
u n i ve r s i t y o f co pe n h ag e n

Sandboxes for Grid Computing

Andersen, Rasmus

Publication date:
2009

Document version
Publisher's PDF, also known as Version of record

Citation for published version (APA):
Andersen, R. (2009). Sandboxes for Grid Computing. København.

Download date: 07. apr.. 2020

https://curis.ku.dk/portal/da/publications/sandboxes-for-grid-computing(a6aeb1f0-2a93-11df-8ed1-000ea68e967b).html

Sandboxes for Grid Computing

Ph.D. Dissertation

Rasmus Andersen

Department of Computer Science

University of Copenhagen

Copenhagen, Denmark

Submission date: May 12th, 2009

Acknowledgments

First and foremost I owe a big thanks my adviser, Professor Brian Vinter, who not

only arranged my Ph.D. stipend, but also guided me through the project with a never-

ending bank of ideas to research problems, always forthcoming to new suggestions, and

always finding solutions to administrative problems. Further, Brian has been a great

gateway to the world of research; apart from allowing me to tap into his own worldwide

network of research partners in academia and corporate research, Brian has also enabled

me to establish my own network by letting me attend many international conferences

and 3 Ph.D. summer schools with many international researchers from related fields of

science.

In the autumn of 2007, Brian introduced me to Prof. John Morrison from the Centre

for Unified Computing, University College Cork, Ireland, who was kind enough to host

me at his research group during the winter 2007/2008. Despite my rather short stay of

only 3 months, John opened many doors for me, and put me in contact with Dr. David

Power, with whom I spend many joyful hours discussing our software systems and

trying to find common ground for a collaborative research project. I am very grateful to

all the folks at UCC, who made my stay very enjoyable.

In our own research group, Jonas Bardino and Henrik Høy Karlsen have been a great

help in getting things up and running in our Grid system. My fellow Ph.D. student Mar-

i

tin Rehr has excelled in delving into my software implementations and suggesting other

methods and solutions, and has been a great travel companion at various conferences,

work shops, and summer schools.

Last but not least, thanks to my caring, understanding and wonderful wife, Vivi.

Thank you for keeping up with my highly asynchronous working hours, all my late Fri-

day discussion sessions, all my work-favored prioritizing, and all my travels, especially

the 3 months in Ireland while you were in the final stage of pregnancy.

The work presented here is funded by the NABIIT∗ project and the Faculty of Sci-

ence at the University of Copenhagen.

Rasmus Andersen, May 2009

∗Programkomiteen for Nanovidenskab og -teknologi, Bioteknologi og IT

ii

Table of Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Project Goal . 5
1.3 Results . 6
1.4 Publications . 7

2 Background 9
2.1 Grid Technology . 11

2.1.1 Reasons for Grids . 11
2.1.2 Virtual Organizations . 13
2.1.3 Grid Architecture . 14
2.1.4 Grid Applications . 16
2.1.5 Grid Middleware . 20
2.1.6 Grid Middleware Services . 20
2.1.7 Existing Middleware . 21

2.2 Minimum intrusion Grid . 31
2.2.1 The Four Rules of MiG . 32
2.2.2 MiG Design . 32
2.2.3 Architecture . 34

2.3 Sandboxing . 38
2.4 Virtual Machines . 39

2.4.1 Virtual Machines in a Grid Computing Context 41
2.4.2 Security . 43

3 The MiG Remote File Access Library 46
3.1 Introduction . 46

iii

3.2 Design . 50
3.2.1 Altering File Access Requests 51
3.2.2 Data Transfer . 55
3.2.3 File Handling . 58
3.2.4 Caching . 65

3.3 Experiments & Results . 72
3.3.1 Experiments . 72
3.3.2 Results . 73
3.3.3 Performance in a heterogeneous network 75

3.4 Conclusion . 76

4 The MiG Screen Saver Sandbox 78
4.1 Introduction . 79

4.1.1 Related Work . 80
4.2 Design . 81

4.2.1 The MiG Linux Image . 84
4.2.2 Runtime Environments . 85
4.2.3 Scheduling . 86

4.3 Implementation . 86
4.3.1 Sandbox Image, Version 0.x 87
4.3.2 Sandbox Image, Version 1.x 88
4.3.3 MiG-specific Resource Files 88
4.3.4 Uniqueness and Identification 89
4.3.5 Screen Saver Interaction . 89

4.4 Experiments & Results . 91
4.5 Conclusion . 91

5 The Scientific Bytecode Virtual Machine 93
5.1 Introduction . 94

5.1.1 Enabling Limitations . 96
5.2 Architectural Overview . 98

5.2.1 Security . 98
5.2.2 Portability . 99
5.2.3 Performance . 100

iv

5.2.4 Application Binary Interface 101
5.2.5 Instruction Set Architecture 103
5.2.6 Libraries . 106
5.2.7 Final Notes . 107

5.3 Implementation . 108
5.4 Related Work . 111
5.5 Experiments & Results . 113

5.5.1 Fast Fourier Transform . 113
5.5.2 Image Processing . 115
5.5.3 Basic Linear Algebra Subroutines 117

5.6 Conclusion . 118

6 Conclusions 119
6.1 Future Work . 120

A Publication 1 134

B Publication 2 141

C Publication 3 155

D Publication 4 172

E Publication 5 179

F Publication 6 192

G Publication 7 213

v

Chapter 1

Introduction

This project focuses on sandboxing techniques for Grid Computing, why sandboxing

is essential in a Grid Computing context, and how it can be deployed in an actual Grid

system. The main contribution of this thesis is the design and implementation of 2

different sandboxes, each of which make use of a special remote file access library.

When put into action, the ultimate goal of these sandboxes is to leverage the potential

of Grid Computing by combining it with Public Resource Computing, and making the

combined compute power accessible to researchers from other fields than computer

science.

The thesis is outlined as follows: This chapter first motivates the use of sandboxes

for general scientific exploitation in a Grid system, and then it details the project goals.

Chapter 2 presents background material for the thesis. Chapter 3 describes the remote

file access library, Chapter 4 and 5 present the designs and implementations of the two

sandbox solutions, the MiG Screen Saver Sandbox, and the Scientific Bytecode Virtual

Machine, respectively. Chapter 6.1 discusses future directions for the proposed models,

and Chapter 6 concludes.

1

1.1 Motivation

Sandboxing for Grid Computing. Parsing the thesis title from behind, Grid Comput-

ing [KF98] is a technology that emerged in the late 1990’s as a distributed comput-

ing platform for computationally intensive scientific applications, generally known as

eScience. Grid Computing arose out of necessity to accommodate the immense require-

ments of eScience. As personal computers were not enough and supercomputers were

much too expensive for small-scale projects, researchers in the mid 90’s pooled together

personal computers into cluster computers to obtain cheap compute power. The clus-

ter computing paradigm was quickly recognized as the most cost effective approach to

scientific simulations. The next step to fit the needs of the ever-expanding eScience

requirements, was to pool together several clusters from geographically dispersed sites.

Grid Computing then emerged with the promise of making access to compute power

from distributed heterogeneous computer resources as easy as the way we have access

to electricity in an electric power grid. On the provider side, any type of device with a

network interface could in theory be hooked up as a Grid resource, which would then

be made accessible for the user side through a Grid middleware.

In the meantime the related Volunteer Computing systems, or Public Resource Com-

puting [Sar98; Wol96; And03], became very popular with many successful academic

research projects. In these systems, the compute platform was composed of the public’s

personal computers; private people with a personal interest the topic of the research

project would donate their computing resources to the project.

Today, 10 years later, the situation is more or less the same; Grids are still primarily

composed of clusters from various scientific compute centres, and the Volunteer Com-

puting systems are still ’stealing’ excess compute cycles from standard desktop com-

2

puters donated by volunteers. However, the performance of the latter has by far outrun

the Grid systems. For instance, at the time of writing, the very popular Folding@Home

project operates at whopping 5 PFLOPS, while the RoadRunner supercomputer tops

the top 500 supercomputer list with a peak performance of 1.1 PFLOPS. At first sight

quite surprising, at second a paradox, since the very idea of the Grid was to share re-

sources on an unprecedented scale. Obviously, and effectively stamped by the success

of the Volunteer Computing systems, there is a huge unleashed potential here in getting

something as simple as general desktop computers on the Grid.

Thus, the natural extension to the Volunteer Computing scheme is to ’gridify’ it. In

their current form, primarily based on the BOINC framework [And04], these public re-

source computing projects are merely one-way systems; one can only donate resources.

A resource has a pre-installed client program that continuously fetches new data to ex-

ecute, as opposed to a Grid, where resources continuously fetch new programs. The

entry cost for a researcher to actually submit new programs to these Volunteer Comput-

ing systems is high enough to render them useless for smaller research projects in need

of compute power ∗.

An important aspect of Grid Computing is to allow seamless access for researchers

to the huge amount of connected resources, thus creating the illusion of unified access

to one big supercomputer. Gaining widespread acceptance as an important computing

platform depends on the ability of making the technology accessible to general exploita-

tion, not only for computer specialists, but also for researchers from other areas, since

they are the real end-users of the systems.

’Gridifying’ a Volunteer Computing system, i.e. not only making it easy for the

∗According to the BOINC website, http://boinc.berkeley.edu/trac/wiki/BoincIntro, it
takes 3 man-months to port an existing application to the BOINC framework and about $5000 for hard-
ware used for project management

3

http://boinc.berkeley.edu/trac/wiki/BoincIntro

public to donate their idle resources, but also enabling researchers to utilize these pub-

lic resources, gives a whole new dimension to a Grid. However, the two systems differ

significantly on two aspects: Security and portability. Firstly, a resource in a Volun-

teer Computing system only hosts one single application that keeps getting new data,

while a resource in a Grid system hosts arbitrary untrusted applications. Hence, there

is a substantial difference in the security level to ensure the host system. Secondly,

while a ’standard’ Grid is typically composed of Linux/Unix desktop computers, clus-

ters, and supercomputers from different trusted compute centres, a volunteer computing

grid drastically increases the heterogeneity of the system. For instance, the client statis-

tics from the Folding@Home [LSSP09] project reveal that the biggest contributors are

NVIDIA GPUs and PlayStation 3’s, markedly trailing ATI GPUs and Windows ma-

chines. Linux and Mac machines are barely noticeable. Obviously, porting a single

Volunteer Computing application to these architectures is considerably easier than en-

abling arbitrary programs to run on any architecture.

With the abundance of new powerful architectures in personal computers and de-

vices, we now face many radically different CPU architectures, GPU architectures, op-

erating systems, software environments, and specific limitations to memory, network,

and disk usage. Therefore, enabling execution of arbitrary code on connected resources

requires a lot of work in specifying an execution environment. Ultimately, before non-

computer specialists can adopt this computing platform, it is necessary to hide these

complexities of the Grid system, and free the applications from all architectural details

of the computational resources connected to the Grid.

To address these issues, the last part of the thesis title comes into action: Sand-

boxing. A sandbox is a confined environment in which a host system safely can allow

untrusted applications to execute; a sandbox can be equipped with a fresh execution en-

4

vironment, and any malicious behaviour in the sandbox has no way of affecting the host

system. However, the increased abstraction level does not come un-billed, as a sandbox

incurs a significant performance loss on the applications executing in the sandbox. The

thesis will present various ways of mitigating this drawback.

Virtual machines are specific examples of sandboxes, which not only can ensure the

safety of host computers, but in effect can help bridge the architectural boundaries in a

highly heterogeneous Grid system by raising the abstraction level from the underlying

hardware platform. Ideally, the ultimate vision is to be able to move around application

code as freely as application data can be moved around.

That said, an important aspect of the virtual machines presented in this thesis, is

that they do not move around application data, but instead access all application data

directly on the Grid storage servers in a remote file access fashion. Traditionally, job

submissions in Grids use the intuitive and very simple staging technique, in which all

files are transferred to the execution node before job execution, and transferred back to

the storage servers upon job completion. However, as elaborated in Chapter 3, many

types of scientific applications would benefit greatly from using a remote file access

model, thus saving the time used for transferring files. Further, recent trends in network

and hard disk technology suggest that it is inefficient to copy data from place to place.

1.2 Project Goal

During the last decade, Volunteer Computing systems have shown the potential of de-

ploying applications from many scientific domains on distributed computing platforms.

As these systems sustain petaflops of computing power from millions of connected per-

sonal computers, they have outstandingly overtaken what was promised by the Grid

5

Computing visions. Fully leveraging the computing power of both the Grid Computing

and Volunteer Computing paradigms is a huge challenge due to the immense scale and

extreme heterogeneity of a combined system.

The goal of the project is to facilitate general scientific applications on a Grid Com-

puting platform composed of typical desktop devices. For the first part, facilitating

scientific applications, sandboxing technology in the form of virtual machines, will be

essential in order to provide security for the host system when deploying the applica-

tions on privately owned computers. For the second part, measures will be taken on

how to combine Grid Computing and Volunteer Computing systems.

The thesis will present two types of virtual machines seeking to close the gap be-

tween the two computing paradigms. The first solution, named MiG Screen Saver Sand-

box, or MiG-SSS, is based on existing virtual machine solutions, while the other, the

Scientific Bytecode Virtual Machine, or SciBy VM, is an abstract machine built from

scratch to address problems obtained when using existing virtual machine software.

The remote file access module, MiG-RFA will be available as a library for the MiG-

SSS, while it will be an integral part of the SciBy VM.

1.3 Results

The results of the main contributions - the MiG-RFA, the MiG-SSS, and the SciBy

VM - have been promising. Each of the contributions has been developed, tested, and

benchmarked individually with very encouraging results.

The remote file access module, MiG-RFA, has proved the theory that it is ineffi-

cient to copy around application data from place to place as opposed to accessing data

remotely. In worst case scenarios, the module obtains performance numbers similar

6

to the staging technique. However, as soon as we turn to scientific applications, the

module clearly outperforms the copy semantics, and for special types of applications,

speedups of above one thousand is well within the realm of possibilities.

The MiG-SSS has been running reliably in the MiG for a couple of years. It has

been downloaded by approximately 1000 willing volunteers who kindly offered their

private excess computing power to scientific research. On the user side, several research

projects in the fields of molecular chemistry and nano-science have been deployed on

the donated resources.

Lastly, while the SciBy VM is still in a premature state, the performance numbers

have been very reassuring. Using libraries from a range of scientific application do-

mains, the machine not only outperforms similar virtual machines, but even exhibits

native performance in all experiments on a number of different hardware architectures.

1.4 Publications

During the course of this dissertation, the following papers have been published:

• Rasmus Andersen and Brian Vinter, Performance and Portability of the SciBy

Virtual Machine. Submitted for the special issue on Volunteer Computing and

Desktop Grids, Journal of Grid Computing.

• Rasmus Andersen and Brian Vinter, The Scientific Byte Code Virtual Machine.

The 2008 International Conference on Grid Computing and Applications, Las

Vegas, USA.

• Rasmus Andersen, Brian Vinter, David Power and John Morrison, Supporting

MiG & WebCom Interaction. The Sixth International Conference on Engineering

7

Computational Technology, Athens, Greece.

• Rasmus Andersen and Brian Vinter, Direct Application Access to Grid Storage.

Concurrency and Computation: Practice & Experience. Volume 19, Issue 9, June

2007.

• Rasmus Andersen and Brian Vinter, Harvesting Idle Windows CPU Cycles for

Grid Computing. Proceedings of the 2006 International Conference on Grid

Computing & Applications.

The following book chapters have also been published:

• Rasmus Andersen, Martin Rehr, and Brian Vinter, Cycle-Scavenging in Grid

Computing. Recent Developments in Grid Technology and Applications

• Brian Vinter, Rasmus Andersen, et al., Towards a Robust and Reliable Grid Mid-

dleware. Recent Developments in Grid Technology and Applications

8

Chapter 2

Background

eScience, modelling computationally intensive scientific problems using distributed

computer networks, has driven the development of Grid technology and as the simu-

lations get more and more accurate, the amount of data and needed compute power

increase equivalently. Many research projects have already made the transition to Grid

platforms to accommodate the immense requirements for data and computational pro-

cessing. Using this technology, researchers gain access to many networked computers

at the cost of a highly heterogeneous computing platform, as depicted in Figure 2.1. A

researcher writes an application, submits it to the Grid middleware, which then finds a

suitable resource.

Obviously, maintaining application versions for each resource type is tedious and

troublesome, and results in a deploy-port-redeploy cycle. Further, different hardware

and software setups on computational resources complicate the application develop-

ment drastically. One never knows to which resource a job is submitted in a Grid, and

while it is possible to assist each job with a detailed list of hardware and software re-

quirements, researchers are better left off with a virtual workspace environment that

9

Figure 2.1: Once a researcher submits a job to a Grid composed of many heterogeneous
resources, a suitable resource is pointed out to execute the job.

abstracts a real execution environment.

Hence, a virtual execution environment spanning the heterogeneous resource plat-

form is essential in order to fully leverage the Grid potential for researchers with little

knowledge in Grid technology. From the view of applications, this would render a re-

source access uniform and thus the much easier ”compile once run anywhere” strategy;

researchers can write their applications, compile them for the virtual machine and have

them executed anywhere in the Grid.

The main building blocks in this project arise from properties from virtual machines,

eScience, and a Grid environment in a combined effort, as shown in figure 2.2.

10

e−Science

Virtual MachinesGrid

Figure 2.2: Relatationship between VMs, the Grid, and eScience

2.1 Grid Technology

Increasingly complex problems and increasingly powerful high-speed network and pro-

cessing power technologies are the cornerstones of Grid technology. These factors have

incited the Grid from its inception with the initial goal of interconnecting geograph-

ically dispersed computer resources over the Internet to create an enormous pool of

processing power.

The technology enables the Grid Computing concept that is a form of distributed

computing involving dynamic coordination and sharing of a wide variety of heteroge-

neous resources. Thus, the Grid bonds and unifies remote and distributed resources

ranging from supercomputers and special engineering devices to personal digital assis-

tants.

In a wider perspective, Grid technology is going to revolutionize the popular per-

ception of what a computer is, ultimately providing unlimited processing power on tap

to everyone.

2.1.1 Reasons for Grids

Despite the ever increasing improvements in network, storage, and processing power

technologies, single computational resources fail to keep up with the demands in the

fields of engineering, business, and science. To this end, Grid Computing gives the

11

opportunity to use distributed aggregated resources as one huge unified computing re-

source.

A number of scientific problems need to be solved by means of simulations re-

quiring an enormous amount of processing power, and specialized scientific devices

produce equivalently large data volumes that science communities need shared access

to, in order to analyze the data. The former problem domain applies to what is referred

to as a computational Grid, the latter to a data Grid.

A computational Grid is a collection of distributed heterogeneous computing re-

sources that are aggregated to act as a unified processing resource or virtual supercom-

puter. This aggregation into a unified pool of processing power involves coordinated

usage policies, job scheduling and queuing characteristics, Grid-wide security, as well

as user authentication and authorization. Computational Grids thus provide efficient

processing of CPU-bound applications and allows the collected pool to efficiently ser-

vice different kinds of jobs.

Data Grids enable users and applications to access and manage data sets from dis-

tributed locations securely. Like computational Grids, data Grids rely on security soft-

ware and usage policies and may span multiple administrative domains. Examples of

problems in both types of Grids are given below, in Section 2.1.4.

For institutions, organizations, and business enterprises, the Grid technology pro-

vides a means of sharing all kinds of resources and offers a much less expensive alter-

native to frequently purchasing new costly hardware.

For the end-users, other factors are in play concerning the wide-spread use of the

Grid. Nowadays people are forced to buy, update, upgrade and maintain a personal

computer. An inherent problem with a personal computer is that most users will never

be able to fully use its potential, while its capabilities are insufficient when they are

12

really needed. Most of the time, these computers are in an idle state wasting processing

power that, in a Grid environment, is a valuable commodity.

The Grid provides users unlimited on-demand access to computational services,

data services, and application services, i.e. transparent access to remote software. Thus,

Grids are moving beyond the academic, supercomputing, realm and into commercial

use.

2.1.2 Virtual Organizations

Collaboration is an important issue in today’s science. Researchers in science commu-

nities, members of a consortium, students at a university are examples of communities

that may want to cooperate and interact with colleagues by means of shared access to

instrumentation, software, digital libraries, data archives, or computational resources.

For example, in the High Energy Physics project (HEP) at CERN, thousands of

researchers distributed all over the world analyze the same data set generated by a single

accelerator, the Large Hadron Collider.

Virtual Organizations, abbreviated VOs, are an important point in the Grid. They

enable communities to share all kinds of services in a controlled fashion, by letting

each resource owner define the local usage policies by means of VOs. For example,

all researchers in the HEP project may access the generated data volumes and use cer-

tain visualization tools from involved resources, while other communities may use the

resources for generic compute cycles only. Thus, members of a VO are authorized to

access a set of services on a set of Grid resources.

As shown in Figure 2.3, the Grid provides mechanisms for virtual organizations to

include different groups of users and to share resources between VOs.

13

VO A

R 1

G 3

G 4

G 1

VO CVO B

R 3

G 2

R 2

R 4

Figure 2.3: Virtual organizations can span multiple groups of people (G), i.e. organi-
zations, institutions, or individual persons, with access to dedicated or shared resources
(R).

2.1.3 Grid Architecture

Realizing a Grid first of all requires individual software and hardware components com-

bined into a networked resource. Next we need the deployment of low-level core mid-

dleware to provide access to the resources and user-level middleware for the aggregation

of geographically distributed resources. Finally, users should be able to submit jobs to

the Grid.

These fundamental components of the Grid architecture are organized into layers of

different widths, following the principles of the ”hourglass model”, as shown in Figure

2.4. All components in one layer share some common characteristics and are built on

the capabilities provided by a lower layer. The width difference indicates that layers at

the base and the top may include many components, whereas the narrow neck should

only include a minimal set of components.

