 3.24 seconds (2.46%) faster than when using
4GB VMs. More available memory improved database
query performance. SC4 performed best at 12.5% faster or
about 11.2 seconds faster. SC7, total service isolation,
performed the slowest at 12.6% slower than average
equaling about 4.2 seconds longer than tests with 4GB
VMs.

 To confirm this result was not unique to the XEN
hypervisor and the use of an identical 100-model run
ensemble 20 times, we repeated this test using the KVM
hypervisor with 20 different ensembles. Results were
similar. The “m-bound” model’s 15 component
deployments performed on average 342 ms slower (-1.13%)
with 10GB VMs and the “d-bound” model performed 3.24
seconds (2.46%) faster on average. Our results demonstrate
that increasing VM memory allocation can result in non-
intuitive changes to application performance with some
deployments experiencing performance changes exceeding
+/-10%.

D. Service Isolation Performance Tests
To investigate overhead resulting from the use of

separate VMs to host application components the three
highest performing component deployments for the “m-
bound” model were studied. Components were deployed
using the SC2, SC6, and SC11 configurations with and
without using separate VMs to host individual components.
60 runs of the same 100-model run ensemble and also 3 runs
using 20 different 100-model run ensembles for each
composition were completed. The percentage performance
change resulting from service isolation is shown in Figure 5.

In all configurations but one, service isolation resulted in
overhead and performance degradation compared with
deployments which combined multiple components on VMs.
The average overhead from service isolation was ~1%. For
tests using different ensembles the normalized performance
degradation observed for service isolation deployments was
1.2%, .3%, and 2.4%. For same ensemble tests performance
degradation was 1.1%, -.6%, and 1.4%. The same result was
reproduced using KVM as the hypervisor with an average
observed performance degradation of 2.4% using separate
VMs. Although the measured performance overhead was

not large, it is important to consider that using additional
VMs incurs higher hosting costs without performance
benefits. The isolated nature of our test configuration using
isolated physical hardware running no other applications
allows us to be certain that observed overhead was entirely
from VM-level service isolation.

Figure 5. Performance Overhead From Service Isolation

E. Predictive Model
Resource utilization data was collected for CPU time,

disk sector reads/writes, and network bytes sent/received as
described in subsection A. We observed that the resource
utilization varied for each of the deployments tested. To test
whether resource utilization data is useful for predicting
performance of component deployments in support of RQ-3,
multiple linear regression (MLR) was used to build
performance models.

TABLE IX. RESOURCE UTILIZATION VARIABLE PREDICTIVE POWER

Parameter R RMSD 2
CPU time .7171 887.64

Disk sector reads .3714 1323.25
Disk sector writes .1441 1544.05

Network bytes recv'd. .0074 1662.76
Network bytes sent .0075 1662.68

Number of VMs .0444 1631.44

Multiple linear regression (MLR) is a statistical
technique used to model the linear relationship between a
dependent variable and one or more independent variables
[25]. The dependent variable for our MLR models is
ensemble execution time and the independent variables were
VM resource utilization statistics including: CPU time, disk
sector reads/writes, network bytes sent/received, and the
number of virtual machines. Predictors in MLR models may
be interrelated making evaluation of their individual
importance challenging. The “R-squared” value, also known
as the coefficient of determination, explains the explanatory
power of the entire model and its independent variables as
the proportion of variance accounted for. R-squared values
were calculated separately for each independent variable

9

using single linear regression models to determine their
predictive value when used independently. Root mean
squared deviation (RMSD) was calculated for each model.
The RMSD expresses differences between the predicted and
observed values and serves to provide a measure of model
accuracy. Ideally 95% of predictions should be less than +/-
2 RMSD's from the actual value.

A MLR model was built using resource utilization
variables from the “m-bound” model using Xen 4GB VMs
with 20 different ensemble tests. All of our resource
utilization variables together produced a model which
accounted for 84% of the variance with a RMSD of only
~676 ms (R2=.8416, RMSD=664.17 ms). Table IX shows
individual R2 values for the resource utilization statistics
used in a simple linear regression model with ensemble
execution time to determine how much variance each
explained. Additionally the average error (RMSD) is shown.
The most predictive parameters were CPU time which
positively correlated with ensemble time and explained over
70% of the variance (R2=.7171) and disk sector reads
(R2=.3714) with a negative correlation. Disk sector writes
had a positive correlation with ensemble performance
(R2=.1441), while the number of VMs negatively correlated
with ensemble time but predicted little variance (R2

=.0444).
Network bytes received/sent both predicted less than 1% of
the variance.