The base of the hourglass, the fabric, consists of all networked resources, such as

14

USER APPLICATIONS

COLLECTIVE SERVICES

RESOURCE AND

CONNECTIVITY PROTOCOLS

FABRIC

Tools and applications

resources such as

computers, storage, SMP’s,

Heterogeneous

Secure

access to

resources

and monitoring

Scheduling, diagnostics,

databases, and specialized devices

Figure 2.4: The hourglass model

low-end computers, SMPs, clusters, databases, storage devices, scientific instrumenta-

tion, etc. These form the collective fundamental services of the Grid.

At a minimum, all resources must implement inquiry mechanisms in order to per-

mit discovery of their capabilities, structure, and current state as well as management

mechanisms to allow for control of the service.

The resource and connectivity layers at the neck of the hourglass must be imple-

mented everywhere and, therefore, should only consist of a small number of trusted

protocols and services. The connectivity layer defines the basic set of communication

protocols for interaction with the underlying fabric layer on the one hand, and authen-

tication protocols for verification of the identity of users and resources, on the other.

The resource layer also interacts with the fabric layer, utilizing its management and

inquiry mechanisms to enable secure initiation, monitoring, control, and accounting of

sharing operations on a single resource. The security is enforced by the communication

and authentication protocols of the connectivity layer.

The aggregated set of protocols in the resource and connectivity layer captures the

fundamental mechanisms of sharing across a large pool of different resource devices and

provides secure access and control of individual resources. Built upon these, the col-

15

lective layer contains protocols and services for coordinating collections of resources.

A large set of collective services can be implemented, for instance directory services,

scheduling, monitoring, diagnostics and data replication services. Also, information

about the Grid itself may be encapsulated in a meta computing service in this layer.

Thus, the functionality of the collective layer spans from general services to highly

domain specific services.

At the top of the system are the user applications. This layer represents the in-

terfacing between users and the Grid. Applications may use Grid-enabled languages

and utilities, but the interfacing could also be accomplished by means of Grid portals

specific to certain Grid-enabled applications or to users of certain production Grids.

This Grid architecture summarizes the ideal Grid environment: the top layer is pro-

vided ubiquitous and seamless access to the base layer such that the underlying differ-

ences between networks, platforms, and protocols become completely transparent for

the user and the resource. Thus, the intervening layers turn a radically heterogeneous

environment into a virtual homogeneous one.

2.1.4 Grid Applications

A wide variety of applications are applicable for a Grid platform. Through experi-

mental study in different testbeds, these application have been categorized into 5 main

classes [KF98], listed in table 2.1 and each described in the following sections.

Distributed Supercomputing

Supercomputing is an important and accepted aid in fields of science, business, and

engineering. In order to keep up with the ever increasing hardware requirements from

16

Class Examples Characteristics
Distributed Bio-analytical simulations Applications bound
supercomputing by CPU and memory
High Folding@Home Harness idle
throughput Cryptographic problems resources to increase

aggregate throughput
On demand Medical instrumentation Remote resources

Cloud detection integrated with local
computation

Data Sky survey Synthesis of new
intensive Physics data information from many

Data assimilation data sources
Collaborative Collaborative design Support

Data exploration work between
Education multiple participants

Table 2.1: The 5 main classes of Grid applications

these fields, distributed supercomputing, i.e. deploying aggregated physically distri-

buted supercomputers, emerged as the initial stage of the Grid.

The challenge in distributed supercomputing is porting existing supercomputing al-

gorithms to a Grid environment, where the algorithms may scale to tens or hundreds

of thousands, or even millions of nodes. Furthermore, as the difference in latencies

between distributed supercomputers might be several orders of a magnitude, the algo-

rithms should be more latency-tolerant and maintain a high level of performance across

heterogeneous resources.

High-Throughput

Harnessing idle resources and putting them to work is one of the fundamental ideas be-

hind the Grid. In high-throughout computing, a huge number of embarrassingly parallel

tasks are scheduled with the goal of using otherwise idle processor cycles. These tasks

are generally huge in number but typically simple in individual size and calculation, but

17

combined to one monolithic application to be executed at a single site, it would take

life-times to finish.

Many such projects exist, for instance the “Screen Saver Science” systems SETI@-

Home and Folding@Home. Folding@Home is a distributed computing project which

studies protein folding and misfolding. Understanding protein folding completely, could

wipe out diseases such as Alzheimer’s disease, cystic fibrosis, and many types of cancer.

Folding@Home is one of the biggest distributed computing projects in the world

with the biggest distributed computing cluster. In 2007, the project sustained a perfor-

mance level higher than one petaflops, thus becoming the first computing system of any

kind in the world to break the petaflops barrier.

At the time of writing, approximately 250.000 CPUs, mainly owned by private per-

sons distributed all over the world, contribute to the protein folding analysis by letting

client software utilize idle CPU-cycles for the analysis.

Note that while this is an example of a Grid application, the Folding@Home project

is deployed in a Volunteer Computing system, not a Grid Computing system.

On-Demand Computing

On-demand applications are characterized by an immediate need for a resource that, for

a number of reasons, is not available locally. These resources are typically specialized

hardware that by concern of high cost of ownership cannot be placed locally.

Generally, supply and demand for such specialized resources differ significantly

from standard resources, making Grid-related issues like resource location, scheduling,

fault tolerance, and payment for this kind of application extremely important.

As an example of an on-demand application, the Aerospace Corporation developed

a system that processes data from meteorological satellites and dynamically acquires

18

supercomputing resources to deliver the results from a cloud detection algorithm to

meteorologists all over the world.

Data-Intensive Computing

Applications in the class of data-intensive computing are characterized by using large

distributed data repositories for the synthesis of new information. These applications

are mainly I/O-bound, but some may exhibit balanced or dynamic use of computation

and communication.

From a Grid perspective, the focus of this kind application is on the massive amount

of data flowing through different segments and hierarchies. Data transfers must adapt

dynamically to varying latencies and fault situations. Also, optimal use of striping and

parallel file systems is an important issue in this area.

The HEP experiments at CERN, where many terabytes of data are generated daily

and thousands of scientific collaborators distributed all over the world access these data,

is an example of a data-intensive computing application.

Collaborative Computing

Collaborative applications are primarily concerned with enabling collaborative interac-

tion in shared simulations, data repositories, or other computational resources.

The Grid architecture must be able to cope with this kind of real-time requirement,

where a wide variety of collaborative interactions can take place.

The possibility of collaborative interactions between colleagues is one of the major

advantages of the Grid, known as knowledge services.

19

2.1.5 Grid Middleware

The Grid architecture maps out a Grid infrastructure where users and applications are

transparently linked to computer resources, i.e. users are unaware of the physical lo-

cation of the resources. According to this architecture, Grid middleware is basically

everything between the application and the fabric layer in the hourglass model in Fig-

ure 2.4.

From the fabric layer perspective, Grid middleware is the glue that connects all

resources, and from the user perspective, it hides all the underlying complexities of the

Grid and turns a radically heterogeneous environment into a virtual homogeneous one.

Analogously to the Internet, where the Internet Protocol provides the low-level ser-

vices in the Internet, Grid middleware is the “Grid Protocol” that provides all basic

services required to construct a Grid.

2.1.6 Grid Middleware Services

The middleware consists of a set of Grid services that constitute the design features of

a Grid implementation. Since some of these services are located in the collective layer

of the hourglass, there may be large number of services.

The most fundamental services that are required in all Grid solutions include job ex-

ecution services, resource management and scheduling services, information services,

security services, and file transfer services:

Job Execution Services First of all, mechanisms to asynchronously submit a job is

required. This service includes unique job identifiers as well as authentication and

authorization of users.

20

Resource Management and Scheduling Services Since users are not necessarily

aware of which resources are executing their jobs, a mechanism to manage all resources

and schedule applications that need to use the resources most effectively is essential.

Information Services This component is responsible for obtaining information about

all resources and services on the Grid. Many types of information are viable due to the

dynamic nature of Grid.

Security Services Security is of huge importance in the Grid. Clearly, no resource

owners are willing to join the Grid, if it introduces security holes to their systems or

impacts the usability. The security infrastructure protects all resources and data by

means of authentication, authorization, and encryption.

File Transfer Services In order to fully utilize the transparent use of resources, a

mechanism is needed to transfer files securely from one location to another.

Based on these fundamental services a wide variety of services can be introduced at

a higher level. For instance, as proposed, an advanced file transfer service that adapts

dynamically to varying network latencies and minimizes the network load by caching

data.

2.1.7 Existing Middleware

The Globus Toolkit

The Globus Toolkit [Fos05] is currently the main core middleware implementation for

Grid computing environments. The Globus architecture, shown in 2.5, includes 3 au-

21

tonomous components that implement the fundamental services of a Grid environment:

resource management, data management, and information services. All components are

accessible through the security layer. These components provide the basic capabilities

and services required to construct a computational Grid.

Third Party User−Level Grid Middleware

Grid Applications and Portals

Globus Core Grid Middleware

Grid Resources

Resource
Management:

Globus Resource
Allocation Manager

Data Management:

GridFTP,

Information
Services:

Monitoring and
Discovery System

Security Layer: GSI, CAS

Replica Location
Service, Reliable
File Transfer

Figure 2.5: The Globus Toolkit Architecture

Security Layer The security layer consists of a Grid Security Infrastructure (GSI)

component and a Community Authorization Service (CAS) component.

The Grid Security Infrastructure uses public key encryption, X.509 certificates, and

the Secure Sockets Layer (SSL) communication protocol to provide secure authentica-

tion and communication. The certificate is a central concept in the infrastructure. All

users and services are uniquely identified by a private certificate that is vital to iden-

tification and authentication of the user or service. Also, the certificates are used to

provide single sign-on for users and services as well as mutual authentication.

The Community Authorization Service (CAS) allows resource owners to specify

22

local control policies in terms of virtual organizations. All access policies for a given

VO are collected at a corresponding CAS-server that users of the VO must contact to

gain the right to perform a request.

Resource Management The Grid Resource Allocation and Management provides

remote submission and control capabilities. GRAM interfaces to local job scheduling

systems by means of a single common protocol and API for requesting status and using

remote resources.

As such, the heterogeneity of the local systems, i.e. the variety of different local

queuing system, reservation systems, schedulers, and control systems, are encapsulated

in the GRAM protocol, thus sparing users from being bothered with the varying re-

source environments.

However, GRAM introduces some fundamental, severe problems. Firstly, the inter-

facing to local resource management mechanisms is implemented by a gatekeeper and

a job manager. User jobs are submitted to the gatekeeper that authenticates the user

and starts a job manager corresponding to the local scheduler. The job manager then

submits the user job to the local scheduler. Hence, several levels of scheduling are in

play, and since the Grid scheduling depends on the local scheduling, it is merely a job

placement, in which neither fairness for users nor optimal utilization of the resources

connected to the Grid is provided.

Secondly, the job manager uses the monitoring facilities of the local scheduling sys-

tem to report the resource status. Upon each user job submission, the Grid scheduler

needs to contact all job managers in order to submit the job to the resource with the low-

est time to execute. Clearly, inquiring all resources, each potentially including several

job managers, does not scale to the size of a Grid.

23

Finally, this model has a built-in race condition, since two jobs submitted simulta-

neously will be sent to the same resource with the shortest submission queue, but only

one will get the expected queue slot.

Data Management The data management tools are concerned with data movement

and data replication. Data movement is achieved using, on the one hand, the GridFTP

protocol for secure, robust, fast, and efficient transfer of data, and on the other, the Reli-

able File Transfer Service that provides a web service interface and supports resuming

transfers from clients that disconnect by keeping the transfer state in reliable storage.

Data replication is achieved by the Replica Location Service. Upon creation of files,

users register the files in the RLS registry. The RLS then maintains a mapping between

the logical file name and one or more physical file names. Hence, the RLS server is

queried to find the physical location of a logical file name, and vice verse. In order

to achieve scalability and avoid a single point of failure, the RLS server is distributed

among the replica catalog servers.

Information Service Obtaining, indexing, archiving, and distributing information

about a Grid is handled by a set of information service components, collectively re-

ferred to as the Monitoring and Discovery Service, MDS.

The MDS is a three-tier system, consisting of Information Providers, a Grid Re-

source Information Service (GRIS), and a Grid Index Information Service (GIIS). In-

formation providers exist in all resources and utilize local resource status mechanisms

to obtain resource properties and status, such as current load status, operating system,

hardware configuration, etc. This information is reported to the GRIS daemon that runs

on every single resource. The top-level GIIS is a bunch of Grid-servers forming a hier-

24

archical distributed system itself. Every GIIS server indexes and archives information

from all GRISs and other GIISs connected to it.

The system is based on OpenLDAP and follows a pull model: The information

providers generate LDAP entries that, upon a client request, are pulled from a GIIS

through the GRIS, optionally using caches. Hence, the snapshots of the current total

load provided by the information system that are used in monitors and job submission

brokering, are as old as the time it takes to generate the LDAP entries on all resources,

parse them at the GRISs, pull them to the respective GIISs and assemble a total snapshot

from all GIISs.

Condor

Condor [LLM88] is a full-featured system aimed at utilizing all resources available to

the network whenever they are available. By means of job checkpointing to enable job

migration, and remote procedure calls (RPC) to enable a mobile sandbox environment

where all I/O calls are redirected to the server holding the files, Condor not only man-

ages dedicated compute resources, but also effectively scavenges and manages wasted

CPU cycles from otherwise idle resources across the network.

Condor includes its own resource management, job management, resource moni-

toring, and scheduling policies, and forms a Grid middleware in conjunction with the

Globus Toolkit that provides the basic mechanisms for secure communication and stan-

dardized access to a wide variety of remote batch systems.

As shown in Figure 2.6, which serves as a general diagram for many emerging

Grids, the Condor software consists of two independent components: Condor and

Condor-G, the former being the full-featured resource management system, the latter

being responsible for reliable job submission and job management.

25

Applications

Globus Toolkit

Compute resources, storage, etc.

Condor−G: Job sumission and management

Condor: Resource management

USER

GRID

MIDDLEWARE

FABRIC

Figure 2.6: Condor in the Grid architecture

Job Submission and Scheduling Job submissions in Condor-G take place by means

of an agent and a matchmaker. Figure 2.7 shows the data flow in Condor. A user

submits a job to an agent, who is responsible for storing the job while finding an ap-

propriate resource to run the job (1). Finding an appropriate resource, requires that the

agent advertises the requirements and characteristics of the job in so-called classified

advertisements (ClassAds) to a matchmaker. Resources also advertise themselves us-

ing ClassAds to the matchmaker (2). ClassAds are basically a set of uniquely named

attributes that the matchmaker scans to find suitable pairs of matching jobs and re-

sources. Finally, the agent and the resource are notified about their match (3) and can

now cooperate on executing the job (4).

Analogously to the Globus Toolkit middleware, scheduling in Condor is merely a

job-placement mechanism; once submitted to a resource, the job is submitted to the

local site scheduler, where the timetable is unknown. Publishing the timetable as an

attribute in the resource ClassAd helps planning, but scheduling is still based on a snap-

shot of the past.

26

Another approach addresses the job-placement problem more effectively. In schedul-

ing within a plan, an agent claims a resource in advance and can then create a schedule

for running its own jobs.

AGENT

Shadow

I/O server

Job submission (1)

File system The job

Sandbox

RESOURCE

MATCHMAKER

A
dv

er
tis

em
en

t(2
) A

dvertisem
ent(2)N

ot
ifi

ca
tio

n(
3)

N
otification(2)

Job setup(5)

Claiming(4)

Fork(6)
File access(8)

Job’s I/O calls(7)

Figure 2.7: Data flow in Condor

Execution environment The execution environment is defined by a shadow and a

sandbox that altogether constitute a universe. At the agent storing the job, a shadow is

responsible for providing all the details of the job: the input files, the executable, the

arguments, etc (5). At the resource, the sandbox provides an execution environment

allowing the job to run and protects the resource from malicious jobs (6).

The standard universe emulates all standard system calls in order to provide remote

file access through a secure RPC channel to the user’s home catalog managed by the

shadow (7,8). This emulation requires all user jobs to be relinked with the Condor

library.

Check-pointing is a very useful feature of the universe. It provides job migration

using the ability to take a snapshot of a running job and store it in stable storage. In

27

the event of failure or job preemption if a user returns to his workstation, the check-

pointing snapshot allows the job to migrate to another idle resource, where it can use

the snapshot to reconstruct the process and resume it right from where it left off.

WebCom

Problem solving for parallel systems traditionally lay in the realm of message pass-

ing systems such as PVM [GBD+94] and MPI [GFB+04] on networks of distributed

machines, or in the use of specialised variants of programming languages like Fortran

and C on distributed shared memory supercomputers. The WebCom System [MPK03]

relates more closely to message passing systems, although it is much more powerful.

Message passing architectures normally involve the deployment of a codebase on client

machines, and employ a master or server to transmit or push messages to these clients.

Technologies such as PVM, MPI and other metacomputing systems place the onus

on the developer to implement complete parallel solutions. Such solutions require a

vast knowledge on the programmer’s part in understanding the problem to be solved,

decomposing it into its parallel and sequential constituents, choosing and becoming

proficient in a suitable implementation platform, and finally implementing necessary

fault tolerance and load balancing/scheduling strategies to successfully complete the

parallel application. Even relatively trivial problems tend to give rise to monolithic

solutions requiring the process to be repeated for each problem to be solved.

WebCom removes much of these traditional considerations from the application de-

veloper; allowing solutions to be developed independently of the physical constraints

of the underlying hardware. It achieves this by employing a two level architecture: the

computing platform and the development environment. The computing platform is im-

plemented as an Abstract Machine (AM), capable of executing applications expressed

28

Figure 2.8: WebCom Abstract Machine Architecture showing how WebCom modules
plug into the Backplane module.

as Condensed Graphs. Expressing applications as Condensed Graphs greatly simplifies

the design and construction of solutions to parallel problems. The Abstract Machine

executes tasks on behalf of the server and returns results over dedicated sockets. The

computing platform is responsible for managing the network connections, uncovering

and scheduling tasks, maintaining a balanced load across the system and handling faults

gracefully. Applications developed with the development environment are executed by

the abstract machine. The development environment used is specific for Condensed

Graphs. Instructions are typically composed of both sequential programs (also called

atomic instructions) and Condensed nodes encapsulating graphs of interacting sequen-

tial programs. In effect, a Condensed Graph on WebCom represents a hierarchical job

control and specification language. The same Condensed Graphs programs execute

without change on a range of implementation platforms from silicon based Field Pro-

grammable Gate Arrays[MOH03] to the WebCom metacomputer and the Grid.

Architecture Overview The WebCom abstract machine is constructed from a set of

modules that plug into a module called the backplane. Each module in the WebCom

29

system falls into one of two categories: it is either a Core module or a User module.

Modules are loaded based on a initial configuration, thus bootstrapping the computa-

tional platform. Core modules include the Compute Engine, Fault Tolerance, Schedul-

ing and Load balancing via the Distributor, Security, Communications, Job Manage-

ment and Information Management. User modules can be provided to add additional

functionality to the WebCom abstract machine. This architecture is outlined in Fig-

ure 2.8.

Compute Engine: The compute engine is responsible for low level task execution.

Task composition varies depending on the compute engine in use. The default Con-

densed Graphs compute engine is responsible for executing applications expressed as

Condensed Graphs.

Fault Tolerance: The fault tolerance module detects and corrects faults that occur

within the Abstract Machine. Mechanisms in place for fault tolerance range from sim-

ply rescheduling failed tasks to employing a unique processor replacement strategy.

Distributor: The distributor is responsible for allocating work to clients. The dis-

tributor operates according to a set of installed policies. Typically, a system-wide de-

fault policy exists that allows the distributor to select clients for task execution. These

policies are plugable and hierarchal in nature and specify items such as the selection

algorithm and associated configuration parameters. Nodes within a Condensed Graphs

application are executed according to the installed policy. In addition, nodes themselves

can specify their own distribution policy. Such nodes will be allocated to clients based

on that policy. This provides great flexibility within the abstract machine, as an appli-

cation is not tied to one particular scheduling algorithm. Different nodes in a single

30

application can be scheduled using different algorithms. It is possible that multiple ap-

plications executing on a single abstract machine can execute using multiple selection

algorithms within the distributor.

Security: The security manager is responsible for authenticating the tasks, results and

other messages transmitted throughout the WebCom infrastructure. The current security

manager is based on the Keynote[Ker99] standard.

Communications Manager Module: The communications manager is responsible

for communicating tasks to clients. Once the distributor has decided where to allocate

a task, it is placed in a queue for the selected client. The communications manager

module serves this queue, transmitting the task to the client. Tasks are sent based upon

a Pull Request mechanism. When a client is willing to accept work, it issues a pull

request. A WebCom will respond to this request by pushing the task to the client.

Job Manager: Each application within the WebCom abstract machine executes within

its own job space. The job manager [CHPM07] can be used to monitor the progress of

job execution, pause and restart jobs and also suspend jobs.

2.2 Minimum intrusion Grid

Several Grid middleware systems have been developed and many are currently evolving.

Most of them are descendants of, or are based on, the Globus Toolkit [Fos05; EEH+03;

dANV+05], and thus suffer from several drawbacks [Vin05; Vin07].

The Minimum intrusion Grid, MiG, is a stand-alone approach to Grid that does

not depend on any existing systems. The philosophy behind the MiG is to provide a

31

Grid infrastructure that imposes as few requirements on users and resources as possible.

Users and resources should only install a minimum amount of software in order to

access and join the Grid. MiG has been running since 2005 and many applications from

various research projects have been deployed [MP05; WVB05; VABK06] on resources

ranging from Java applets, via PlayStation 3s and PCs, to cluster computers [RV07;

RV08a; AV06; RV08b].

2.2.1 The Four Rules of MiG

The following four rules of MiG constitute the cornerstones of the philosophy behind

the MiG system and are in constant contemplation during the design phase:

1. Minimum intrusion rule: Nothing produced by MiG can be required to be in-

stalled on resources or clients

2. Programming language: Everything in MiG must be implemented in one single

programming language unless another language is absolutely required. Python is

chosen [KV05].

3. User convenience: Any design and implementation decision must optimize to-

wards transparency for the users

4. Software development rule: Anything that is not right must be thrown away

2.2.2 MiG Design

The main challenge in MiG, is to let the desire for minimum intrusion on users and

resources coexist with all the properties, features, and services of a commodity Grid.

The following design criteria should be included in the MiG middleware:

32

Non-intrusive The requirements and the amount of software to be installed should be

minimal to users and resources.

Scalable As the Grid could comprise millions of resources and users, scalability is

inherently important in any Grid middleware.

Autonomous Grid software should be autonomous, i.e. users and resources should

not be affected by middleware software updates.

Anonymous Users and resources should be anonymous to each other, i.e. all inter-

facing is done through the Grid and they do not see the identity of each other.

Fault Tolerance In a Grid system comprising a large number of users and resources,

failure is unavoidable and must be handled gracefully. Failing jobs, resources, Grid

servers, Grid processes, and network connections must be transparent to the users and

should not affect the operability of the Grid.

Firewall Compliant Machines behind a firewall are not required to have new ports

opened in the firewall.

Security Security is fundamental to any successful Grid implementation. Several

mechanisms must be introduced to achieve this goal, and all Grid services must integrate

a security mechanism.

Secrecy Secrecy is partly achieved by the anonymity property that ensures that re-

sources running a job on behalf of a user, are unaware of the identity of the user. Fur-

33

ther, means of keeping user files secret to the owner of the resource running the job are

necessary.

2.2.3 Architecture

The architecture of the MiG model is a classic client-server approach, where users and

resources initiate all communication: the user sends jobs to the Grid, and the resource

sends job requests to the Grid and receives a job for execution. Afterwards, the resource

sends the result to the Grid, the user is notified and may finally retrieve the result.

To achieve the design criteria of non-intrusiveness, the communication protocols

should be trusted and widely used. Furthermore, since the amount of software to be

installed should be minimal and no reconfiguration of firewalls should be required, the

obvious solution is to take advantage of commonly installed software. Thus, for the

interface between users and the Grid, we choose the HTTPS protocol, and for the inter-

face between resources and the Grid, we choose HTTPS and SSH.

The only requirement for users to join the Grid, is that they acquire a certificate for

proper authentication when contacting the Grid. Jobs are then submitted through a web

browser importing the certificate.

At the other end, resources also need a certificate and, in addition, they need to

create a Grid account. User jobs are then run incognito on remote resources as this

generic Grid-user.

Thus, the requirements on users and resources are kept at a minimum, as shown in

table 2.2

Furthermore, since we have to avoid reconfiguration of firewalls in front of re-

sources, and we do not require any intervention from the local system administrator

34

Requirement User Resource
Certificate Yes Yes
Outbound HTTPS Yes Yes
Inbound SSH No Yes

Table 2.2: User and resource requirements to access and join the Grid.

to install Grid software, we use the SSH protocol and the Grid account to install and

maintain the Grid software on the resource. This software is necessary for requesting,

initiating and returning user jobs.

Anonymity is inherent in this model, shown in Figure 2.9, since users and resources

only communicate with the Grid, while autonomy is achieved by placing all functional-

ity on the Grid servers. By keeping the functionality on Grid servers between the users

and resources, the Grid system acts to its clients as a centralized black box that can be

maintained and updated without interventing or affecting the clients. In effect, having a

fat Grid and thin clients lowers the requirements on users and resources.

GRID

Server Y

Server Z

Server X

Resource

Resource

Resource

User A

User B

User C

User D

Figure 2.9: The MiG model

As all functionality is centralized on the Grid servers, all workload must be dis-

tributed among the servers to ensure scalability. A level of redundancy in this internal

distributed system is needed to cope with internal failures. For instance, job submissions

are only acknowledged when the job has been successfully placed at a predetermined

number of servers, i.e., for a replication rate of 3 in Figure 2.9, one user is assigned

35

server x,y,z as primary, secondary, and tertiary “job-server”, respectively, while another

is assigned server z,y,x respectively.

Keeping the amount of software and protocols at a minimum eases security is-

sues significantly. The chosen communication interfaces, SSH and HTTPS are well-

documented and trusted protocols, which we can readily rely on.

Components

On top of the fundamental architecture, the functionality of MiG is built by multiple

autonomous components.

Storage

The MiG model introduces home-catalogs for all Grid users, and all file references are

relative to this home-catalog. This eliminates all issues with replica catalogs and users

are freed of the annoying burden of explicitly uploading input files and downloading

output files from specific Grid storage elements. All personal files are referenced di-

rectly and accessed through one simple access entry.

Storage is integrated in the Grid system, and the component includes a simple dis-

tributed replica backup mechanism to ensure scalability and fault tolerance.

Scheduler

Optimal utilization of available resources and fairness for users submitting jobs are two

fundamental issues that are handled in the scheduler component. MiG handles schedul-

ing quite differently than other middlewares, in that the local scheduling precedes the

Grid scheduling. Thus, a job is only submitted to a resource once the resource has an

36

available slot for executing it. In contrast, many other middlewares submit a job to

resource on which it is subject to another level of scheduling.

An individual resource schedules Grid-jobs locally. These local Grid-jobs are ac-

tually containers for a job, i.e. when a Grid-job is ready for execution, the job itself

contacts the Grid scheduler to request a job for the vacant container. The job is then

guaranteed to be executed immediately since the Grid-job is currently running. If no

jobs are available or applicable, the resource receives an empty job, that instructs the

resource to sleep for a while and try again.

This design is illustrated in Figure 2.10. Initially, a user submits a job (1). In the

meantime, resources notify the scheduler of vacant slots (2). The scheduler decides

which resource fits the job best (3), and the resource receives that job for the vacant slot

(4). When the job is done (5), the output files are sent to the storage server on which

the user’s home catalog resides (6). Finally the user is informed (7) and may retrieve

the results (8).

USER RESOURCE

2

3

6

1

7

8

MiG
4

5

Figure 2.10: MiG Design

Due to the anonymity between users and resources, the job submissions contain all

resource constraints, such as architecture, run-time environment, pricing, and memory

requirements. All these factors must be taken into account by the scheduler.

37

2.3 Sandboxing

A sandbox is a security mechanism to separate the execution of an untrusted program

in a confined environment, subject to a set of well-defined policies. Once running in the

sandbox, it is impossible for the program to damage anything outside the sandbox. The

ability to provide a private, isolated, and reliable environment makes sandboxes ideal

containers for Grid jobs executed on personal desktop computers.

Today, the term sandbox has a much broader meaning, than when it was originally

introduced in software-based fault isolation as address sandboxing [WLAG93], in

which all unsafe instructions, typically store and jump instructions, were surrounded

by code that would mask the upper bits of the target addresses to prevent access to

illegal segments. As sandboxing introduces some code to supervise or control a run-

ning program, the execution time is increased. For instance, as a baseline for sandbox

overhead, the very basic address sandboxing mechanism only required two arithmetic

instructions prior to each unsafe instruction, and the use of five dedicated registers, yet

the performance overhead on the C SPEC92 benchmark suite was 4%.

The literature contains many sandbox variants for different architectures. Untrusted

applets [LY99] running in Web browsers, memory leak testing in Valgrind [NS03;

NS07], and the Linux chroot utility are some typical sandbox examples. The vx32 [FC08]

would be of primary interest for a Volunteer System since it has minimal intrusion on the

host system, thus lowering the workload for the people trying to donate their resources.

Where many similar systems require modifications to the host system, for instance ker-

nel modifications, special privileges and permissions, vx32 is OS-independent and runs

native x86 code on unmodified host systems. Applications just need to be linked to a

user-level library, which then sandboxes the application in a secure execution environ-

38

ment. Security is obtained by intercepting all system calls, and by preventing access to

memory outside the sandbox. Vx32 is limited to x86 architectures.

An upcoming interesting sandbox is Google’s Native Client [YS08]. Aimed at

browser-based applications, the system tries to run compute-intensive applications in

the address space of the browser at native speed. When an application is sent to a

browser, a Native Client plugin loads the Native Client container, which is a sandbox

containing native libraries enabling the application to execute at native speed. Like

vx32, Native Client is limited to x86 architectures, and since the workload required

to express all types of security restrictions in native machine code is quite substantial,

porting to other architectures is unlikely to happen within foreseeable future.

2.4 Virtual Machines

Virtual machines [Gol73] are other examples of sandboxes. Although they were were

introduced several decades ago, in the 1960’s by IBM to enable sharing of expensive

mainframes, the concept is now more popular than ever and has revived in a multitude

of computer system aspects that benefit from properties such as application mobility,

increased security, co-existing operating systems, server consolidation, and utilization.

An early definition formalized virtual machines as software machines (VMM) with

the following essential properties [PG74]:

• Equivalence: A program running under the VMM should exhibit a behavior es-

sentially identical to that demonstrated when running on an equivalent machine

directly.

• Resource control: The VMM must be in complete control of the virtualized re-

39

sources.

• Efficiency: A statistically dominant fraction of machine instructions must be ex-

ecuted without VMM intervention.

Today’s virtual machines are divided in two groups: system virtual machines

and process virtual machines. Xen [BDF+03], VMware [VMW99; VMW06],

and VirtualBox [Wat08] are the most commonly known system virtual machines. Pro-

cess virtual machines, best known examples being the Java Virtual Machine [LY99] and

the MicroSoft Common Language Runtime [MWG], arose after the properties above

were formalized and cannot fulfill the Efficiency property, so today, the first two prop-

erties are sufficient to characterize a virtual machine.

System virtual machines consist of a Virtual Machine Monitor (VMM), also known

as a hyper-visor, that manages all instances of running virtual machines, and virtual-

izes a complete system environment, i.e. it shares the underlying physical hardware

resources between each instance of a running virtual machine. The virtual machine in-

stances execute a complete sandboxed operating system, known as the guest operating

system. System virtual machines come in two forms depending on where the VMM is

installed. In Hosted Architecture, the VMM is installed in an existing operating

system, known as the host OS. This approach relies on the host OS to provide access

to the hardware. In the other approach, Bare-metal Architecture, the VMM is in-

stalled directly on the hardware, thus including its own set of hardware drivers. The

MiG-SSS is based on system virtual machines, so Chapter 4 elaborates on pros and

cons of this type of virtual machine and brings examples of each architecture.

A process virtual machines, also known as an application virtual machine, only sup-

ports running a single application on top of an existing operating system. The virtual

40

machine process virtualizes an environment in which the guest process can execute. As

shown in Figure 2.11, process level virtual machines are simpler because they only ex-

ecute individual processes, each interfaced to the hardware resources through a virtual

instruction set and an Application Binary Interface. Figure 2.11 illustrates the differ-

ence.

Applications

Operating System

Applications

ISA

Virtual Machine
ABI

ABI
ISA

Virtual Machine

Operating System

Figure 2.11: System VMs (left) and Process VMs (right)

The SciBy VM is a process virtual machine, and further details about this type of

virtual machines are presented in Chapter 5.

2.4.1 Virtual Machines in a Grid Computing Context

Due to the renewed popularity of virtualization over the last few years, virtual ma-

chines are being developed for numerous purposes and therefore exist in many designs,

each of them in many variants with individual characteristics. Despite the variety of

designs, the underlying technology encompasses a number of properties beneficial for

Grid Computing:

Platform Independence In a Grid context, where it is inherently intrinsic to move

around application code as freely as application data, it is highly profitable to enable

applications to be executed anywhere in the Grid. Virtual machines bridge the architec-

tural boundaries of computational elements in a Grid by raising the level of abstraction

of a computer system, thus providing a uniform way for applications to interact with

41

the system. Given a common virtual workspace environment, Grid users are provided

with a compile-once-run-anywhere solution.

Furthermore, a running virtual machine is not tied to a specific physical resource;

it can be suspended, migrated to another resource and resumed from where it was sus-

pended.

Host Security To fully leverage the computational power of a Grid platform, security

is just as important as application portability. Today, most Grid systems enforce security

by means of user and resource authentication, a secure communication channel between

them, and authorization in various forms. However, once access and authorization is

granted, securing the host system from the application is left to the operating system.

Ideally, rather than handling the problems after system damage has occurred, harm-

ful - intentional or not - Grid applications should not be able to compromise a Grid

resource in the first place.

Virtual machines provide stronger security mechanisms than conventional operating

systems, in that a malicious process running in an instance of a virtual machine is only

capable of destroying the environment in which it runs, i.e. the virtual machine.

Application Security Conversely to disallowing host system damage, other processes,

local or running in other virtualized environments, should not be able to compromise

the integrity of the processes in the virtual machine.

System resources, for instance the CPU and memory, of a virtual machine are al-

ways mapped to underlying physical resources by the virtualization software. The real

physical resources are then multiplexed between any number of virtualized systems,

giving the impression to each of the systems that they have exclusive access to a dedi-

42

cated physical resource. Thus, Grid jobs running in a virtual machine are isolated from

other Grid jobs running simultaneously in other virtual machines on the same host as

well as possible local users of the resources.

Resource Management and Control Virtual machines enable increased flexibility

for resource management and control in terms of resource usage and site administra-

tion. First of all, the middleware code necessary for interacting with the Grid can be

incorporated in the virtual machine, thus relieving the resource owner from installing

and managing the Grid software. Secondly, usage of physical resources like memory,

disk, and CPU usage of a process is easily controlled with a virtual machine.

Performance As a virtual machine architecture interposes a software layer between

the traditional hardware and software layers, in which a possibly different instruction

set is implemented and translated to the underlying native instruction set, performance

is typically lost during the translation phase. Despite of recent advances in new vir-

tualization and translation techniques, and the introduction of hardware-assisted capa-

bilities [AMD05; UNR+05], virtual machines usually introduce performance overhead

and the goal remains achieving near-native performance only. The impact depends on

system characteristics and the applications intended to run in the machine.

2.4.2 Security

Isolation is considered the primary characteristic of virtualization technology, and while

the theory of confining an application in a sandboxed environment, from which it cannot

escape, is attractive, the extent of isolation depends on the underlying virtualization

technology. The general rule of thumb states that the isolation should be strong enough

43

to contain crashed guest applications or even crashed guest systems without affecting

any other guest machine nor the host machine.

Process virtual machines such as the Java Virtual Machine or the Microsoft .Net

VM are considered very secure due to their respective type-safe languages and the type-

checking protection mechanism that verifies the bytecode before it is executed. Such

type-systems can be proved sound [DE99; Sym99], and they are known for providing

the most secure sandboxes.

System virtual machines are much more complex to implement since they virtu-

alize an entire system, possibly all the way down to interrupts, I/O ports, and DMA

channels. And currently, while process virtual machines have been in stable production

for many years and have endured thorough tests, system virtual machines are evolving

rapidly with more and more features. And with increased complexity and feature lists

follow increased probability of software errors and thus possible threats. For instance,

most virtual machines do not allow access to the host’s file system, yet the VirtualBox

virtual machine now features shared drives and shared clipboards between the guest

and host system, thereby eschewing the isolation by providing a gateway for data to be

transferred between cooperating guest VMs and the host system. Guidelines to virtual

machine security can be found in a white-paper by cisecurity.org [CIS07].

Despite the regular occurrence of exploits found in system virtual machines∗, no

general technique for attacking system virtual machines has been found, only tech-

niques to detect the existence of an underlying virtual machine [Fer06].

When deployed in a Grid context, virtual machines are only capable of isolating data

and applications from other Grid users, and ensuring the integrity of the host system;

∗For instance, a critical guest-to-host exploit was recently found in VMware fusion: http://news.
softpedia.com/news/Guest-to-Host-Exploit-Found-in-VMware-Fusion-109530.shtml

44

http://news.softpedia.com/news/Guest-to-Host-Exploit-Found-in-VMware-Fusion-109530.shtml
http://news.softpedia.com/news/Guest-to-Host-Exploit-Found-in-VMware-Fusion-109530.shtml

there is no protection against the resource owner who, with a little effort, can gain access

to the virtual machine.

45

Chapter 3

The MiG Remote File Access Library

The work presented in this chapter is derived from my Master’s Thesis, in which a

prototype of the Remote File Access library was developed. For this project, the library

has been augmented and hardened through use by several standard applications. The

full length papers [AV05; AV07] published on this library, can be found in appendix B.

3.1 Introduction

One consequence of allowing users to execute programs at remote sites, is that the

applications and their data are not co-located. The problem of executing a program

geographically separated from the files it accesses, is traditionally solved by staging all

input files to the resource where the program is to execute, and vice verse for output

files.

For more than a decade, the Grid has primarily been a domain for scientific appli-

cations, and many such applications only require access to a small subset of data from

an exceedingly large data set. Often, only the first part or scattered fragments of input

46

files are really needed. While the conceptual simplicity of the upload/download model

is evident and appealing, it entails many drawbacks for scientific applications:

• Job execution on the resource is delayed until all input files are downloaded.

This drawback scales proportionally to the size of the files and results in wasting

not only storage and network bandwidth, but also, and more importantly, lots

of valuable time already allocated on the resource. The same issue holds true

for output files. Only here, the finalization is delayed until all output files are

uploaded.

• In situations where the application only accesses fragments of the files, this model

results in excess data transfer and false storage requirements on the resource.

• Staging eludes streaming data back to the user’s home catalog as the application

runs. If this feature is viable, users can follow the progress of the application

interactively.

• If job migration is supported, as in the Checkpointing feature of Condor [LLM88],

a preempted job that is about to be resumed at another location, is forced to re-

stage all input and output files.

Moreover, recent hardware trends clearly indicate that it is inefficient to copy data

from place to place instead of just accessing them directly from where they originally

resided. Moore’s law has been remarkably accurate in forecasting increases and capa-

bilities of hardware in computing technology. However, while most of the electronic

aspects of computing technology have experienced exponential growth, mechanical de-

vices like hard disks have been greatly outperformed.

47

Year Network BW Disk BW Disk acc. time Disk rot. speed
[Mbps] [Mbps] [ms] [RPM]

1990 10 6 27 3500
1995 100 64 18 5400
1998 1000 80 16 5400
2002 10000 320 12 7200
2006 512 10 10000
Improvement p.a. 77% 32% 6% 7%

Table 3.1: Key numbers on network and disk evolution. The 100 Gb Ethernet standard
was expected in 2006 but is delayed.

As shown in the logarithmic plot in Figure 3.1, network bandwidths clearly outper-

form hard disk bandwidths. Further, as shown in Table 3.1, key numbers on hard disk

evolution are not very encouraging. The transfer rate is only one part of the disk speed,

the other being the random-access time, which consists of the seek time and the rota-

tional latency. While the transfer rate has improved over time, the random-access time

is nearly constant due to mechanical constraints. The physical limitations on how fast

the disk actuator arm can move to the desired cylinder, and how fast the disk spindle can

rotate to get the desired sector under the read-write head, will always obstruct hard disk

performance. Similarly, the network latency, which is the other part of the perceived

network speed, also suffers from poor improvements, mainly affected by the impact of

the finite speed of the medium, e.g. the finite speed of light. Over distance, the latency

can be quite costly. For instance, on the 2.5 Gbps research network connection between

Odense and Copenhagen (150 km), the latency is around 4 milliseconds. There are

various ways to remedy this problem.

Consequently, although there are also ways of addressing disk latency problems,

disk accesses are very time consuming operations, and performing them several times,

as is the case when using the staging model, should be avoided.

48

Year Network bandwidth [Mbps]Disk performance [Mbps] (average transfer rate)Disk capacity [MB] Disk access time [ms] (seek time+rotational delay)Disk rotation speed [RPM]
1990 10 6 100 27 3500
1995 100 64 5000 18 5400
1998 1000 80 10000 16 5400
2002 10000 320 50000 12 7200
2006 512 750000 10 10000

Annual improvement 77.00% 32.00% 71.77% 6.02% 6.78%

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008

10

100

1000

10000

Network bandwidth [Mbps]
Disk performance [Mbps] (average
transfer rate)

Year

M
bp

s

Figure 3.1: Evolution of network and hard disk bandwidths

In the remote access paradigm, applications are allowed to run in one location and

access files remotely through the network, thus only paying the disk access penalty

once. The remote access file service has several other advantages compared to staging

techniques:

First off, it can enable the resource to limit its file retrieval to a set of file fragments

holding the needed data. Secondly, Latency hiding can be applied by overlapping data

transfer and computation. In the best case scenario, all transfer time is hidden, thus

reducing the total wall clock time by the total file download time. Thirdly, using remote

file access through an I/O library provides a higher-level specification of I/O operations

that in turn permits greater flexibility as to how I/O is performed. For instance, a job

may only need to access scattered fragments of the remote data sets. Also, one can

choose to prefetch data according to re-definable access patterns. Other techniques

are possible to add, such as encryption of all accessed data, support for custom file

49

transport protocols etc. Finally, intermediate results are available for the user to do

real-time analysis before the job is finished at the resource.

The drawback in this paradigm is the more complex implementation and the fluctu-

ating network performance due to varying latencies and bandwidths. Hence, the imple-

mentation must introduce a flexible mechanism to mitigate the impact of the network

on the application.

3.2 Design

Providing on-demand transparent remote file access for a resource in a Grid environ-

ment first of all requires that certain file access routines on the resource are automat-

ically overridden and redirected to the file on the server, described in 3.2.1. Next we

need a protocol to transfer the data, 3.2.2. Third, since the local file management is

overruled, a local file management mechanism to ensure correct file access behavior

is needed, 3.2.3. Finally, the design of the caching mechanism and the prefetcher is

explained in Section 3.2.4.