We then used our MLR performance model to predict
performance of component deployments. Resource
utilization data used to generate the model was fed back in to
generate ensemble time predictions. Average predicted
ensemble execution times were calculated for each
component deployment (SC1-SC15) and predicted ranks
were assigned. Predicted vs. actual performance ranks are
shown in table X. The mean absolute error (MAE) was 462
ms, and estimated ranks were on average +/-1.33 units from
the actual ranks. Eleven predicted ranks for component
compositions were off by 1 unit or less from their actual
rank, with six exact predictions for SC2, SC10, SC11, SC13,
SC14, and SC15. The top three performing deployments
were predicted correctly in order. A second dataset was
collected by rerunning the 20 ensembles using the 15
component deployments while collecting resource utilization
data. This data was fed into our MLR performance model
and we observed a MAE of only 324ms. The average rank
error was +/- 2 units. Seven predicted ranks were off by 1
unit or less from their actual rank, with three exact
predictions. The fastest deployment was predicted
accurately while the second and third fastest were predicted
as 6th, and 8th

.

Building models to predict component deployment
performance requires careful consideration of resource
utilization variables. Using multiple linear regression was
helpful to identify which independent variables had the
greatest impact on deployment performance. Additional
work which explores the use of resource utilization statistics
to predict application deployment performance appears in
[37]. This work investigates the use of additional
independent variables including CPU statistics, kernel

scheduler statistics, and guest/host load averages using both
MLR and neural networks. Future work should further
investigate the use of neural networks, genetic algorithms,
and/or support vector machines to assess their potential to
improve performance predictions where available training
data is non-linear extending related research [11, 27-31].

TABLE X. DEPLOYMENT PERFORMANCE RANK PREDICTIONS

Composition Predicted Rank Actual Rank Rank Error
SC1 12 15 -3
SC2 2 2 0
SC3 7 8 -1
SC4 6 9 -3
SC5 10 4 6
SC6 9 10 -1
SC7 4 5 -1
SC8 8 7 1
SC9 5 6 -1

SC10 3 3 0
SC11 1 1 0
SC12 15 12 3
SC13 14 14 0
SC14 13 13 0
SC15 11 11 0

V. CONCLUSIONS
(RQ-1) This research investigated the scope of

performance implications which occur based on how
components of multi-tier applications are deployed across
VMs on a private IaaS cloud. All possible deployments were
tested for two variants of the RUSLE2 soil erosion model, a
4-component application. Up to a 14% and 25.7%
performance variation was observed for the “m-bound” and
“d-bound” RUSLE2 models respectively. Significant
resource utilization (CPU, disk, network) variation was
observed based on how application components were
deployed across VMs. Some configurations reduced overall
resource consumption while others significantly increased it
leading to performance degradations. Increasing VM
memory allocation did not guarantee performance
improvements and intuition was insufficient to determine the
best performing deployments. Ad hoc worst case scenario
component placements significantly degraded application
performance demonstrating consequences for ignoring
component composition. Providing VM/application level
resource load balancing and using compact application
deployments holds promise for improving application
performance while lowering hosting costs (# of VMs) for
applications and should be investigated further for
supporting application deployment to IaaS clouds.

(RQ-2) Service isolation, the practice of using separate
VMs to host individual application components, is beneficial
where scalability of individual components is a priority, but
results in performance overhead. We observed up to 2.4%
average performance overhead from using multiple VMs on
the same physical host as isolation containers.

10

(RQ-3) Resource utilization statistics are useful for
building performance models to predict performance of
component deployments. Using six resource utilization
variables our multiple linear regression model accounted for
84% of the variance in predicting performance of component
deployments and accurately predicted the top performing
component deployments. VM/resource based performance
models should be investigated further as they hold promise
to help guide intelligent application deployment and resource
load balancing for IaaS clouds.

REFERENCES
[1] M. Rehman, M. Sakr, Initial findings for provisioning variation in

cloud computing, Proc. of the IEEE 2nd Intl. Conf. on Cloud
Computing Technology and Science (CloudCom '10), Indianapolis,
IN, USA, Nov 30 – Dec 3, 2010, pp. 473-479.