The main design challenge is to ensure that the on-demand remote file access can

coexist with the demands of users and resources. Users should not be bothered with, or

even aware of, the underlying complexities of the Grid, and should be able to submit

their jobs to the Grid without rewriting or recompiling their applications.

Likewise, for resources to join the Grid, the administrative entry costs should be as

low as possible and the security may not be compromised. Hence, all the functionality

is placed in the Grid system and privileged access to the resources should be avoided.

The decisions in the following sections reflect these observations.

50

3.2.1 Altering File Access Requests

Since a resource executes precompiled applications, it has to be extended with new

functionality that implements transparent remote file access. Several approaches are

applicable for this extension:

• Modify the OS source code directly

• Install a Remote File Access Server

• Use tracing facilities to intercept system calls

• A Statically linked library

• A Dynamically linked library

These approaches are explained in the following paragraphs.

Modify the OS Source Code: The most basic way of extending the behavior of cer-

tain system calls is to edit the kernel source files, i.e. implement the desired function-

ality in the file access routines directly, and recompile the kernel. A similar solution

is to implement the functionality in a loadable kernel module and add it to the running

kernel like it is done in NFS [PSB+00] and AFS [HKM+88].

Remote File Access Server: Installing a network server to provide the remote file

access is a simple and well known solution and many such systems provide transparent

access to remote resources.

51

Intercept System calls: In operating systems providing tracing facilities, a user pro-

cess can attach to other processes owned by the user. The attach mechanism allows the

process to intercept all requests to the kernel. Thus, the process can intercept file access

routines and modify the behavior of the file if it is remote.

Statically Linked Library: Since file access routines are implemented as library

functions in standard libraries, another approach is to replace these libraries with a

new library implementing the desired functionality. Applications then need to be linked

to this library.

Dynamically Linked Library: A similar approach is a dynamically linked library.

Only, when using a dynamically linked library, applications need not be relinked, but

are required to be compiled with dynamic linking.

The different approaches and their limitations concerning deployment in the Mini-

mum intrusion Grid are summarized in table 3.2. The performance overhead, shown in

the last column, is an estimate on the overhead incurred by the method of catching I/O

calls in the different approaches.

In order for the file access model to comply to MiG, it must be ensured that it is

entirely user-level and installable without administrator privileges. This excludes the

first two approaches.

In the Ufo Global File System [MSS+97] it has been shown how to extend or alter

the functionality of certain system calls by intercepting them in a user level module. The

interception is achieved by standard tracing facilities supplied by most UNIX variants.

This strategy avoids the need for recompiling, relinking and administrator privileges,

52

Approach Requires Requires Apps. Performance
root access recompiling supported overhead

Modify OS
Source Yes No All None
File Access
Server Yes No All Medium
Intercept
System Calls No No All High
Statically
Linked Library No Yes All Low
Dynamically
Linked Library No No Dyn. linked Low

Table 3.2: Approaches to transparent remote file access.

and grants transparent access to personal accounts at remote sites using different pro-

tocols. The only drawback to this model is the interception method, which is quite

expensive. Intercepting system calls by means of tracing facilities is a great alternative

for applications that issue a small number of system calls.

Since a statically linked library requires user applications to be relinked against the

new library, this approach is not transparent for the user and thus conflicts with the third

rule of MiG.

The best solution for our purpose is to implement the new functionality in a private

set of the standard file access routines by means of a a dynamically linked library,

and then preload this user-defined library in the application environment. In Linux,

setting the LD PRELOAD environment variable instructs the linker to first check the

preloaded library for a matching symbol name. Thus, one can write a private set of

GLIBC functions, while functions not overridden are automatically handled by GLIBC.

This feature requires user applications to be dynamically linked, which most frequently

is the case. Hence, statically linked applications are not supported by this model.

As an example of the idea, consider the following application that reads every other

53

chunk of 512 bytes from an input file. Assuming it is compiled by the user locally, the

binary is then sent through the Grid to a resource that executes it:

int main() {

int fd;

char buf[512];

fd = open(‘‘inputfile’’, O_CREAT|O_RDONLY,0666);

while(read(fd, &buf, 512) != 0)

lseek(fd, SEEK_CUR, 512);

close(fd);

}

The proposed file access layer then automatically catches the open, read, lseek,

and close calls and implements functionality that perform operations conforming to

POSIX behaviour on the fragment of the remote file.

Thus, the library gives the user applications the illusion that job files exist in their

entirety on the resource, yet they only exist on the server, and the server is only con-

tacted when necessary.

Figure 3.2 shows the file access model. A set of file access routines issued from

the user application are handled by the MiG file access layer that sends a request to the

server (1). The server then replies (2), and an appropriate action is taken by the file ac-

cess layer before the application receives the result (3). As indicated by the dotted lines,

some requests can be handled directly, in case the requested data is already cached, and

some need to be forwarded to the operating system.

54

User User

Kernel Kernel

(2)

Virtual FS

MiG Layer

Application

(3)

MiG File Server

Virtual FS

RESOURCE SERVER

(1)

Figure 3.2: Overview of the MiG File Access Model

3.2.2 Data Transfer

Providing on-demand transparent remote file access for a resource in a Grid environ-

ment requires a secure, fast, and reliable data transport mechanism. Clearly, a protocol

that only supports up- and download of entire files cannot be used for blocked remote

on-demand file access. Hence, besides opening and closing a file, the protocol should

support reading and writing ranges of randomly requested or written data.

The HTTP/1.1 protocol includes a byte range specifier in GET requests. This would

suffice for read requests. However, since this specifier does not apply to PUT requests,

the protocol would have to be augmented customarily for writing ranges of data.

GridFTP [ABB+01] is a high-performance, secure, robust data transfer mechanism

specifically designed for grid environments. It is based on FTP with extensions for grid-

specific requirements. Additional features such as parallel data transfer, striped data

transfer, automatic or manual TCP buffer setting, and partial file transfer are included in

GridFTP. However, since the protocol must be installed manually with root privileges,

other alternatives are investigated.

Since no protocol supporting reading and writing partial files has been found to meet

the requirements of MiG, a custom protocol based on the HTTP/1.1 is developed.

The protocol for transferring data between the resource and the file server is very

55

simple and should only support a range specifier and a small set of file-related com-

mands, initiated by the resource:

• open filename: Establish a connection and open the file on the server. The

server replies with the size of the file.

• range filename offset length: Read length bytes, starting at offset from

the file. The server sends the requested range.

• write filename offset length: Prepare to receive length bytes and write

them to the file at the given offset.

• close filename: Close the file on the server and close the connection.

File Server

In order to ease the implementation of fault tolerance, a stateless server is chosen in

favor of a stateful server that loses all volatile state information in a crash. Hence, all

requests are self-contained, and any backup server can respond to all requests.

Thus, if the primary file server crashes, the file access layer opens a connection to

the secondary file server that opens the file, executes the request and returns the result

back to the layer. To the application, this inconvenience is completely unnoticeable.

The drawbacks incurred by a stateless design, including longer request messages,

slower processing due to the lack of in-core information to speed the processing, and

the need to implement a low-level naming scheme to compensate for the target file

translation, are considered less important than the issue of fault tolerance. In fact, mes-

sages are still very small and many requests, for instance seek, are handled locally on

the resource. Furthermore, the low-level naming scheme only consists of mapping file

56

names to a socket and file descriptor. Finally, other methods to boost performance are

into action, as described next.

Pseudo-code for a typical file transfer might look like this:

open network connection

open file

while there is more data:

read data from file to a buffer

write data from buffer to destination

close file

close connection

Reading and writing would typically use the corresponding system calls or library

functions built on top of them. Following the path of the data from disk to the network,

data is copied several times. On read, it is copied from the disk to a kernel buffer and

then from the kernel buffer to the application buffer.

Afterwards, on write, the data in the application buffer is copied to a kernel buffer

and finally, it is transferred to the network card. First of all, the application buffer and

the copying between the buffer and the kernel buffer are redundant and, secondly, all

system calls are succeeded by a context switch between user and kernel mode, which

quickly accumulates to be quite expensive.

The sendfile system call addresses this issue by eliminating the application buffer

and allows for direct kernel-level copying from one file descriptor to another (including

socket descriptors).

57

3.2.3 File Handling

In the remote file access paradigm, the local file management is overruled for all re-

mote files that are being accessed. Hence, a mechanism to ensure correct file access

conforming to POSIX-behavior is needed.

A shortcut to overriding the complete set of file manipulating routines is taken by

actually creating the remote file on the resource. Besides the obvious advantage of not

implementing all file access routines, including maintenance of their evolution, imple-

menting complex UNIX functionalities is also avoided. Instead, the file is created on

the resource and before any file access, it is ensured that the requested data is available.

As Figure 3.2 illustrates, some remote file accesses, i.e. open, upon server response

result in requesting the resource kernel system to create the file. Other calls, i.e. read,

remain in the MiG layer on receipt of the server response and returns data directly to the

application, indicated by the dotted line. Had the requested data already been fetched, it

would have been returned immediately without server or kernel intervention, indicated

in the figure by following the dotted lines from the application through the MiG layer

and back to the application. This issue is explained more detailed in Section 3.2.4.

Clearly, if the application continuously reads data that already has been read, or

prefetched as explained below, and is available immediately from the cache, the perfor-

mance of the application is improved significantly. If the proposed layer can return all

requested data blocks immediately, thus bypassing the local kernel system, no system

calls are needed to read the data. The kernel system is bypassed by mapping the file

into memory, explained next.

58

Mapping of Files into Memory

The memory mapping design mimics the way user programs (ELF-format binaries) are

loaded and executed in Linux, where the kernel’s loader does not load the program into

physical memory, but only sets up a mapping of the program in virtual memory. Pages

of the binary are then mapped into regions of the virtual memory, and a given page is

only loaded into physical memory when a page fault occurs due to the program trying

to access the page.

Similarly, in the proposed model, all remote input files opened by the user applica-

tion are created on the resource and mapped into memory, and individual pages will be

loaded into the mapped image on demand when the application accesses them.

Although the file is initially empty, it is mapped in its full length. Accesses to

empty regions of the file within the allowed scope then result in segmentation faults,

which results in the requesting the pages from the server. Thus, the memory mapped

image of the file can be highly fragmented, because only the needed data is retrieved.

Since access to an empty region within a file results in a segmentation fault, a proce-

dure to handle segmentation faults must be introduced. This can be implemented using

the sigaction system call that invokes a procedure upon receipt of a SIGSEGV signal.

The procedure should then get the faulting address, determine the file owning the fault-

ing address, translate the address into a file offset, and send a request to the server for

the block surrounding the offset.

Mapping job-files into memory has several advantages:

• Simplified page administration: The layer only deals with memory addresses

when accessing files.

• Direct memory access: The layer reads data from the socket directly into the

59

correct location of the mapped file image in memory. This prevents copying from

a buffer.

• Enables kernel bypassing: Reading prefetched, cached or already copied data is

returned immediately without a system call.

• Immediate support for user-mapped files: The memory mapped image may be

returned directly to the application if it issues an mmap call.

It is important to stress that all job-files are mapped into memory, not only those

that are explicitly mapped by the user application. As such, the memory mapped image

of a file acts as the cache for the file in question. A read request would then copy the

requested bytes from the cache, i.e. the mapped image, into the buffer supplied by the

user; had the user mapped the file into memory explicitly, the file would be accessed by

direct references to memory locations in the cache.

Figure 3.3 summarizes the design: The file is created and a dummy byte is written

at the end of the file to expand the file to the size of the remote file. Then, the file is

mapped into memory. The dummy byte at the end of the file ensures that the file size is

the same as the remote file size, and all accesses to empty regions within the file image

cause segmentation faults. The segmentation fault handler then sends a request for the

missing data and copies it directly into the mapped file image at the address that caused

the segmentation fault.

In the depicted scenario, the read call to read blocks 2, 3, and 4 is caught by the

overridden read call, that just copies the blocks to the user buffer by a memcpy. Since

block 3 is empty, a segmentation fault is raised on the start address of the first page in

block 3, which enables the main page fetcher to get the block from the server. When

data is transferred, the memcpy can complete, and the read call is executed.

60

block 2

block 4

block 3 (empty)

block 1 (empty)

(empty)

MAIN PAGE FETCHER

SEG FAULT HANDLER /

read block 2−4

MAPPED FILE IMAGE REMOTE FILE

block 3
3. Data transfer

1. Seg.fault
on block 3

2. Get request
for block 3

Figure 3.3: Data access design.

Virtual File Descriptors

File access routines are based on file descriptors that are dereferenced through the pro-

cess file table into an internal kernel structure. The object of the file access layer is to

emulate local file access by creating the file and fill in the requested pieces on-demand.

Therefore, a user-level structure is needed to handle all information, imposed by the

file access layer, about the file. This structure is called a Virtual File Descriptor and

contains extra information about a file, such as the length, the real file descriptor, the

socket descriptor by which data can be retrieved, the current file pointer, the address at

which the file is mapped in memory, etc.

Figure 3.4 shows how the virtual file descriptor interacts with the I/O subsystem in

the kernel and keeps track of the mapped image of the file in memory. The figure shows

a snapshot of the application execution, where 2 scattered fragments of the file have

been accessed and therefore have been retrieved from the server.

61

record

Network

File

system

record

��������������

File descriptor

Socket descriptor

Length

Map_address

Filepointer

Virtual file descriptor

���������������
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�����

����
����
����

����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����

KERNEL MEMORY

Per−process
open−file table

Memory

input file

le
ng

th

FILE SERVER

Figure 3.4: Interaction with the I/O subsystem

Overridden Calls and File Semantics

All functions that are overridden must exhibit the same behavior as the corresponding

GLIBC function and conform to the ANSI C standard.

Thus, all functions are not only designed to have the same file semantics as the

usual GLIBC functions, but must also carefully implement the same prototypes, error

handling, etc.

As an example, Figure 3.5 shows how the internals of the library utilizes the virtual

file descriptor and the memory-mapped image of the file to satisfy a read request from

the user application.

First, the layer determines whether the file is a job-file or not. If not, the call is

forwarded to GLIBC. In the other case, the virtual file descriptor for the file in question

is retrieved. Then, the boundaries of the file are checked to avoid unnecessary network

requests that do not get any data.

62

Forward to glibc

Return

Send request

Copy addresses

Check filepointer

Check file

Handle request

Requested data

Data request

Remote file

Boundaries ok

Sigsegv

Local file

Invalid
boundaries

No sigsegv

SERVER

Read call

Figure 3.5: Control flow of a read operation

Next, the layer copies data directly from the file pointer to the user buffer, either a

direct copy if all data is available immediately, or through a server request if the data is

not available locally. If some of the requested data are not available in the mapped image

of the file in memory, the copying may raise a segmentation fault. The segmentation

fault is then caught, and a procedure to retrieve the requested data from the server is

invoked.

Upon server response, the data are placed in the mapped file image, and the copying

can proceed before the overridden read function returns.

The complete set of overridden calls are listed in table 3.3.

Opening, reading from, writing to, and closing a file results in contacting the server,

while the remaining functions are handled locally. Seeking in the file repositions the

file pointer in the virtual file descriptor.

Mapping a file is handled by simply returning the address of the mapped image,

63

Name Description
open Creates a connection to the server and opens the file.
close Closes the file and closes the connection.
read Reads a range of bytes from the file.
write Writes a range of bytes to the file.
lseek Repositions the file pointer in the file.
getc Reads a byte from a stream.
putc Puts a byte on a stream.
mmap Maps a range of bytes from the file into memory.
munmap Deletes a mapping for a range of bytes.
mremap Expands or shrinks an existing memory mapping.
dup Duplicates a file descriptor.
ftruncate Truncates a file.
fopen Opens a file and associates it with a stream.
fclose Closes a stream.
fread Reads from a stream.
fwrite Writes to a stream.
fseek Seeks in a stream.
ftell Get position in stream.
rewind Resets file position in stream.
fsetpos Sets a new file position in stream.
fgetpos Gets the current file position in stream.
fgetc Reads a byte from a stream.
fputc Puts a byte onto a stream.
fgets Reads chars from a stream.
fputs Writes chars onto a stream.
putw Puts a word onto a stream.
getw Gets a word from a stream.
ungetc Pushes a char back to stream.
fscanf Reads formatted input from a stream.
fprintf Writes formatted output on an output stream.

Table 3.3: Overridden file access routines.

64

while unmapping just unlocks the pages. Effective unmapping is not applied, since we

still keep a mapping of the file and unmap it ourselves when the file is closed.

3.2.4 Caching

Caching is introduced on the resource to ensure reasonable performance of the remote

file service mechanism by means of reducing network traffic and disk I/O. If the data

needed to satisfy a read request are not already cached, the request is delivered to the

server. The server then performs the request, and returns the result back to the resource

that caches the data. All accessed data is then retained in the cache, so that future

accesses to the same data can be handled locally. In effect, caching decreases the server

load and hence increases the potential for scalability.

The key challenge concerning performance in the remote access paradigm is to mit-

igate the impact of the network. In a Grid environment with varying network latencies

and bandwidths, adaptation to the network is necessary when network resources fluctu-

ate in performance as is the case in a dynamic, heterogeneous network environment.

Thus, the granularity of the transferred data is important to successful caching in

terms of hit ratio and miss penalty. Also, prefetching can improve performance. These

issues are discussed next.

Prefetching

Prefetching is a method of overlapping all kinds of I/O of a program with the compu-

tations of the program. The general idea is to instruct the input device to begin reading

the next data after completing a read operation. When the program finishes operating

on the first data item and requests the second, the input device has, ideally, already read

65

the second data item, which is ready for processing immediately. This method keeps

the CPU and the input device busy and can improve performance significantly.

The basic caching scheme is augmented with prefetching in order to alleviate the

network latency. All read requests are followed by a data request for new data, while

the CPU processes the first read request.

Various prefetching algorithms exist:

• Sequential prefetching is the simplest kind of prefetching, in which subsequent

block(s) are read and cached in the hope they will be accessed next. Clearly,

this approach only works for applications exhibiting a sequential access pattern.

Variants to this scheme are also applicable [MY01].

• Application specific algorithms focus on certain applications that exhibit the same

access patterns, for instance matrix operations and searching in tree structures.

• Predictive algorithms focus on calculating the next block based on history and

thus attempts to deduce future access patterns from past reference history [VL97].

The last two techniques are out of the scope for this work, and would require the user

to specify a prefetching technique as part of the run-time environment. The sequential

prefetching is the most generic approach, which makes it the best choice for a Grid

environment.

The prefetcher is designed as a thread that succeeds each read request to the server

with a request for the next consecutive block, as shown in Figure 3.6.

Before each read request, the prefetch buffer is checked to see, if the requested

block is the one prefetched. Naturally, this approach only works for applications that

use sequential access. However, the dynamic block size ensures, that non-sequential

66

����������������

Memory

Block 1

Block 2Memory−
mapped
image of
the remote file

����������������

����������������

RESOURCE FILE SERVER

File

Block 2

Block 3

Block 4

Block 1

Block 3

Prefetch thread

Figure 3.6: Prefetching using a prefetch buffer

access patterns are detected immediately, which enables the layer to lower the penalty

incurred by a useless prefetching.

Every time a block is being read, it is noted whether the prefetching is finished and

whether the prefetched block is the one we need now. Based on these observations, the

block size either increases, decreases, or remains unchanged.

Block Size

The block size is important for several reasons, all depending on the user application.

First of all, one can never tell in advance how many bytes a given application tries to

read. As in the example code above, the user has chosen to read chunks of 512 bytes in

each request. Clearly, sending a network request for 512 bytes is inefficient in a wide

area network, and imaginably, this number could be anything.

Spatial locality is covered by caching more data than are needed to satisfy a single

request [Den71; Smi82]. This increases the chance that several requests can be served

67

by the cached data. Increasing the block size increases the hit ratio, but the miss penalty

also increases, because more data is transferred in the event of a miss.

Secondly, if the application reads all blocks sequentially, a large block size is prefer-

able. The prefetcher would then be able to continuously read the next block, thus always

reading a block of useful data ahead and hiding the latency. However, if the block size

is too large, the prefetching would not finish before the data is needed for processing.

On the other hand, if the application only reads small scattered fragments of the file,

reading ahead is useless and the application would have to wait for an excessively large

block to arrive.

Since it is impossible to tell the nature of user applications in advance, it is a choice

of either picking a general purpose block size, or changing it dynamically depending on

the access pattern of the application. These approaches are discussed below.

Static Block Size A good choice of a static block size is often determined by the

following two performance metrics:

• rmax is the maximum achievable throughput of the network connection, i.e. the

asymptotic bandwidth of communication. It is obtained by transmitting very large

messages.

• n1/2 is the half performance length, the message length required to achieve half

the asymptotic rate, i.e. the block size needed to achieve half that of the maximum

achievable throughput. Put in another way, the half performance length is the

message length, where one half of the transfer time is overhead waiting for the

data to arrive, the other half is the effective data transfer time.

68

Figure 3.7 shows how to characterize a communication channel using these metrics

and determine a general purpose block size. The pointed line indicates how to determine

n1/2.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20000 40000 60000 80000 100000 120000 140000

B
an

dw
id

th
 (

M
b/

se
c)

Block size (Bytes)

n1/2

rmax

n1/2

rmax

Figure 3.7: Bandwidth graph

The drawbacks of a static block size are, on the one hand the practical issues of

determining n1/2 of the communication between each resource and the corresponding

file server, and on the other, the inability to cope with varying network conditions.

Dynamic Block Size In order to mitigate the penalties incurred by the network, dy-

namic adaptation to the continuously changing network conditions is required. A dy-

namically adapting block size is achieved by exploiting information about the network

and the application. Before each read request the following is noted:

• if the preceding prefetching is finished or we have to wait for it, and

• if the prefetched block is the one that is needed now.

69

Denoting these events pref finished and correct block, respectively, the block size

is adjusted between as follows:

if (!pref_finished && correct_block)

#sequential access pattern:

block_size <<= 1;

elif (!pref_finished && !correct_block)

#non-sequential access pattern:

block_size >>=1;

else

;

As soon as non-sequential access is detected, the block size is decreased if the pro-

cess had to wait for the prefetcher to complete. Had the prefetcher already finished,

then no time is lost due to wasted prefetching, which is why the block size then remains

unchanged.

Similarly, if sequential access is detected, and the prefetcher finished in time, then

the block size is adequate and remains unchanged. However, if the prefetcher did not

finish in time, the block size is increased. The reason for this is to utilize the difference

between varying latencies and block sizes. Increasing the block size increases the band-

width with low extra latency overhead, thus increasing the chance for providing a large

enough block for processing, such that the next block is finished in time.

The minimum block size is set to the size of a page in the local system. Keeping the

block size in multiples of the page-size eases the management of the file in memory,

and utilizes the local system most effectively, since the file is mapped into memory and

70

a read request results in copying the data from the server to the correct location in the

memory mapped image of the file.

Thus, if the application tries to read bytes 1024 to 2047, the file access layer sends

a request to the server for the block surrounding this range, i.e. if the block size is 8

kB, the layer sends a request for bytes 0 to 8095. All 8 kB are cached, but only the

requested range within the block is copied to application buffer. A subsequent read call

for any data within the range 0 and 8095 is then returned immediately.

Generally, all read requests result in the layer fetching a well-defined block, con-

taining the requested range and an additional amount of data surrounding the range.

The block is delimited by the pages surrounding the range.

Hence, as shown in Figure 3.8, if the user application requests bytes x to y, the layer

fetches the range from the byte corresponding to the start address of the page containing

x to the byte corresponding to the end address of the page containing y.

x_page

x

y

y_page

Page 1

Page 2

Page 3

Page 4

Page n

Memory mapped image of the file

Requested
range range

Retrieved

Application request:
read bytes x to y

Network request:
read bytes x_page to y_page

Figure 3.8: Translating a read request to a network request for a range of bytes.

71

3.3 Experiments & Results

The performance of the proposed model is measured by some experiments that cover

the access patterns that apply to most applications. The results are then compared to,

on the one hand, local execution, where the application and the files are co-located,

and on the other, a standard Grid model where all files are downloaded prior to the job

execution.

When comparing to a standard Grid model, we choose to compare to the perfor-

mance of a basic transfer method, cURL [Ste]. This way any other project can perform

the same experiment and by translation compare their performance to that of this model.

Such systems could include bbftp [Far06] and UDT [Gu06].

The prefetcher and the dynamically adjusting block size are introduced in the model

solely to improve performance. The impact of these mechanisms are studied lastly.

3.3.1 Experiments

The model is tested in 4 scenarios. Firstly, we investigate the basic overhead, secondly

the performance in an I/O limited application is examined. Thirdly an I/O balanced

application is analyzed, and finally we test the model in a scenario where only a small

portion of a huge file is used.

In order to determine the basic overhead of the remote access protocol, the first

experiment simply reads a 1-byte file and verifies the content. This experiment provides

us with a baseline for the performance of the remote access model.

In the second test, the application checksums a 1 GB file. The calculations that

are involved are so few and simple that the application is simply limited by I/O per-

formance. The latency of getting a new page from disk is less than retrieving the data

72

through the remote access layer. Thus, this is the kind of application that does not really

perform well on Grid. Still, the copy-semantics should be faster than the remote access

layer, since bulk transfer of a complete file is more efficient than the blocked access

model.

In the third experiment, a 1 GB input file, which requires some processing from the

application is traversed. The input file contains a series of numbers that the application

reads and then computes a corresponding fibonacci value on one of the numbers. This

test will show the benefit of using prefetching in combination with starting the job

immediately without waiting for the input file to arrive and should prove favorable to

the remote access model.

Finally, a large file containing a B+ tree of order 4 is searched using a random key.

The test is run with 10 different keys. A B+ tree is an ideal structure for the remote

access model since it is designed to branch out in a large number of directions and to

contain a lot of keys in each node. This ensures that the height of the tree is relatively

small. Thus, only a small number of nodes, one in each level of the tree, must be read

to retrieve an item.

3.3.2 Results

Table 3.3.2 shows the results of the 4 experiments. The results of using the proposed

layer, shown in column 4, are compared to a model that just downloads the entire input

file and executes the job, column 3. Local execution with local input files is shown in

column 2. All experiments are performed on the same dedicated resource and server,

both 2.4 GHz Intel Celeron with 512 MB RAM, using a 100 Mbps network connection

in a LAN.

73

Experiment Local Copy Remote
Overhead 0.0002 0.1520 0.0080
I/O-bound 50.1100 130.1000 114.0300
Balanced 632.8300 721.2200 600.7200
Partial access 0.0002 30.6920 0.0186

Table 3.4: Result of experiments in seconds.

As the result of reading a 1 byte file reveals, using the proposed remote file access

layer does not incur much overhead compared to the local execution. This experiment

also shows that the layer is faster than using external cURL to download the file.

The result of the I/O intensive application is surprising since bulk transfer should be

faster than requesting the entire file block-wise. The reason why the remote file access

is faster is due to a combination of the prefetcher and the server. The prefetcher keeps

increasing the block size, because it detects sequential access, and the server is actually

faster than the dedicated apache server that cURL consults.

The result of the balanced application, the Fibonacci experiment, shows that the

layer is able to hide the transfer time during data processing. Amazingly, running this

application using the proposed layer is faster than local execution. This is due to a com-

bination of perfect prefetching and the design of the remote file access model, shown

in figure 3.2. Almost all read requests are returned immediately by the file access layer

without server or kernel intervention. Thus, all requested blocks are already in memory

prior to the read calls. During local execution, all blocks are fetched using a system call

and expensive disk access.

The B+ tree experiment performs excellently on the proposed model. The depth of

the tree is 9, hence only 9 blocks are fetched plus an additional header block and wasted

blocks from the prefetcher. Often the size of the B+ tree file is much larger than this

74

 0

 0.5

 1

 1.5

 2

 190 88 54 32 13 4 0

T
im

e
[s

]

Latency [ms]

KU AUC UIT Kent Forth USA

Overhead
B+tree

Figure 3.9: Results of the overhead and B+tree applications

one (357 MB), which in effect prohibits this kind of applications from execution with

Grid implementations that use the download model. The speedup between the download

model and the proposed model is a factor of 1650. Naturally, a native execution baseline

is much more efficient at this stage, however overheads less than a second should be

acceptable for any job one may choose to submit to Grid.

3.3.3 Performance in a heterogeneous network

The ability to mitigate the penalties incurred by heterogeneous network conditions is

best illustrated by the following figures that show the impact on the execution time as

the latency between the resource and the server increases. The latencies to different

university centers are simulated on the file server by inserting a sleep call between the

request and the response.

Figure 3.9 shows the overhead and B+tree applications. Since the overhead appli-

cation only reads 1 byte, the effects of increased latency are noticeable but insignificant.

Since the B+ tree application reads a fixed number of scattered blocks from the file,

the latency is added to each block transfer time.

75

 100

 200

 300

 400

 500

 600

 700

 190 88 54 32 13 4 0

T
im

e
[s

]

Latency [ms]

KU AUC UIT Kent Forth USA

Checksum
Fibonacci

Figure 3.10: Results of the checksum and fibonacci applications

In Figure 3.10 the benefit of a dynamic block size is apparent: The running time

of the fibonacci experiment is unaffected by the increased latency. As the latency in-

creases, the library fetches larger blocks, thus achieving a larger bandwidth and provid-

ing more data for processing in each request.

The checksum application is more affected by the increased latency, because the

application is I/O bound.

3.4 Conclusion

The on-demand transparent remote file access layer presented in this chapter is specif-

ically designed towards the MiG project without compromising neither the design re-

quirements nor the features of this Grid project.

Using this user-level layer, it has been shown that a resource does not need to neither

download entire input files before job execution nor upload output files after the job

has terminated. Instead it just starts the job, downloads portions of the input file when

needed, and uploads modified data when written. This functionality is achieved without

76

requiring user application to use special API’s or to be recompiled.

The results show that this model provides access to the Grid for a whole niche

of applications that were previously impeded by unnecessary transfer of an enormous

amount of data, namely applications using partial file traversal on huge input files, such

as B+ trees.

This is also the case for applications such as high-energy physics applications that

analyze relatively small fragments of massive physics database files.

77

Chapter 4

The MiG Screen Saver Sandbox

Many people are willing to donate computing power from their personal computers

when they are not in use and just sitting idle in screen saver mode. The MiG Screen

Saver Sandbox, or MiG-SSS, is a client software package that runs on standard desktop

Linux and Windows computers and harnesses the excess compute power, whenever the

screen saver is active. Since host system is an all-important topic when using public

machines for arbitrary applications, the applications are enclosed by a sandbox envi-

ronment, subject to strict security constraints. Without virtual machines to provide a

sandbox environment, experience shows that people are, with good reason, reluctant to

put their resources on a Grid where they have to not only install and manage a software

code base, but also allow native execution of unknown and untrusted programs. All

these issues can be eliminated by introducing virtual machines.

The system has been available for download since mid 2006 and several research

projects from the fields of molecular chemistry and nano-science have been deployed

on the resource farm. Approximately 1000 people have downloaded the sandbox.

This chapter explores the potential for using these machines, all the requirements on

78

the sandbox, how screen saver resources differ from normal resources, how to integrate

them in the MiG middleware, and how to facilitate general usage of the resources. The

full length paper published on the MiG-SSS [AV06] can be found in Chapter A.

4.1 Introduction

Cycle scavenging, or Screen Saver Science, is an increasingly popular computing para-

digm used within many fields of science that seek to tap the enourmous amount of

unused processing power from the millions of Internet-connected computers around

the globe. The paradigm is best known from the many successful @home projects,

such as SETI@home [ACK+02] and Folding@home [LSSP09], where standard desk-

top computers from homes and offices contribute to scientific simulations and analysis,

whenever they are in screen saver mode. These systems have demonstrated a unique and

huge public involvement which has led to an unprecedented amount of aggregated com-

puting power. However, these @Home systems belong to another type of distributed

computing, namely Public Resource Computing, or Volunteer Computing, which dif-

fer from Grid Computing systems in that the client software running behind the screen

saver is an embedded dedicated application that continuously requests new data to an-

alyze. In Grid Computing, the resources should be capable of performing any type of

computation, thus continuously requesting new applications to execute.

One of the Grid incentives is to make it possible to share and effectively use dis-

tributed resources on an unprecedented scale. Specifically, this includes harnessing the

unused capacity of idle desktop PCs. A lot of research has been done to Grid-enable a

novel set of computer architectures, yet no widely accepted system to effectively scav-

enge idle cycles, in particular idle Windows cycles, has been found.

79

The purpose of MiG-SSS is to scavenge idle desktops for general scientific use.

First of all, a method to gain access to the CPU cycles on the idle resource must be

found. To this aspect, host system security is a major issue. Ideally, a resource owner

should neither install any software nor execute any foreign applications that, intentional

or not, could compromise his system. Secondly, the resouce, most likely hidden by a

Network Address Translation router, must be attached to the Grid. Thirdly, it must be

ensured that a given resource has installed the correct software base that a given Grid

job requires. Finally, to improve things further, extra features relevant to the Minimum

intrusion Grid are discussed.

4.1.1 Related Work

A few projects have been found to combine Screen Saver Science with Grid comput-

ing, for instance the Entropia Virtual Machine [CCWY05], which is a commercial

product (company ceased their operations in 2004), and [FDF03] that is merely an

extensive introduction to the approach of using virtual machines for Grid computing.

BOINC [And04] is a software platform that allows many different distributed com-

puting projects to utilize idle volunteered computer resources. Many Public Resource

Computing systems use BOINC and research groups can create new projects. A project

involves a set of applications that will be run in a BOINC client on a user’s resource.

As such, BOINC could be used for this project by running the proposed virtual machine

as the project application. However, as noted in the introduction, the work load and the

financial expenses necessary for setting up a new project are too high for small projects.

The Screen Saver Science project [GS08] uses the Java Virtual Machine (JVM)

as a sandbox, thus taking advantage of the security provided by the JVM and the use

80

of a type-safe programming language, and the portability of the Java bytecode. The

bytecode greatly simplifies development for a heterogeneous architecture. Using the

Jini [AGG02] network technology and other high level packages, it allows for commu-

nication between the clients, thus supporting distributed applications. There are several

drawbacks to this solution: Most significantly, as the authors note, Java is not designed

for the application area, and there are no security mechanisms in Jini, so security is

solely based on the JVM. Cyclone [JPMC00] is a similar system based on the same

technologies. None of the systems seem to be in deployment.

4.2 Design

The basic idea is to let resource owners install a sandbox to provide a secure execution

environment in which the Grid job is completely isolated from the host machine and

vice-versa. Such a sandbox can take the shape of a system virtual machine, which

is the approach we have taken in this work. A system virtual machine, as opposed

to a process virtual machine, provides a complete system environment, which should

be much simpler to grid-enable and get up and running with an embedded scientific

execution environment.

Two techniques can be used to provide a system virtual machine: Emulation of a

non-native system and Full virtualization of a native system. Emulation provides the

functionality of the target processor completely in software, which makes it a very se-

cure approach. Also, the ability to emulate one processor on top of any other processor

makes it ideal for this scenario. However, the method of interpreting the entire guest

operating system, rather than running it on the native hardware, results in a significant

performance drawback.

81

Generally there are two types of native system virtual machine architectures: Hosted

Architecture, and Bare-metal Architecture, see Figure 4.1. On a basic level, the differ-

ence between these types are their implications on determinism when using real-time

operating systems, I/O accesses, and their ease of use. As the two first factors are not

important for this project, focus will be on how the resource owner is affected by in-

stalling the virtual machine.

The Bare-metal Architecture technique is the classic approach to system virtual

machines as originally proposed[PG74]. The Virtual Machine Monitor, the software

layer that virtualizes the hardware, is installed directly on the hardware and all guest

operating systems are then installed on top of the VMM. Thus, the VMM needs to

be running in the highest privileged mode in x86 architectures, the Ring 0, while the

guest systems run in lesser privileged modes, Ring 1 or Ring 3. The main advantage

of this approach is that the VMM transparently can intercept all interactions between

the guest systems and the hardware resources. Therefore, the Bare-metal architecture

is the most efficient virtualization technique. Xen [BDF+03] is a very popular virtual

machine using the this approach. However, its disadvantage disqualifies it from being

used for Volunteer Computing: Requiring users to explicitly port their operating system

to run in a lesser privileged mode and interposing the VMM layer between the OS and

the hardware, thus wiping out their existing operating system and replacing it with the

VMM, is obviously too intrusive.

The Hosted Architecture approach is not as efficient as the Bare-metal approach, but

the installation is similar to installing any other type of application. As shown in Figure

4.1, the virtual machine is installed on top of an already installed host OS, thus creating

a secure sandbox that allows an application written for one operating system, e.g. Linux,

to be executed in another, e.g. Windows. Common virtual machines using the hosted

82

Hardware

Host OS

Virtual Machine Monitor

Virtual

Machine 1 Machine 2

Virtual

Machine 3

Virtual

App 1 App 2 App 3

Hosted Architecture

Virtual Machine Monitor

Virtual

Machine 1 Machine 2

Virtual

Machine 3

Virtual

App 1 App 2 App 3

Hardware

Bare−metal Architecture

Figure 4.1: Full Virtualization

architecture technique include VMWare Workstation [VMW99] and Parallels [Par06].

The performance penalties incurred by the extra software layer in the hosted archi-

tecture are mitigated by having host OS kernel support that enables the guest OS to run

most of the target application code directly on the host processor, thus achieving near

native speed.

Regarding security in the context of host system integrity, the virtual machine is a

user space process that cannot do any harm to the host system as long as the perma-

nent storage is protected properly. If the virtual machine is destroyed by a malicious

application, the host system is not affected, and the virtual machine can start afresh.

The following such solutions exist as free products for the Windows platform (as of

2006):

• VirtualPC [PC06] (Linux is officially not supported as guest OS)

• VMWare Player [VMW06]

• Qemu [Bel05] + Qemu Accelerator Module (A compatibility layer to avoid full

emulation)

83

Having downloaded and installed one of the virtual machines, a resource owner only

needs to install a screen saver that starts the virtual machine upon activation and a tailor-

made Linux image that is capable of running the Grid resource software automatically.

In this manner, when the resource goes into screen saver mode, the virtual machine is

activated and the Linux guest operating system is booted.

The main problem with scavenging personal computers is that the vast majority are

hidden behind a NAT router, i.e. they do not have global IP address and are therefore

not reachable from the Internet. Hence, to enable the sandbox for Grid Computing,

care must be taken to circumvent the missing inbound Internet access. Naturally, this

issue is highly dependent on the Grid middleware in question, but as MiG uses a push

model where communication is initiated by the server, some adjustments had to be made

specifically for sandboxes. The sandboxes thus become a special type of resource that

requires special attention from the Grid scheduler.

4.2.1 The MiG Linux Image

As explained above, all that is required for a resource to join MiG, is to craete a grid

user account and support for incoming SSH and outgoing HTTPS.

So basically, the MiG Linux image can be built using any Linux distribution that

runs an x86 system. Since the virtual machine provides a standardized virtualized set

of hardware, compatibility amongst the wide range of different hardware setups on the

resources will not be an issue.

The main concerns with respect to the distribution is the size and the start-up time.

Both issues matter only for practical reasons: The size should be minimized to avoid

an excessively large download, and, naturally, the start-up time should be minimized as

84

much as possible.

4.2.2 Runtime Environments

Once the basic sandbox is in place it is possible to execute user applications within

the virtual Linux machine. Many applications can be passed as executables from the

Grid job and these need no further components to execute. Other, commonly used,

applications may benefit from a preinstalled runtime environment, such as they are

found on ordinary Grid resources.

Installing runtime-environments in the sandboxed environment could be done as on

a conventional resource, which however would require the PC owners to personally

maintain the sandboxed Linux distribution and this model is thus not desirable. Alter-

natively the sandbox image could be distributed with the initial Linux image, but this

would greatly increase the size of the distribution image and in addition be a very static

model.

The chosen solution allows individual research groups to maintain runtime environ-

ments for the sandboxed resources and at the same time allow the individual PC owners

to control which runtime environments are downloaded. The runtime environments are

kept in individual virtual disk-partition, in the form of a single file.

The PC owner can download individual runtime environments from the VGrids,

MiG’s notion of a virtual organization [KV06], that maintain the runtime environments

and when a job that uses a runtime environment is received by the sandboxed resource,

the virtual Linux machine will mount the file system that contains the runtime envi-

ronments. This way each runtime environments is kept isolated from the rest of the

system, and can easily be build and maintained by the research groups that need them

85

to be available for their executions.

4.2.3 Scheduling

Existing Screen Saver Science systems all target problems that have many, usually mil-

lions, of independent tasks that often run for tens or hundreds of hours. Once a task has

been assigned to a computer it will be processed while the computer is in screen saver

mode. Processing is suspended if the screensaver is suspended and similarly resumed

again along with the screensaver. An artefact of this model is that one never knows

when the result of a given task is ready, and it is very hard to determine if the task has

been lost or if it is simply only allowed to proceed very slowly.

For applications such as computational chemistry this model is very poorly suited.

The number of tasks is usually in the tens or hundreds and it is often the case that

analysis of the results can only start once the result of every task is in.

This is easily addressed by putting an upper time limit on each job, and if the time

limit is exceeded, the job is resubmitted to another resource. However, in order to

schedule a job with a deadline to a screen saver resource, we need to know how long the

resource is availabe, i.e. how much time it takes before the screen saver is deactivated.

To predict the available time slot of a screen saver resource, we use exponential average

on an hourly basis, which has proved to converge against the actual resource idle time

quite fast.

4.3 Implementation

To deploy the MiG sandboxes, the sandbox image had to built, MiG-specific sandbox

resource files had to be embedded in the image, a screen saver for Windows and a

86

daemon for Linux computers were necessary, and finally, a web page with a facility

for monitoring, and an easy-to-use download package including installer files had to be

provided.

4.3.1 Sandbox Image, Version 0.x

As a base for the MiG sandbox image the ttylinux[Sch01] was chosen for the first

version. It is a minimalistic distribution that is easy to customize and, despite its very

scarce space usage, provides an environment similar to larger distributions. The only

shortcoming is the missing HTTPS support, so this had to installed manually.

The generic MiG Linux Image consisted of a kernel and a RAM-disk that altogether

take up less than 3 MB. An online generator modifies the generic image by giving

it a unique resource name and a session id needed for requesting a job. Further, the

resource owner can choose the size of a hard disk image file to provide as storage for

the sandbox. Thus, certified resource owners can have a complete image built with a

unique key allowing the sandbox to automatically request and execute Grid jobs.

In the standard MiG model, the identity of a resource requesting a job is verified by

keeping the public SSH key of the resource in the MiG system and copying all job files

to the resource over SSH. The sandbox model however, is modified to use a pull model

on the resource where all files are transferred using HTTPS. Hence, a firewall in front

of a resource only needs to be open for HTTP and HTTPS to allow the resource to run

Grid jobs.

87

4.3.2 Sandbox Image, Version 1.x

After having deployed a few research projects, it turned out that ttylinux was too

minimalistic; constantly building new software packages required by the users, typically

in the form of libraries, was too cumbersome, and as time progressed, it became difficult

to find versions compatible with the kernel system. Eventually, we had to change to a

new system with a more advanced package management and update facilities. The

system is now based on Gentoo Linux, so the image now takes up approximately 50

MB.

For the application developers who wish to test that their applications behave cor-

rectly in the sandbox, there is a development image available, which one can start up in

any x86 virtual machine.