[2] J. Schad, J. Dittrich, J. Quiane-Ruiz, Runtime measurements in the
cloud: observing, analyzing, and reducing variance, Proc. of the
VLDB Endowment, vol. 3, no. 1-2, Sept. 2010, pp. 460-471.

[3] M. Zaharia et al., Improving MapReduce performance in
heterogeneous environments, Proc. 8th USENIX Conf. Operating
systems design and implementation (OSDI '08), San Diego, CA,
USA, Dec 8-10, 2008, pp. 29-42.

[4] M. Vouk, Cloud Computing – Issues, research, and implementations,
Proc. 30th Intl. Conf. Information Technology Interfaces (ITI 2008),
Cavtat, Croatia, June 23-26, 2008, pp. 31-40.

[5] F. Camargos, G. Girard, B. Ligneris, Virtualization of Linux servers,
Proc. 2008 Linux Symposium, Ottawa, Ontario, Canada, July 23-26,
2008, pp. 73-76.

[6] D. Armstrong, K. Djemame, Performance issues in clouds: An
evaluation of virtual image propagation and I/O paravirtualization,
The Computer Journal, June 2011, vol. 54, iss. 6, pp. 836-849.

[7] D. Jayasinghe et al., Variations in performance and scalability when
migrating n-tier applications to different clouds, Proc. 4th IEEE Conf
on Cloud Computing(Cloud ‘11), Washington D.C., USA, July 2011,
pp.73-80.

[8] J. Matthews, et al., Quantifying the performance isolation properties
of virtualization systems, Proc. ACM Workshop on Experimental
Comp. Science (ExpCS ’07), New York, NY, USA, 2007, Article 6.

[9] G. Somani, S. Chaudhary, Application performance isolation in
virtualization, Proc. 2nd IEEE Intl. Conf on Cloud Computing (Cloud
2009), Bangalore, Indian, Sept 2009, pp. 41-48.

[10] H. Raj et al., Resource Management for isolation enhanced cloud
services, Proc. ACM Cloud Comp. Security Wrkshp (CCSW ’09),
Chicago, IL, USA, Nov 2009, pp. 77-84.

[11] O. Niehörster, A. Krieger, J. Simon, A. Brinkmann, Autonomic
resource management with support vector machines, Proc. 12th
IEEE/ACM Int. Conf. On Grid Computing (GRID 2011), Lyon,
France, Sept 21-23, 2011, pp. 157-164.

[12] United States Department of Agriculture – Agricultural Research
Service (USDA-ARS), Revised Universal Soil Loss Equation Version
2 (RUSLE2), http://www.ars.usda.gov/SP2UserFiles/Place/
64080510/RUSLE/RUSLE2_Science_Doc.pdf

[13] L. Ahuja, J. Ascough II, and O. David, Developing natural resource
modeling using the object modeling system: Feasibility and
challenges,” Advances in Geosciences, vol. 4, 2005, pp. 29-36.

[14] O. David et al., Rethinking modeling framework design: Object
Modeling System 3.0, Proc. iEMSs 2010 Intl. Congress on Env.
Modeling and Software, Ottawa, Canada, July 5-8, 2010, 8 p.

[15] WineHQ – Run Windows applications on Linux, BSD, Solaris, and
Mac OS X, http://www.winehq.org/

[16] Apache Tomcat – Welcome, 2011, http://tomcat.apache.org/
[17] PostGIS, 2011, http://postgis.refractions.net/

[18] PostgreSQL: The world's most advanced open source database,
http://www.postgresql.org/

[19] nginx news, 2011, http://nginx.org/
[20] Welcome to CodeBeamer, 2011, https://codebeamer.com/ cb/user/
[21] HAProxy – The Reliable, High Performance TCP/HTTP Load

Balancer, http://haproxy.1wt.eu/
[22] D. Nurmi et al., The Eucalyptus open-source cloud-computing

system, Proc. IEEE Intl. Symposium on Cluster Computing and the
Grid (CCGRID 2009), Shanghai, China, May 18-21, 8p.

[23] P. Barham, et al., Xen and the art of virtualization, Proc. 19th ACM
Symposium on Operating Systems Principles (SOSP '03), Bolton
Landing, NY, USA, Oct 19-22, 2003, 14 p.

[24] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, K. Rojas,
Migration of multi-tier applications to infrastructure-as-a-service
clouds: An investigation using kernel-based virtual machines, Proc.
12th IEEE/ACM Intl. Conf. On Grid Computing (GRID 2011), Lyon,
France, Sept 21-23, 2011, pp. 137-143.