4.3.3 MiG-specific Resource Files

There are only 2 scripts necessary for a resource to act as a MiG resource: The fron-

tend script.sh and masternode script.sh. Normally, these scripts are initially pushed

out to a resource trying to register, but in this case, the scripts are requested from the

MiG-servers during boot time. The division in two scripts is made to support clus-

ter setups, where only one machine acts as a front-end, and all the worker nodes get

jobs from the front-end and execute them in the masternode script.sh. There are only

minor modifications to the frontend script.sh in order to support sandboxes, while the

masternode script.sh is unmodified.

88

4.3.4 Uniqueness and Identification

Every sandbox is equipped with a unique key which it uses to request jobs. This way,

the MiG servers can identify a sandbox resource, since the key is kept secret between

the resource and the MiG servers. The key is root-protected in the frontend script.sh to

ensure that jobs executed the user-space masternode script.sh do not alter the key. In

addition to the secret key, a session-ID is used to identify jobs submitted to the resource,

and to control the access rights of the job.

4.3.5 Screen Saver Interaction

To get MiG-SSS into production, a screen saver, an installer, and a Linux daemon was

developed and made available over the MiG website. People who download the sand-

box then get a package consisting of the sandbox image, a hard disk image, and an

installer that installs the screen saver and the virtual machine. This is fairly straight-

forward, yet extremely important for a successful product. The process of wrapping

everything up nicely in cellophane is time-consuming but cannot be underestimated.

For the Windows version, a screen saver was implemented in Python using the pyscr

and ctypes modules. The following code illustrates the usage:

class MySaver(pyscr.Screensaver):

def initialize(self):

#called once when the screensaver is started

reg_handle = _winreg.OpenKey(

_winreg.HKEY_CURRENT_USER,

"Software\\MiG-SSS\\")

value, stype = _winreg.QueryValueEx(reg_handle, "")

89

MiG_dir = value

#go to MiG dir and initiate VM

os.chdir(MiG_dir)

cmd = "qemu -L pc-bios -boot d

-cdrom MiG.iso -hda hda.img

-kernel-kqemu"

#launch the virtual machine

self.process = subprocess.Popen(cmd)

#launch a screen saver

self.win_ss_process = subprocess.Popen(

MiG_dir+os.sep+"ssstars.scr /s")

def finalize(self):

#called when the screensaver terminates, kill VM

ctypes.windll.kernel32.TerminateProcess(

int(self.process._handle), -1)

ctypes.windll.kernel32.TerminateProcess(

int(self.win_ss_process._handle), -1)

An installer was built using the NSIS win32 installer system. Apart from copying

needed sandbox files and system files to the host computer, it creates an entry in the

Windows registry which is used for noting the installation directory. As shown in the

screen saver code above, the screen saver then launches the virtual machine from this

location.

90

For the Linux version, a screen saver wrapper, written in Python and based on the

xscreensaver utility, is attached to the download package. Its functionality is similar

to the Windows version above.

4.4 Experiments & Results

To verify the model before the first release, 8 sandbox resources were connected to MiG

and 25 jobs that we pointed out as sandbox jobs were submitted. The 8 resources are all

identical Windows PCs that host the virtual Linux machine that runs the Grid client code

and includes the required runtime environment. The jobs are all NAMD [PBW+05]

jobs, which is a software package for simulation of bio-molecular systems.

Since we had 8 machines, we chose to submit 25 jobs. Thus, there were 3 jobs for

each machine and to avoid balanced execution, one last machine needs to execute one

additional job before the experiment is completed. Further, using the ’minimization’

option in NAMD effectively ensures different running times, thus ensuring unbalanced

execution.

Running the jobs sequentially on one of the PCs results in a total running time of 2

hours, 25 minutes, and 22 seconds. When submitted to the Grid, the 25 jobs completed

in 31 minutes and 45 seconds.

4.5 Conclusion

This work has shown how to eliminate the factors that have previously impeded the

fusion of Public Resource Computing and Grid Computing to effectively utilize idle

CPU cycles from desktop machines for any kind of Grid job.

91

The prohibiting factors include NAT-hidden resources, means to utilize Windows

desktops, the workload required by a non-expert resource owner to install and manage

all resource software, and the security issues involved with installing a large software

base on the resource.

Using sandboxing technology and a generic Linux image, the Minimum intrusion

Grid has successfully eliminated all of these limitations. Users need only download a

bundle consisting of a screen saver, a virtual machine, and a special MiG Linux image in

order to share their idle resources, whether they run Linux or Windows. The MiG sys-

tem has proved flexible enough to easily deal with computers behind network address

translators, and mobile processes and automatic resubmission of jobs solve the problem

with resources that are cut off the network or leave the screen saver mode. Finally, the

sandboxed environment ensures that the host system cannot be compromised.

Using this approach, a desktop computer volunteers as a Grid resource upon screen

saver activation, and as soon as the screen saver is deactivated, the executing job either

stops or migrates. Thus, the resource owner is completely unaffected by the Grid job.

92

Chapter 5

The Scientific Bytecode Virtual

Machine

Although the MiG-SSS could close the gap between Volunteer Computing and Grid

Computing by enabling easy access for typical desktop computers, it soon ran into

limitations. On the positive side, the system virtual machines on which it was based

kept improving, most notably on the performance side, where they reached near-native

speed with hardware-assisted virtualization technologies and new techniques to address

x86 virtualization problems [AA06; RI00]. However, as detailed in the introduction,

personal desktop computers were outstandingly overhauled in the segment for per-

sonal devices by new powerful and radically different architectures. Today, the GPUs

from NVIDIA and ATI and the Playstation 3s account for more than 20 times as many

TFLOPS than PCs do in the Folding@Home project.

The overall problem with system virtual machines is the implementation complexity

in developing a machine for every platform type, each capable of emulating an entire

hardware environment for essentially all types of software. While work is on the way for

93

system virtual machines to utilize GPUs, the process of porting system virtual machines

to new architectures is a significant task.

Since the application domain in focus is scientific applications only, there is really

no need for full-featured operating systems. Process level virtual machines are simpler

and much more portable because they only execute individual processes, each interfaced

to the hardware resources through a virtual instruction set and an Application Binary

Interface.

Using the process level virtual machine approach, the virtual machine is designed

in accordance with a software development framework. Developing a virtual machine

for which there is no corresponding underlying real machine may sound counterintu-

itive, but this approach has proved successful in several cases, best demonstrated by the

power and usefulness of the Java Virtual Machine [LY99]. Tailored to the Java pro-

gramming language, it has provided a platform independent computing environment

for many application domains, yet there is no commonly used real Java machine ∗. The

Full length paper on the machine presented in thischapter [AV08] can be found in Ap-

pendix D. Another paper, located in Appendix E, has been submitted to Journal of Grid

Computing, 2009.

5.1 Introduction

Many virtual machines exist and many of them have been combined with grid com-

puting. However, most of these were designed for other purposes and suffer from a

few problems when it comes to running high performance scientific applications on

a heterogeneous computing platform. Grid computing is tightly bonded to eScience,

∗The Java VM has been implemented in hardware in the picoJava core [MO98]

94

and while standard jobs may run perfectly and satisfactory in existing virtual machines,

’gridified’ eScience jobs are better suited for a dedicated virtual machine in terms of

performance.

This approach addresses these problems by developing a portable virtual machine

specifically designed for scientific applications: The Scientific Bytecode Virtual Ma-

chine (SciBy VM).

The machine entails a virtual CPU capable of executing platform independent byte-

codes corresponding to a very large instruction set. An important feature to achieve

performance is the use of optimized native libraries for the most prevalent algorithms

in scientific applications. Security is obviously very important for resource owners. To

this end, virtualization provides the necessary isolation from the host system, and sev-

eral aspects that have made other virtual machines vulnerable have been left out. For

instance, the SciBy VM supports neither system calls nor I/O.

Similar to Java, applications for the SciBy VM are compiled into a platform in-

dependent bytecode which can be executed on any device equipped with the virtual

machine. However, applications are not tied to a specific programming language. As

noted earlier, researchers should not be forced to rewrite their applications in order

to use the virtual machine. Standard ANSI C compilers accept a broad range of pro-

gramming languages typically used in scientific environments, and they are built in a

modular fashion, where only the back end needs to be modified in order to support a

new architecture. Thus, by providing a compiler for the SciBy VM, we get the scenario

depicted in Figure 5.1, where any type of device can execute the application.

To evaluate the machine, we demonstrate several use-case scenarios from some of

the intended application domains. Further, we show the ease of porting the machine and

distributing its jobs to a variety of predominant architectures and compare the results

95

SciBy VM

SciBy VM
SciBy VM

SciBy VM

SciBy VM

SciBy VM

SciBy VM

SciBy VM

SciBy VM

Figure 5.1: The SciBy VM can provide uniform access to many types of hardware
deployed in a grid.

with native execution.

5.1.1 Enabling Limitations

There are a some important limitations that greatly simplify the development of the

SciBy VM. Firstly, the implementation burden is lessened drastically by only giving

support for running a single sequential application. Giving support for entire operating

systems is much more complex in that it must support multiple users in a multi-process

environment, and hardware resources such as networking, I/O, the graphics processor,

and ’multimedia’ components of currently used standard CPUs are also typically virtu-

alized. In addition to all physical devices, a virtual machine can even be equipped with

more virtual devices than those that are available to the underlying system. All devices

are emulated by the VMM and virtualized as well-known standard hardware devices for

96

Figure 5.2: Device and I/O virtualization. Copyright VMWare

each instance of virtual machine. As illustrated in 5.2, such devices are numerous.

Finally, virtual machines allow fine-grained control over the actions taken by the

code running in the machine. As mentioned in Section 5.4, many projects use sandbox

mechanisms in which they by various means check all system instructions. The much

simpler approach taken in this project is to simply disallow system calls. The rationale

for this decision is that:

• scientific applications perform basic calculations only

• using a remote file access library, only files from the grid can be accessed

• all other kinds of I/O are not necessary for scientific applications and thus pro-

hibited

• indispensable systems calls must be routed to the grid

97

5.2 Architectural Overview

The SciBy Virtual Machine is an abstract machine executing platform independent byte-

codes on a virtual CPU. In many aspects, it is designed similarly to conventional archi-

tectures; it includes an Application Binary Interface, an Instruction Set Architecture,

and is able to manipulate memory components. The only thing missing in defining the

architecture is the hardware. As the VM is supposed to be run on a variety of grid

resources, it must be designed to be as portable as possible, thereby supporting many

different physical hardware architectures.

Based on the previous sections, the SciBy VM is designed to have 3 fundamental

properties: Security, portability, and Performance

5.2.1 Security

Once again, when discussing security, it is important to stress that host system integrity

is of primary interest, secondarily data and program isolation from other guest systems;

there is no way to protect a guest system from the host system. Host system security is

ensured by a virtual machine to isolate untrusted code in a sandbox. Typically, this type

of software based fault isolation [WLAG93] focuses on disallowing unsafe instructions

access to memory outside the sandbox, illegal instructions, privileged instructions, etc.

In SciBy VM, we made the deliberate choice of disallowing system calls, including all

types of I/O, altogether. Thus, we only allow instructions that perform transformations

on data, control flow instructions, and data movement instructions. Dedicated for sci-

entific applications, there is really no need for system calls, and the only type of I/O

necessary, is access to input files and output files; this is achieved using the Remote File

Access library, presented in Section 3. Indispensable system calls will be routed back

98

to the Grid for execution.

A typical sandbox feature, which the SciBy VM also implements, is a Harvard

memory model with separate segments for data and code to ensure correct access to

data, and preventing jumps to addresses residing in code area. Using this model, the

machine is less vulnerable to typical exploits derived from ’illegal’ pointer arithmetic

to other executable memory segments.

5.2.2 Portability

Portability is obtained by designing a completely platform-independent bytecode and

by virtualizing a very broad hardware platform. The instruction set includes all typical

instructions for data transformation, control flow, and data movement. To capture most

of the physical computer platforms, it is designed as an orthogonal multi-opcode multi-

address set of instructions in a 3-operand format, thereby permitting easy translation

to 2-operand architectures. Addressing modes include immediate addressing, displace-

ment addressing, register addressing, and indirect addressing.

Virtualization occurs at many levels in various computer subsystems. It typically

provides an illusion of hardware configurations that are not physically available, for in-

stance virtual memory which gives each process the illusion of having exclusive access

to the entire address space of the machine. With the SciBy VM, much focus is placed

on being forward compatible by virtualizing hardware setups of the future. Most no-

tably, as the tendency goes towards more and more registers, the machine provides a

virtually unlimited number of registers. Just to provide a number for the compiler, it

is set to 16384 128-bit registers. Further, as there is now a shift from 32 bit towards

64 bit architectures, the next step probably being 128 bit, the SciBy VM supports all

99

Physical Machine

Virtual Machine

Bytecode

Translator/
Interpreter

fft

Machine Language
Program

imageblas

Native
Operating System

Figure 5.3: An untrusted application converted to bytecode, running in VM with em-
bedded scientific native libraries.

these word sizes. For instance, the SPEs in the Cell BE architecture [CRDI07] already

expose 128 bit register lines and a 128 bit instruction set.

5.2.3 Performance

Performance is obtained by augmenting the instruction categories with one essential

category: Instructions that can call external native library functions. Executing byte-

codes in a virtual machine will incur performance overhead, but the key point here is to

utilize the fact that scientific applications spend most of their time in highly optimized

core libraries. The characteristics of these applications, for instance bioinformatics,

high-energy physics, or image processing analysis, is a small but very time-consuming

code size. Typically, these applications set up input and output files, and then enter

some dense loop structures in which time-consuming calls to an external library are

continuously made. In the SciBy VM, the surrounding code is replaced by the portable

bytecode, but with support for calling native optimized libraries in order to achieve near

native performance, this is illustrated in Figure 5.3.

Obviously, native libraries are not portable and a version of the machine must be

100

equipped with statically linked libraries for every architecture, and made available for

people willing to participate. However, with the success of a library follows ports to

other architectures, and it is a simple and small task to embed a library in the machine.

The bytecode is as such not designed for performance. Therefore, the architectural

decisions do not necessarily seek to minimize code density, minimize code size, reduce

memory traffic, increase the average number of clock cycles per instruction, or other

architectural evaluation measurements, but more for simplicity and portability.

5.2.4 Application Binary Interface

The SciBy VM ABI defines how compiled applications interface with the virtual ma-

chine, thus enabling platform independent bytecodes to be executed without modifica-

tion on the virtual CPU.

At the lowest level, the architecture defines the following machine types arranged

in big endian order:

• 8-bit byte

• 16-, 32-, or 64-bit halfword

• 32-, 64-, or 128-bit word

• 64-, 128-, or 256-bit doubleword

In order to support many different architectures, the machine exists in multiple vari-

ations with different word sizes. Currently, most desktop computers are either 32- or

64-bit architectures, and it probably won’t be long before we see desktop computers

with 128-bit architectures. By letting the word size be user-defined, we capture most

existing and near-future computers.

101

Fundamental primitive data types include, all in signed two’s complement represen-

tation:

• 8-bit character

• integers (1 word)

• single-precision floating point (1 word)

• double-precision floating point (2 words)

• pointer (1 word)

The machine contains a register file of 16384 registers, all 1 word long. This num-

ber only serves as a value for having a potentially unlimited amount of registers. The

reasons for this are twofold. First of all due to forward compatibility, since the virtual

register usage has to be translated to native register usage, in which one cannot tell the

upper limit on register numbers. So basically, in a virtual CPU, one should be sure

to have more registers than the host system CPU. Currently, 16384 registers should

be more than enough, but new architectures tend to have more and more registers.

Secondly, for the intended applications, a register-based architecture will outperform

a stack-based one[SGBE05]. Generally, registers have proved more successful than

other types of internal storage and virtually every architecture designed in the last few

decades uses a register architecture.

Register computers exist in 3 classes depending on where ALU instructions can ac-

cess their operands, register-register architectures, register-memory architectures and

memory-memory architectures. The majority of the computers shipped nowadays im-

plement one of those classes in a 2- or 3-operand format. In order to capture as many

102

computers as possible, the SciBy VM supports all of these variants in a 3-operand for-

mat, thereby including 2-operand format architectures in that the destination address is

the same as one of the sources.

5.2.5 Instruction Set Architecture

Instructions can broadly be classified as one of four general groups:

• Instructions performing transformation on data: arithmetic, string, floating-point,

or logical operations

• Instructions altering program flow: branch, call, return, and loop control instruc-

tions

• Instructions performing data movement: load, store, move, push, pop

• System instructions: instructions changing the system’s mode

One key element that separates the SciBy VM from conventional machines is the

memory model: The machine defines a Harvard [Sto83] memory architecture with sep-

arate memory banks for data and instructions. The majority of conventional modern

computers use a von Neumann architecture [vN93; Tur36] with a single memory seg-

ment for both instructions and data. These machines are generally more vulnerable

to the well-known buffer overflow exploits and similar exploits derived from ’illegal’

pointer arithmetic to executable memory segments. Furthermore, the machine will sup-

port hardware setups that have separate memory pathways, thus enabling simultaneous

data and instruction fetches. All instructions are fetched from the instruction memory

bank which is inaccessible for applications: All memory accesses from applications are

103

directed to the data segment. The data memory segment is partitioned in a global mem-

ory section, a heap section for dynamically allocated structures, and a stack for storing

local variables and function parameters.

Instruction Format

The instruction format is based on bytecodes to simplify the instruction stream. The

format is as follows: Each instruction starts with a one-byte operation code (opcode)

followed by possibly more opcodes and ends with zero or more operands, see Figure

5.4. In this sense, the machine is a multi-opcode multi-address machine. Having only

a single one-byte opcode limits the instruction set to only 256 different instructions,

whereas multiple opcodes allows for nested instructions, thus increasing the number of

instructions exponentially. A multi-address design is chosen to support more types of

hardware.

OP OP

0 8 32 4816

R1 R2 R3

0 8

OP R1 R2 R3

OP OP

56

R1 R2 R3OP

0 8 16 24 40

24 40

Figure 5.4: Examples of various instruction formats on register operands.

Addressing Modes

Based on the popularity of addressing modes found in recent computers [HP02], we

have selected 4 addressing modes for the SciBy VM, all listed below.

104

• Immediate addressing: The operand is an immediate, for instance MOV R1 4

which moves the number 4 to register 1.

• Displacement addressing: The operand is an offset and a register pointing to a

base address, for instance ADD R1 R1 4(R2) which adds to R1 the value found 4

words from the address pointed out by R2.

• Register addressing: Operand is a register, for instance MOV R1 R2

• Register indirect addressing: Address part is a register containing the address of

an operand, for instance ADD R1, R1, (R2), which adds to R1 the value found at

the address pointed out by R2.

Instruction Types

Since the machine defines a Harvard architecture, it is important to note that data move-

ment is carried out by LOAD and STORE operations which operate on words in the data

memory bank. PUSH and POP operations are available for accessing the stack.

Table 5.1 summarizes the most basic instructions available in the SciBy VM. Almost

all operations are simple 3-address operations with operands, and they are chosen to be

simple enough to be directly matched by native hardware operations.

Instruction group Mnemonic
Moves load, store
Stack push, pop
Arithmetic add, sub, mul, div, mod
Boolean and, or, xor, not
Bitwise and, or, shl, shr, ror, rol
Compare tst, cmp
Control halt, nop, jmp, jsr, ret, br, be eq, br lt, etc

Table 5.1: Basic Instruction Set of the SciBy VM

105

While these instructions are found in virtually every computer, they exist in many

different variations using various addressing modes for each operand. To accommodate

this and assist the compiler as much as possible, the SciBy VM provides regularity by

making the instruction set orthogonal on both operations, data types, and the addressing

modes. For instance the ’add’ operation exists in all 16 combinations of the 4 address-

ing modes on the two source registers for both integers and floating points. Thus, the

encoding of an ’add’ instruction on two immediate source operands takes up 1 byte

for choosing arithmetic, 1 byte to select the ’add’ on two immediates, 2 bytes to ad-

dress one of the 16384 registers as destination register and then 16 bytes for each of the

immediates, yielding a total instruction length of 36 bytes.

5.2.6 Libraries

In addition to the basic instruction set, the machine implements a number of basic li-

braries for standard operations like floating-point arithmetic and string manipulation.

These are extensions to the virtual machine and are provided on an per-architecture

basis as statically linked native libraries optimized for specific hardware.

As explained above, virtual machines introduce a performance overhead in the

translation phase from virtual machine object code to the native hardware instructions

of the underlying real machine. The all-important observation here is that scientific

applications spend most of their running time executing ’scientific instructions’ such as

string operations, linear algebra, fast fourier transformations, or other library functions.

Hence, by providing optimized native libraries, we can take advantage of the synergy

between algorithms, the compiler translating them, and the hardware executing them.

Equipping the machine with native libraries for the most prevalent scientific algo-

106

rithms and enabling future support for new libraries increases the number of potential

instructions drastically. To address this problem, multiple opcodes allows for nested in-

structions as shown in Figure 5.5. The basic instructions are accessible using only one

opcode, whereas a floating point operation is accessed using two opcodes, i.e. FP lib

FP sub R1 R2 R3, and finally, if one wishes to use the WFTA instruction from the FFT 2

library, 3 opcodes are necessary: FFT lib FFT 2 WFTA args.

Halt

Load

Store

Push

Pop

Str_lib

FP_lib

Fp_add

FP_sub

FFT_1

FFT_2

FFT_3

String_move

String_cmp

WFTA

PFA

FFT_lib

Figure 5.5: Native libraries as extension to the instruction set

As no system or I/O calls are available, the machine uses the MiG-RFA 3 library

to access files directly on the MiG file servers on an on-demand basis. Using this

strategy, an application can start immediately, and only the needed fragments of the

files it accesses are transferred.