[25] R.H. Myers, Classical and modern regression with applications, 2nd
Edition, PWS-KENT Publishing Company, Boston, MA, 1994.

[26] S. Govindan et al., Quantifying effects of shared on-chip resource
interference for consolidated virtual machines, Proc. 2nd ACM
Symposium on Cloud Computing (SOCC 2011), Cascais, Portugal,
Oct 26-28, 2011, 14p.

[27] G. Kousiouris, T. Cucinotta, T. Varvarigou, The effects of
scheduling, workload type and consolidation scenarios on virtual
machine performance and their prediction through optimized artificial
neural networks, Jrnl. of Sys & Software, vol. 84, 2011, pp. 1270-
1291.

[28] N. Bonvin, T. Papaioannou, K. Aberer, Autonomic SLA-driven
provisioning for cloud applications, Proc. IEEE/ACM Int.
Symposium on Cluster, Cloud, and Grid Computing (CCGRID 2011),
Newport Beach, CA, USA, 2011, pp. 434-443.

[29] C. Xu, J. Rao, X. Bu, URL: A unified reinforcement learning
approach for autonomic cloud management, Journal of Parallel and
Distributed Computing, vol. 72, 2012, pp. 95-105.

[30] P. Lama, X. Zhou, Efficient server provisioning with control for end-
to-end response time guarantee on multitier clusters, IEEE
Transactions on Parallel and Distributed Systems, vol. 23, No. 1, Jan
2012, pp. 78-86.

[31] P. Lama, X. Zhou, Autonomic provisioning with self-adaptive neural
fuzzy control for end-to-end delay guarantee, Proc. 18th IEEE/ACM
Int. Symposium on Modeling, Analysis and Simulation of Computer
and Telecommunication Systems (MASCOTS 2010), Miami Beach,
FL, USA, August 17-19, 2010, pp. 151-160.

[32] B. Sharma et al., Modeling and synthesizing task placement
constraints in Google compute clusters, Proc. 2nd ACM Symp.on
Cloud Computing (SOCC11), Cascais, Portugal, Oct 2011, 14p.

[33] A. Gulati et al., Pesto: Online storage performance management in
virtualized datacenters, Proc. 2nd ACM Symposium on Cloud
Computing (SOCC 2011), Cascais, Portugal, Oct 26-28, 2011, 14p.

[34] H. Kang et al., Enhancement of Xen’s scheduler for MapReduce
workloads, Proc. 20th Intl. ACM Symposium on High-Performance
Parallel and Distributed Computing (HPDC ’11), San Jose, CA, June
8-11, 2011, pp. 251-262.

[35] T. Voith, K. Oberle, M. Stein, Quality of service provisioning for
distributed data center inter-connectivity enabled by network
virtualization, Future Gen. Comp. Systems, vol.28, 2012, pp.554-562.

[36] J. Varia, Architecting for the Cloud: Best Practices. Amazon Web
Services White Paper, 2010, https://jineshvaria.s3.amazonaws.com/
public/

[37] W. Lloyd, S. Pallickara, O. David, J. Lyon, M. Arabi, K. Rojas,
Performance Modeling to Support Multi-Tier Application
Deployment to Infrastructure-as-a-Service Clouds, Proc. 5th
IEEE/ACM Intl. Conf. On Utility and Cloud Computing (UCC 2012),
Chicago, IL, USA, Nov 5-8, 2012, 8p.

cloudbestpractices-jvaria.pdf

https://jineshvaria.s3.amazonaws.com/%20public/�
https://jineshvaria.s3.amazonaws.com/%20public/�

	University of Washington Tacoma
	UW Tacoma Digital Commons
	2013

	Service Isolation vs. Consolidation: Implications for Iaas Cloud Application Deployment
	Wes Lloyd
	Shrideep Pallickara
	Olaf David
	Jim Lyon
	Mazdak Arabi
	See next page for additional authors
	Recommended Citation
	Authors

	I. Introduction
	II. Related Work
	III. Experimental Investigation
	A. Test Application
	B. Application Services
	C. Service Configurations
	D. Testing Setup

	IV. Experimental Results
	A. Component Deployment Resource Utilization
	B. Component Deployment Performance
	C. Increasing VM Memory
	D. Service Isolation Performance Tests
	E. Predictive Model

	V. Conclusions
	References