5.2.7 Final Notes

Ending the discussion of the architecture, it is important to re-emphasize that all focus

in the design of the bytecode is on portability and security. Regarding security, the Har-

vard design is chosen to avoid internal exploits that possibly could lead to a malicious

program breaking out of the sandbox, and by excluding all I/O and system calls, there

is no way for programs in the sandbox to communicate with the host system.

107

Designing an architecture includes a lot of trade-offs, and even though many of

these issues are zeroed by the interpreter or translator, the proposed bytecode is far from

optimal by normal architecture metrics. For instance, when evaluating the architecture,

one might find that:

• Having a 3-operand instruction format may give unnecessarily large code size in

some circumstances

• Studies may show that the displacement addressing mode is typically used to

nearby addresses, thereby suggesting that these instructions only need a few bits

for the operand

• Using register-register instructions may give unnecessarily high instruction count

in some circumstances

• Using bytecodes increases the code density

• Variable instruction encoding decreases performance

However, the key point is that we target only a special type of applications on a very

broad hardware platform. Performance-wise, the bytecode itself has no significance.

5.3 Implementation

In order to validate the proposed ideas and justify further development, an assembler

and a very simple bytecode interpreter were implemented. The assembler translates

compiled code in assembly format into the machine’s native bytecode, which the inter-

preter executes. In the code section below, the bytecode is read from the file descriptor,

fd. The interpreter simply reads a byte from the code area, consults a call-table to find

108

out which type of instruction the byte corresponds to, for instance arithmetic, and

enters the call-table of the instruction type. The central code the interpreter is thus very

simple (return code check and memory allocations have been left out for readability):

unsigned char instruction, *ip;

function *call_table;

call_table[0x00] = control_ops;

...

call_table[0x06] = arithmetic_ops;

...

text = mmap (0, statbuf.st_size, PROT_READ, MAP_SHARED, fd, 0);

ip = text //instruction pointer

while (1){

instruction = get_1_byte(&ip);

call_table[instruction]((void **)&ip);

}

Once in the arithmetic section, the interpretation proceeds by reading the next byte, looks it

up in a similar call-table populated with the arithmetic instructions. For instance, if the bytecode

translates to the add variant performed on three registers, more bytes will be read until all

registers are determined, and finally, the instruction can be performed:

arithmetic_instructions[0x00] = addi_r_r;

...

void arithmetic_ops(void **p){

unsigned char *pc = *p;

unsigned char sub_instruction;

sub_instruction = get_1_byte(&pc);

109

arithmetic_instructions[sub_instruction]((void **)&pc);

*p = pc;

}

static void addi_r_r(void **p){

unsigned char *pc = *p;

int dest = get_2_bytes(&pc);

int src1 = get_2_bytes(&pc);

int src2 = get_2_bytes(&pc);

registers[dest] = registers[src1] + registers[src2];

*p = pc;

}

In addition to all the standard instructions, the call-table is also populated with an entry for

every supported native library:

call_table[0x07] = fftw_sciby_ops;

call_table[0x08] = cuda_sciby_ops;

call_table[0x08] = gsl_matrix_sciby_ops;

call_table[0x0a] = fourier_sciby_ops;

call_table[0x0b] = dip_sciby_ops;

...

The instruction tables of each of these are populated with an instruction for every function

available in the API of the library. For instance, to apply an Adaptive Smoothing Filter on an

image using the fourier [Cel08] image library, the following instructions from the API are

necessary to read in the image, apply the filter, write it back, and finally free the image:

fourier_sciby_instructions[0x00] = fourier_sciby_read_img;

fourier_sciby_instructions[0x01] = fourier_sciby_filter_adap_smooth;

110

fourier_sciby_instructions[0x02] = fourier_sciby_write_img;

fourier_sciby_instructions[0x03] = fourier_sciby_free_img;

...

void fourier_sciby_ops(void **p){

unsigned char *pc = *p;

unsigned char sub_instruction;

sub_instruction = get_1_byte(&pc);

fourier_sciby_instructions[sub_instruction]((void **)&pc);

*p = pc;

}

Unlike the standard instruction functions, the corresponding functions for library instruc-

tions perform the actual work by calling the native library function, thus off-loading computa-

tional intensive instructions to native code.

5.4 Related Work

GridBox [DSG04] aims at providing a secure execution environment for grid applications by

means of a sandbox environment and Access Control Lists. The execution environment is re-

stricted by the chroot command which isolates each application in a separate file system space.

In this space, all system calls are intercepted and checked against pre-defined Access Control

Lists which specify a set of allowed and disallowed actions. In order to intercept all system

calls transparently, the system is implemented as a shared library that gets preloaded into mem-

ory before the application executes. The drawback of the GridBox library is the requirement

of a UNIX host system and application and it does not work with statically linked applications.

Further, this kind of isolation can be opened if an intruder gains system privileges leaving the

host system unprotected.

111

Secure Virtual Grid (SVGrid) [ZBP05] isolates each grid applications in its own instance of

a Xen virtual machine whose file system and network access requests are forced to go through

the privileged virtual machine monitor where the restrictions are checked. Since each grid

virtual machine is securely isolated from the virtual machine monitor from which it is controlled,

many levels of security has to be opened in order to compromise the host system, and the system

has proved its effectiveness against several malicious software tests. The performance of the

system is also above acceptable with a very low overhead. The only drawback is that while

the model can be applied to other operating systems than Linux, it still makes use of platform-

dependent virtualization software.

Java and the Microsoft Common Language Infrastructure are similar solutions trying to en-

able applications written in the Java programming language or the Microsoft .Net framework,

respectively, to be used on different computer architectures without being rewritten. They both

introduce an intermediate platform independent code format (Java bytecode and the Common

Intermediate Language respectively) executable by hardware-specific execution environments

(the Java Virtual Machine and the Virtual Execution System respectively). While these solution

have proved suitable for many application domains, performance problems and their require-

ment of a specific programming language class rarely used for scientific applications disqualifies

the use of these virtual machines for this project.

NestedVM [AM04] provides binary translation from unsafe machine code into safe java

bytecodes. Compilation from source code is left to standard compilers such as GCC, which are

used to compile from any source language into MIPS machine language. The MIPS instructions

are then mapped by the NestedVM into Java bytecodes and executed. According to their own

benchmarks, the system incurs a slow-down of a factor 3 compared to native execution.

112

5.5 Experiments & Results

All sample programs are hand-written in assembly code and processed by the assembler that

translates them into the bytecodes executable by the interpreter. The first test is a typical example

of the scientific applications the machine targets: A Fast Fourier Transform (FFT).

5.5.1 Fast Fourier Transform

FFT is an obvious choice for evaluating the SciBy VM, since it is a fundamental kernel in so

many scientific applications, for instance data compression, fluid dynamics, seismic imaging,

image processing, computer tomography, data filtering, spectral analysis, and digital signal pro-

cessing. The core of these applications is the necessity of computing Fourier transforms, and the

performance of this type of application relies heavily on the routines available for performing

the transforms.

The program first computes 10 transforms on a vector of varying sizes, then checksums the

transformed vector to verify the result. In order to test the performance of the virtual machine,

the program is also implemented in C to get the native base line performance, and in Java to

compare the results of the SciBy VM with an existing widely used virtual machine.

The experiments are carried out on the following machines:

• A 1.86 GHz Intel Pentium M, 2 MB cache, 512 MB RAM

• A dual core 2.2 GHz AMD Athlon 4200 64-bit, 512 kB cache per core, 4 GB RAM

• A dual quad core Intel Xeon, 1.60 GHz, 4 MB cache per core, 8 GB RAM

The C and SciBy VM programs make use of the fftw library[FJ05], while the Java version

uses an FFT algorithm from the SciMark suite[PM]. Obviously, this test is highly unfair in

disfavor of the Java version for several reasons. Firstly, the fftw library is well-known to give

the best performance, and comparing hand-coded assembly with compiler-generated high-level

113

Vector size Native SciBy VM Java
524288 1.535 1.483 7.444
1048576 3.284 3.273 19.174
2097152 6.561 6.656 41.757
4194304 14.249 14.398 93.960
8388608 29.209 29.309 204.589

Table 5.2: Comparison of the performance of an FFT application on a 1.86 GHz Intel
Pentium M processor, 2MB cache, 512 MB RAM

Vector size Native SciBy VM Java
524288 0.879 0.874 4.867
1048576 1.857 1.884 10.739
2097152 3.307 3.253 23.520
4194304 6.318 6.354 50.751
8388608 13.045 12.837 110.323

Table 5.3: Comparison of the performance of an FFT application on a dual core 2.2
GHz AMD Athlon 4200 64-bit, 512 kB cache per core, 4GB RAM

language performance is a common pitfall. However, even though Java-wrappers for the fftw

library exist, it is essential to put these comparisons in a grid context. If the grid resources were

to run the scientific applications in a Java Virtual Machine, the programmers - the grid users -

would not be able to take advantage of the native libraries, since allowing external library calls

breaks the security of the JVM. Thereby, the isolation level between the executing grid job and

the host system is lost†. In the proposed virtual machine, these libraries are an integrated part of

the machine, and using them is perfectly safe.

As shown in Table 5.2 the FFT application is run using different vector size, 219, ..., 223. The

results in all experiments are the average of 3 consecutive runs, all measured in seconds using

the Linux time command. The results show that the SciBy VM is on-par with native execution,

and that the Java version is clearly outperformed.

Since the fftw library is multithreaded, we repeat the experiment on a dual core machine

and on a quad dual-core machine. The results are shown in Table 5.3 and Table 5.4.

†In fact there is a US Patent (#6862683) on a method to protect native libraries

114

Vector size Native SciBy VM Java
524288 0.650 0.640 4.955
1048576 1.106 1.118 12.099
2097152 1.917 1.944 27.878
4194304 3.989 3.963 61.423
8388608 7.796 7.799 134.399

Table 5.4: Comparison of the performance of an FFT application on a quad dual-core
Intel Xeon CPU, 1.60 GHz, 4MB cache per core, 8GB RAM

From these results it is clear that for this application there is no overhead in running it in

the virtual machine. It has immediate support for multi-threaded libraries, and therefore the

single-threaded Java version is even further outperformed on multi-core architectures.

5.5.2 Image Processing

Image processing is widely used in many scientific applications, such as medical imaging, com-

puter graphics rendering, sensing and detection systems, and in general, over the last few years

it is becoming a topic of interest for a broad scientific community. Using fourier [Cel08],

a portable image processing and analysis library, we write a sample application that applies

a series of transformations, for instance gaussian adaptive smoothing filter, on a raw

2592x1944 pixel pgm image. We then run the application in 4 different setups:

• Native: Run natively, with the image in the local file system

• SciBy VM: Run inside the SciBy VM with the image in the local file system (suspending

the local file access restriction)

• Native + RFA: Run natively, using the Remote File Access library to access the file 200

km away (standard 5 Mbps ADSL-line).

• SciBy VM + RFA: Run inside the SciBy VM using the RFA library as above.

These tests are performed on 4 architectures:

115

Table 5.5: Results from the fourier application on a single-core host machine including
transfer time of the image data from Grid

Arch. Native SciBy Native+RFA SciBy+RFA

Core 2 96.36 96.41 96.87 96.90
AMD 78.93 78.89 78.75 79.01
PPC 166.18 164.25 167.76 166.21
Mac 58.72 59.05 59.55 60.01

• An Intel Core 2 1.86 GHz processor, 2GB memory, running 32 bit Ubuntu linux,

• An AMD Athlon 64-bit processor 3000+, 1GB memory, running Debian-amd64

• A 3.2 GHz PowerPC 64-bit processor, 2 hardware threads, from the Cell Broadband

Engine, running 32-bit Yellow Dog Linux‡

• an Intel Core 2 2.4 GHz processor, 4GB memory, running Mac OSX.

Table 5.5 shows that there is no overhead when running inside the virtual machine in any

of the setups. Since the entire file is used in an unbalanced fashion, there is no gain from using

the RFA library. The time to transfer the image using curl and lighttpd was 46.293 seconds,

which is exactly the difference between the executions with and without RFA. Thus, a staging

technique would be equal to accessing the file remotely.

Next, to illustrate utilization of a multi-core architecture, we use the diplib [vG00] image

processing library, which is multi-threaded. In this test, we apply the very compute-intensive

second order derivative Laplace filter on the image, and execute on the 8-core Intel Xeon 1.60

GHz with 8 GB memory. Using the taskset command, the experiment is carried out using

1,2,4, and 8 cores.

From the results in Table 5.6, we can once again conclude that there is no overhead from

using the virtual machine. And, there is immediate support for multi-core utilization. Again,

‡The fourier image library does not utilize the SPEs in the Cell BE.

116

Table 5.6: Results from the diplib application on an 8-core host machine. The image
transfer time, 46 seconds, is not included

Cores Native SciBy Native+RFA SciBy+RFA

1 101.53 101.34 147.47 147.80
2 51.36 51.94 97.76 97.60
4 27.74 27.63 73.23 73.54
8 15.14 15.23 61.87 61.90

Table 5.7: Results from the video processing, including transfer time of the image from
the Grid

Arch. Native SciBy Native+RFA SciBy+RFA

Core 2 376.58 377.11 261.81 262.01
AMD 260.24 260.13 192.89 193.11

since the diplib image reads the entire image before it processes it, there is no gain from the

remote file access library.

To wrap up image processing performance tests, a final example uses the ffmpeg [Bel00]

library to decode frames from a video file. Each decoded frame is then transformed using the

Imlib2 [Hai99] image library. In this case, we just a apply a simple blurring effect to every

frame. Since the ffmpeg balances I/O and processing, i.e. it consecutively reads data for a

single frame, and then decodes it, the RFA library can take advantage of the prefetching, thus

having every frame available in the instant it is needed. Therefore, as shown in 5.7, using the

RFA library is faster than using local file access. The test is performed on the Intel and AMD

computers only.

5.5.3 Basic Linear Algebra Subroutines

BLAS (Basic Linear Algebra Subroutines)is widely used for high-performance computing and

benchmarking. BLAS is a set of efficient routines for most of the basic vector and matrix opera-

tions. They are widely used as the basis for other high quality linear algebra software packages,

117

Table 5.8: Results from the BLAS benchmark
Arch. Native SciBy VM

Core 2 38.466 38.211
AMD 46.340 46.870
PPC 43.513 43.662
Mac 36.344 36.492

for instance lapack and linpack. In this test, we perform a series of operations from the AT-

LAS [WP05] and GotoBLAS [GvdG02] libraries on a 500 by 500 matrix. It is all computed in

memory, so there is no file access. The results displayed in 5.8 once again show that the SciBy

VM achieves near native speed.

5.6 Conclusion

Bytecodes and a virtual machine executing them provides platform-independence at the cost of

performance. The SciBy VM introduces a hybrid model, where the machine executes mobile

bytecodes and uses native optimized libraries to mitigate the performance drawback. Thus, the

model applies best to applications that spend most of their time in the libraries, which is the case

for scientific applications.

Using typical scientific libraries, the performance of the machine has been evaluated and

found to be on par with native execution. For other types of applications, the machine will

currently perform poorly.

118

Chapter 6

Conclusions

During the last decade, the two main technologies on which this project is founded, Virtual

Machines and Grid Computing, have both had their peak on the hype curve. First, Grid Com-

puting emerged as the solution to most computationally intensive scientific applications. Next,

VMs reemerged with many properties such as server consolidation, better multi-core utilization,

application mobility, and sandbox abilities.

As the technologies became more widely demonstrated and accepted, it also became appar-

ent that there were some drawbacks to the available products. In terms of performance, Grid

Computing was outpaced by Volunteer Computing systems, and while the specification of a Grid

is wide enough to include standard desktop computers, none of the available Grid systems have

adopted this resource platform. Merging Volunteer Computing and Grid Computing systems

is a big step towards realizing one of the initial ideas of Grid Computing, namely harnessing

idle CPU power from all types of computer resources, and putting them on tap for world-wide

sharing.

Virtual machines can bridge the architectural boundaries between different resource types,

but the drawback of virtual machines is either performance or portability. While virtual ma-

chines can exhibit reasonable performance when the guest and host systems are compatible, the

119

portability is limited to a single architecture. However, to harness the compute power from an

ever-increasing farm of architectures and use it for scientific research, the application mobility

and sandbox properties of virtual machines make them ideal for deployment in a combined Grid

and Volunteer Computing system.

The thesis has presented two virtual machines, the MiG-SSS and the SciBy VM. The MiG-

SSS is based on existing virtual machines and aimed at Windows and Linux desktop PCs, which

were the most popular desktop devices at the time when it was launched in 2006. Disguised as

a screen saver, the machine harnesses the idle time CPU cycles from privately owned Internet-

connected PCs. In the latest edition, the MiG-SSS is also available as a Windows Service, where

it runs constantly as a low-priority process in the background.

The SciBy VM is a virtual machine designed specifically for scientific applications. By

taking advantage of the fact that scientific applications spend most of the execution time doing

linear algebra, fast fourier transforms, string operations, and other library functions, this solution

introduces a hybrid machine that executes platform independent bytecodes and has the ability

of calling native libraries. And, by equipping the machine with a remote file access library, the

need for host system interaction has been completely eliminated. The portability of the machine

is only limited by the availability of scientific libraries, and experiments have shown that the

machine’s performance is on par with native execution.

6.1 Future Work

Throughout the course of this project, many sub-projects have been spawned, and many re-

finements and new ideas are ready in the pipeline. Regarding the MiG-SSS, the integration of

a suspend-migrate-resume feature in the MiG system is the first task. Secondly, the dynamic

configuration and loading of runtime environments needs to be implemented. Finally, improve-

ments on the screen saver graphics and job count monitoring have been requested from the user

120

community.

The SciBy VM still needs hardening, and several future directions exist before the model

can be deployed:

Compiler Most notably, a compiler is necessary to translate the source code from a high level

programming language into the assembly code. GCC is the most widely used compiler suite, and

by providing a detailed specification of the machine ABI and a general machine description, it

is possible to port GCC to new architectures [Nil00]. Another possibility is to use lcc which

is designed to be retargetable. In addition to a compiler, a profiler and a debugger will also be

convenient tools for developers.

GPU Support For some types of scientific applications, Graphical Processing Units are

much more powerful than CPUs [OHL+08]. Initial experiments have shown how to integrate

the CUDA [NBGS08] computing architecture in the machine, yet more work is needed to fully

support GPUs.

Libraries Only a handful scientific libraries have been integrated in the machine. Support

for many more libraries is necessary for the machine to be successful. Moreover, libraries for

distributed shared memory systems are frequently used in scientific applications and should be

supported by the machine as well.

Translator In the event that faster execution of the bytecode becomes essential, another ap-

proach than the interpreter would be to use just-in-time compilation techniques [Ayc03; Kra98]

that generally perform better than bytecode interpreters. However, as scientific applications

typically execute for a long time, the load time overhead is likely to be amortized by the total

wall-clock time.

121

Bibliography

[AA06] Keith Adams and Ole Agesen, A comparison of software and hardware techniques

for x86 virtualization, ASPLOS-XII: Proceedings of the 12th international confer-

ence on Architectural support for programming languages and operating systems

(New York, NY, USA), ACM, 2006, pp. 2–13.

[ABB+01] Bill Allcock, Joe Bester, John Bresnahan, Ann L. Chervenak, Ian Foster, Carl

Kesselman, Sam Meder, Veronika Nefedova, Darcy Quesnel, and Steven Tuecke,

Data management and transfer in high-performance computational grid environ-

ments, Parallel Computing Journal 28 (2001), 749–771.

[ACK+02] David P. Anderson, Jeff Cobb, Eric Korpela, Matt Lebofsky, and Dan Werthimer,

Seti@home: an experiment in public-resource computing, Commun. ACM 45

(2002), no. 11, 56–61.

[AGG02] Ken Arnold, Guang R. Gao, and Sudipto Ghosh, Java/jini technologies and high-

performance pervasive computing, SPIE- International Society for Optical Engi-

neering, 2002.

[AM04] Brian Alliet and Adam Megacz, Complete translation of unsafe native code to safe

bytecode, IVME ’04: Proceedings of the 2004 workshop on Interpreters, virtual

machines and emulators (New York, NY, USA), ACM, 2004, pp. 32–41.

122

[AMD05] AMD, Amd64 virtualization codenamed ”pacifica” technology, secure virtual ma-

chine architecture reference manual, 2005.

[And03] David P. Anderson, Public computing: Reconnecting people to science, Proceed-

ings of Conference on Shared Knowledge and the Web, 2003, pp. 17–19.

[And04] , Boinc: A system for public-resource computing and storage, GRID ’04:

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing

(Washington, DC, USA), IEEE Computer Society, 2004, pp. 4–10.

[AV05] Rasmus Andersen and Brian Vinter, Transparent remote file access in the mini-

mum intrusion grid, WETICE ’05: Proceedings of the 14th IEEE International

Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprise

(Washington, DC, USA), IEEE Computer Society, 2005, pp. 311–318.

[AV06] , Harvesting idle windows cpu cycles for grid computing, GCA (Hamid R.

Arabnia, ed.), CSREA Press, 2006, pp. 121–126.

[AV07] , Direct application access to grid storage: Research articles, Concurr.

Comput. : Pract. Exper. 19 (2007), no. 9, 1287–1298.

[AV08] , The scientific byte code virtual machine, GCA (Hamid R. Arabnia, ed.),

CSREA Press, 2008, pp. 175–181.

[Ayc03] John Aycock, A brief history of just-in-time, ACM Comput. Surv. 35 (2003), no. 2,

97–113.

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho,

Rolf Neugebauer, Ian Pratt, and Andrew Warfield, Xen and the art of virtualiza-

tion, SOSP ’03: Proceedings of the nineteenth ACM symposium on Operating

systems principles (New York, NY, USA), ACM Press, 2003, pp. 164–177.

123

[Bel00] Fabrice Bellard, ffmpeg, 2000, http://www.ffmpeg.org/.

[Bel05] Fabrice Bellard, Qemu, a fast and portable dynamic translator, 2005, pp. 41–46.

[CCWY05] Brad Calder, Andrew A. Chien, Ju Wang, and Don Yang, The entropia virtual

machine for desktop grids, VEE ’05: Proceedings of the 1st ACM/USENIX in-

ternational conference on Virtual execution environments (New York, NY, USA),

ACM, 2005, pp. 186–196.

[Cel08] M. Emre Celebi, fourier, 2008, http://mac.softpedia.com/get/

Development/Libraries/Fourier.shtml.

[CHPM07] Neil Cafferkey, Philip D. Healy, David A. Power, and John P. Morrison, Job man-

agement in webcom, ISPDC ’07: Proceedings of the Sixth International Sympo-

sium on Parallel and Distributed Computing (Washington, DC, USA), IEEE Com-

puter Society, 2007, p. 6.

[CIS07] CIS, Virtual machine security guidelines, 2007.

[CRDI07] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, Cell broadband engine architec-

ture and its first implementation: a performance view, IBM J. Res. Dev. 51 (2007),

no. 5, 559–572.

[dANV+05] Marcos Dias de Assuno, Krishna Nadiminti, Srikumar Venugopal, Tianchi Ma,

and Rajkumar Buyya, An integration of global and enterprise grid computing:

Gridbus broker and xgrid perspective, In Proceedings of the 4th International Con-

ference on Grid and Cooperative Computing (GCC 2005), LNCS, Springer-Verlag,

2005.

[DE99] Sophia Drossopoulou and Susan Eisenbach, Describing the semantics of java and

124

http://www.ffmpeg.org/
http://mac.softpedia.com/get/Development/Libraries/Fourier.shtml
http://mac.softpedia.com/get/Development/Libraries/Fourier.shtml

proving type soundness, Formal Syntax and Semantics of Java (London, UK),

Springer-Verlag, 1999, pp. 41–82.

[Den71] Peter J. Denning, On modeling program behavior, AFIPS ’71 (Fall): Proceedings

of the November 16-18, 1971, fall joint computer conference (New York, NY,

USA), ACM, 1971, pp. 937–944.

[DSG04] Evgueni Dodonov, Joelle Quaini Sousa, and Hélio Crestana Guardia, Gridbox:

securing hosts from malicious and greedy applications, MGC ’04: Proceedings

of the 2nd workshop on Middleware for grid computing (New York, NY, USA),

ACM Press, 2004, pp. 17–22.

[EEH+03] P. Eerola, M. Ellert, J. R. Hansen, A. Konstantinov, B. Knya, J. L. Nielsen,

O. Smirnova, and A. Wnnen, The nordugrid: Building a production grid in scan-

dinavia, 2003.

[Far06] Gilles Farrache, bbftp, large files transfer protocol, 2006.

[FC08] Bryan Ford and Russ Cox, Vx32: lightweight user-level sandboxing on the x86,

ATC’08: USENIX 2008 Annual Technical Conference on Annual Technical Con-

ference (Berkeley, CA, USA), USENIX Association, 2008, pp. 293–306.

[FDF03] Renato J. Figueiredo, Peter A. Dinda, and Fortes, A case for grid computing on

virtual machines, ICDCS ’03: Proceedings of the 23rd International Conference

on Distributed Computing Systems (Washington, DC, USA), IEEE Computer So-

ciety, 2003.

[Fer06] Peter Ferrie, Attacks on virtual machine emulators, 2006.

[FJ05] Matteo Frigo and Steven G. Johnson, The design and implementation of FFTW3,

125

Proceedings of the IEEE 93 (2005), no. 2, 216–231, special issue on ”Program

Generation, Optimization, and Platform Adaptation”.

[Fos05] Ian T. Foster, Globus toolkit version 4: Software for service-oriented systems.,

NPC (Hai Jin, Daniel A. Reed, and Wenbin Jiang, eds.), Lecture Notes in Com-

puter Science, vol. 3779, Springer, 2005, pp. 2–13.

[GBD+94] A. Geist, A. Beguelin, Jack Dongarra, W. Jiang, R. Manchek, and V. Sunderam,

Pvm parallel virtual machine, A user’s guide and tutorial for networked parallel

computing, MIT Press, Cambridge, Mass., 1994.

[GFB+04] Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-

garra, Jeffrey M. Squyres, Vishal Sahay, Prabhanjan Kambadur, Brian Barrett,

Andrew Lumsdaine, Ralph H. Castain, David J. Daniel, Richard L. Graham, and

Timothy S. Woodall, Open MPI: Goals, concept, and design of a next genera-

tion MPI implementation, Proceedings, 11th European PVM/MPI Users’ Group

Meeting (Budapest, Hungary), September 2004, pp. 97–104.

[Gol73] R. P. Goldberg, Architecture of virtual machines, Proceedings of the workshop on

virtual computer systems (New York, NY, USA), ACM, 1973, pp. 74–112.

[GS08] William L. George and Jacob Scott, Screen saver science: Realizing distributed

parallel computing with jini and javaspaces.

[Gu06] Yunhong Gu, Udt: Udp-based data transfer protocol, 2006.

[GvdG02] Kazushige Goto and Robert van de Geijn, On reducing TLB misses in ma-

trix multiplication, Tech. Report TR-2002-55, University of Texas, November

2002, FLAME working note #9, http://www.tacc.utexas.edu/resources/

software.

126

http://www.tacc.utexas.edu/resources/software
http://www.tacc.utexas.edu/resources/software

[Hai99] Carsten Haitzler, Imlib2, 1999, http://docs.enlightenment.org/api/

imlib2/html/.

[HKM+88] John H. Howard, Michael L. Kazar, Sherri G. Menees, A. Nichols, M. Satya-

narayanan, Robert N. Sidebotham, and Michael J. West, Scale and performance

in a distributed file system, ACM Transactions on Computer Systems 6 (1988),

51–81.

[HP02] John L. Hennessy and David A. Patterson, Computer architecture: A quantitative

approach, Morgan Kaufmann, May 2002.

[JPMC00] Keith Power John P. Morrison and Neil Cafferkey, Cyclone: A cycle brokering

system to harvest wasted processor cycles, Parallel and Distributed Computing

Techniques and Applications, 2000.

[Ker99] A. Keromytis, The keynote trust-management system, version 2, IETF RFC 2704

(1999), 164–173.

[KF98] Carl Kesselman and Ian Foster, The grid: Blueprint for a new computing infras-

tructure, Morgan Kaufmann Publishers, November 1998.

[Kra98] A. Krall, Efficient javavm just-in-time compilation, PACT ’98: Proceedings of the

1998 International Conference on Parallel Architectures and Compilation Tech-

niques (Washington, DC, USA), IEEE Computer Society, 1998, p. 205.

[KV05] Henrik Hoey Karlsen and Brian Vinter, Minimum intrusion grid - the simple model,

WETICE ’05: Proceedings of the 14th IEEE International Workshops on En-

abling Technologies: Infrastructure for Collaborative Enterprise (Washington, DC,

USA), IEEE Computer Society, 2005, pp. 305–310.

127

http://docs.enlightenment.org/api/imlib2/html/
http://docs.enlightenment.org/api/imlib2/html/

[KV06] Henrik Hoey Karlsen and Brian Vinter, Vgrids as an implementation of virtual

organizations in grid computing, WETICE ’06: Proceedings of the 15th IEEE In-

ternational Workshops on Enabling Technologies: Infrastructure for Collaborative

Enterprises (Washington, DC, USA), IEEE Computer Society, 2006, pp. 175–180.

[LLM88] Michael Litzkow, Miron Livny, and Matthew Mutka, Condor - a hunter of idle

workstations.

[LSSP09] Stefan M. Larson, Christopher D. Snow, Michael Shirts, and Vijay S. Pande, Fold-

ing@home and genome@home: Using distributed computing to tackle previously

intractable problems in computational biology, 2009.

[LY99] Tim Lindholm and Frank Yellin, The java(tm) virtual machine specification (2nd

edition), Prentice Hall PTR, April 1999.

[MO98] H. Mcghan and M. O’Connor, Picojava: a direct execution engine for java byte-

code, Computer 31 (1998), no. 10, 22–30.

[MOH03] John P. Morrison, Padraig J. O’Dowd, and Philip D. Healy, Searching rc5

keyspaces with distributed reconfigurable hardware, Engineering of Reconfig-

urable Systems and Algorithms (Toomas P. Plaks, ed.), CSREA Press, 2003,

pp. 269–272.

[MP05] Thomas Mailund and Christian N. S. Pedersen, Initial experiences with generecon

on mig, In Proceedings of the 2005 International Conference on Grid Computing

and Applications (GCA05), Monte Carlo Resort, Las Vegas, 2005.

[MPK03] John P. Morrison, David A. Power, and James J. Kennedy, An evolution of the

webcom metacomputer, J. Math. Model. Algorithms 2 (2003), no. 3, 263–276.

128

[MSS+97] Albert Alexandrov Maximilian, Ian E. Schauser, Chris J. Scheima, Albert D. Alex,

Albert D. Alex, Maximilian Ibel, Maximilian Ibel, Klaus E. Schauser, and Chris J.

Scheiman, Extending the operating system at the user level: the ufo global file

system, 1997.

[MWG] Erik Meijer, Redmond Wa, and John Gough, Microsoft clr overview.

[MY01] Sathiamoorthy Manoharan and Chaitanya Reddy Yavasani, Experiments with se-

quential prefetching, HPCN Europe 2001: Proceedings of the 9th International

Conference on High-Performance Computing and Networking (London, UK),

Springer-Verlag, 2001, pp. 322–331.

[NBGS08] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron, Scalable parallel

programming with cuda, Queue 6 (2008), no. 2, 40–53.

[Nil00] Hans-Peter Nilsson, Porting gcc for dunces, 2000.

[NS03] Nicholas Nethercote and Julian Seward, Valgrind: A program supervision frame-

work, Electronic Notes in Theoretical Computer Science 89 (2003), no. 2.

[NS07] Nicholas Nethercote and Julian Seward, Valgrind: a framework for heavyweight

dynamic binary instrumentation, SIGPLAN Not. 42 (2007), no. 6, 89–100.

[OHL+08] J. D. Owens, M. Houston, D. Luebke, S. Green, J. E. Stone, and J. C. Phillips, Gpu

computing, Proceedings of the IEEE 96 (2008), no. 5, 879–899.

[Par06] Parallels, Parallels desktop 4.0 for mac, 2006.

[PBW+05] J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot,

R. D. Skeel, L. Kalé, and K. Schulten, Scalable molecular dynamics with namd.,

J Comput Chem 26 (2005), no. 16, 1781–1802.

129

[PC06] Virtual PC, Microsoft virtual pc, 2006.

[PG74] Gerald J. Popek and Robert P. Goldberg, Formal requirements for virtualizable

third generation architectures, Commun. ACM 17 (1974), no. 7, 412–421.

[PM] Roldan Pozo and Bruce Miller, Scimark 2.0, http://math.nist.gov/

scimark2/.

[PSB+00] B. Pawlowski, S. Shepler, C. Beame, B. Callaghan, M. Eisler, D. Noveck,

D. Robinson, and R. Thurlow, The nfs version 4 protocol, 2000.

[RI00] John Scott Robin and Cynthia E. Irvine, Analysis of the intel pentium’s ability

to support a secure virtual machine monitor, SSYM’00: Proceedings of the 9th

conference on USENIX Security Symposium (Berkeley, CA, USA), USENIX As-

sociation, 2000, pp. 10–10.

[RV07] Martin Rehr and Brian Vinter, The one-click grid-resource model., HPCC

(Ronald H. Perrott, Barbara M. Chapman, Jaspal Subhlok, Rodrigo Fernandes

de Mello, and Laurence Tianruo Yang, eds.), Lecture Notes in Computer Science,

vol. 4782, Springer, 2007, pp. 296–308.

[RV08a] , Application porting and tuning on the cell-be processor, Proceedings of

PARA ’08, May 2008, Extended abstract.

[RV08b] , The ps3 grid-resource model., GCA (Hamid R. Arabnia, ed.), CSREA

Press, 2008, pp. 90–95.

[Sar98] Luis F. G. Sarmenta, Bayanihan: Web-based volunteer computing using java, In

Second International Conference on World-Wide Computing and its Applications,

1998, pp. 444–461.

[Sch01] Pascal Schmidt, ttylinux, 2001.

130

http://math.nist.gov/scimark2/
http://math.nist.gov/scimark2/

[SGBE05] Yunhe Shi, David Gregg, Andrew Beatty, and M. Anton Ertl, Virtual ma-

chine showdown: stack versus registers, VEE ’05: Proceedings of the 1st

ACM/USENIX international conference on Virtual execution environments (New

York, NY, USA), ACM, 2005, pp. 153–163.

[Smi82] Alan Jay Smith, Cache memories, ACM Comput. Surv. 14 (1982), no. 3, 473–530.

[Ste] Daniel Stenberg, curl, http://curl.haxx.se.

[Sto83] E. L. Stoll, Mark i, Ralston, Anthony; Reilly, Edwin D., Encyclopedia of computer

science and engineering (2nd ed.), New York: Van Nostrand Reinhold Company

Inc (1983), 916–917.

[Sym99] Don Syme, Proving java type soundness, Formal Syntax and Semantics of Java

(London, UK), Springer-Verlag, 1999, pp. 83–118.

[Tur36] A. M. Turing, On computable numbers, with an application to the entschei-

dungsproblem, Proc. London Math. Soc. 2 (1936), no. 42, 230–265.

[UNR+05] R. Uhlig, G. Neiger, D. Rodgers, A. L. Santoni, F. C. M. Martins, A. V. Anderson,

S. M. Bennett, A. Kagi, F. H. Leung, and L. Smith, Intel virtualization technology,

Computer 38 (2005), no. 5, 48–56.

[VABK06] Brian Vinter, Rasmus Andersen, Jonas Bardino, and Henrik H Karlsen, Massive

cycle harvesting for computational chemistry, 2006.

[vG00] Michael van Ginkel, diplib, 2000, http://www.diplib.org.

[Vin05] Brian Vinter, The Architecture of the Minimum intrusion Grid (MiG), Communi-

cating Process Architectures 2005, sep 2005, pp. –.

[Vin07] Brian Vinter, The grid taken literally, 2007.

131

http://curl.haxx.se
http://www.diplib.org

[VL97] Steven P. VanderWiel and David J. Lilja, When caches aren’t enough: Data

prefetching techniques, Computer 30 (1997), no. 7, 23–30.

[VMW99] VMWare, Vmware workstation, 1999.

[VMW06] , Vmware player, 2006.

[vN93] John von Neumann, First draft of a report on the edvac, IEEE Ann. Hist. Comput.

15 (1993), no. 4, 27–75.

[Wat08] Jon Watson, Virtualbox: bits and bytes masquerading as machines, Linux J. 2008

(2008), no. 166, 1.

[WLAG93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham, Effi-

cient software-based fault isolation, In Proceedings of the 14th ACM Symposium

on Operating Systems Principles, 1993, pp. 203–216.

[Wol96] George Woltman, The great internet mersenne prime search, 1996.

[WP05] R. Clint Whaley and Antoine Petitet, Minimizing development and maintenance

costs in supporting persistently optimized BLAS, Software: Practice and Experi-

ence 35 (2005), no. 2, 101–121.

[WVB05] Peter H. Welch, Brian Vinter, and Frederick R.M. Barnes, Initial experiences with

occam-pi simulations of blood clotting on the minimum intrusion grid, Proceed-

ings of the 2005 International Conference on Parallel and Distributed Processing

Techniques and Applications (PDPTA’05) (Las Vegas, Nevada, USA) (Hamid R.

Arabnia, ed.), CSREA Press, June 2005, pp. 201–207.

[YS08] Bennet Yee and David Sehr, Native client: A sandbox for portable, untrusted x86

native code, Tech. report, 2008.

132

[ZBP05] Xin Zhao, Kevin Borders, and Atul Prakash, Svgrid: a secure virtual environment

for untrusted grid applications, MGC ’05: Proceedings of the 3rd international

workshop on Middleware for grid computing (New York, NY, USA), ACM Press,

2005, pp. 1–6.

133

Appendix A

Publication 1

Proceedings of the 2006 International Conference on Grid Computing & Applications, GCA

2006, Las Vegas, Nevada, USA. CSREA Press 2006, ISBN 1-60132-014-0, pp. 121-126

Rasmus Andersen, Brian Vinter: Harvesting Idle Windows CPU Cycles for Grid Comput-

ing.

134

Harvesting Idle Windows CPU Cycles for Grid
Computing

R. Andersen
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

B. Vinter
Department of Computer Science

University of Copenhagen
Copenhagen, Denmark

Abstract ­ In this paper we demonstrate how to efficiently
exploit the massive amount of idle CPU cycles from
workstations and desktop PCs for Grid computing. The
cycle harvesting is achieved by using sandbox technology
and a generic guest operating system, specifically
designed for the Grid resource. This relieves the resource
owner from the complexity of installing and managing not
only the resource software but also a large and diverse set
of runtime environments that grid jobs may require. In
addition, the sandbox provides a secure virtual
environment, thus eliminating security issues for users and
resource owners. Using this setup, resource owners can
install a virtual machine of their own choice to provide a
sandbox, and once the screen saver software has been
downloaded, the resource is transparently and securely
used as a Grid resource when the screen saver is
activated.

Keywords: Grid computing, screen saver science,
sandboxing.

1 Introduction
 Cycle scavenging, or Screen Saver Science, is an

increasingly popular computing paradigm used within
many fields of science that seek to tap the enormous
amount of unused processing power from the millions of
computers connected to the Internet. The paradigm is best
known from the many successful Public Resource
Computing projects, such as SETI@Home, where the idle
time cycles are used for a dedicated scientific application.
However, only a few attempts have been made to combine
Screen Saver Science with Grid Computing in order to use
idle cycles for any kind of application.

One of the Grid[1] promises is to make it possible to share
and effectively use distributed resources on an
unprecedented scale. Specifically, this includes harnessing
the unused capacity of idle desktop PCs. Much research
has been done to Grid­enable idle resources, yet no widely
accepted system to effectively scavenge idle cycles, in
particular idle Windows cycles, has been found.

The approach we take in this project is to use a virtual
machine to provide a sandbox that completely separates
the Grid job from the resource host system, so that, on the
one hand, a grid job cannot compromise the host system,

and on the other hand, the grid job is protected from other
users of the system.

This paper addresses the problems that need to be solved in
order to scavenge idle desktops for scientific use. First of
all, a method to gain access to the CPU cycles on the idle
resource must be found. To this aspect, security is a major
issue. Ideally, a resource owner should neither install any
software nor execute any foreign applications that,
intentional or not, could compromise his system. Secondly,
the resource, possibly hidden by a Network Address
Translation router and a firewall must be attached to the
Grid. Thirdly, it must be ensured that a given resource has
installed the correct software base that a given Grid job
requires. Finally, we introduce extra features to improve
the model, for instance, a method to predict the idle time
period of a resource in advance. Using this method, a job
with a time deadline is submitted to a resource that is
predicted to be available in the specified time frame.

The paper is organized as follows: Section 2 presents a
generic approach to securely utilize the idle CPU cycles of
many types of architectures. The means taken to Grid­
enable the proposed model are discussed in Section 3.
Section 4 addresses the problems as regards required
runtime environments on the resources. A few MiG
components that optimize the model are presented in
Section 5, an experiment to test the model is carried out in
Section 6, before we conclude in Section 7.

1.1 Related work
BOINC[2] is a software platform that allows many

different distributed computing projects to utilize idle
volunteered computer resources. Many Public Resource
Computing systems use BOINC and research groups can
with little effort create new projects. A project involves a
set of applications that will be run in a BOINC client on a
user's resource. As such, BOINC could be used for this
project by running the proposed virtual machine as the
project application.

A few projects have been found to combine Screen Saver
Science with Grid computing, for instance the Entropia
Virtual Machine[3], which is a commercial product, and

[4] that presents an extensive introduction to the approach
of using virtual machines for Grid computing.

2 Sandboxing and cycle scavenging
The basic idea is to let resource owners install a so­

called sandbox to provide a secure execution environment
in which the Grid job is completely isolated from the host
machine and vice versa. Such a sandbox may be in the
shape of a virtual machine, which is exactly the approach
that we have taken in this work. The alternative approach,
which will not be investigated in this work, works by
intercepting all operating system calls and inspect their
validity.

Two techniques can be used to provide a virtual machine:
Emulation and Virtualization[5]. Emulation provides the
functionality of the target processor completely in
software, which makes it a very secure approach. Also, the
ability to emulate one processor type on any other
processor type makes it ideal for this scenario. However,
the method of interpreting the entire guest operating
system, rather than running it on the native hardware,
results in a significant performance drawback. When
emulating a PC architecture on a PC, a compatibility layer
that enables the target code to be run directly on the host
processor, can reduce the performance penalty.

On the other hand, virtualization partitions hardware in
multiple contexts, thus enabling running multiple operating
systems on the same hardware resources simultaneously.

Several virtualization approaches exist[6]:

• Bare­metal Architecture
• Para­virtualization
• Full Virtualization, also known as Transparent

Virtualization, or Hosted Architecture

The Bare­metal Architecture approach runs the guest
operating system in Ring 0, the most privileged protection
level in x86 architectures. Running multiple operating
systems in the same protection level could potentially
result in one of the systems compromising the other.
Clearly, this approach is not acceptable for resource
owners.

The Para­virtualization approach, known from Xen[16] et
al., needs to modify the host system by interposing a
hypervisor between the operating system and the hardware.
The hypervisor then takes on the Ring 0 and the operating
system must be explicitly ported to run in Ring 1. These
modifications to the host operating system exclude this
approach.

The Full Virtualization approach has performance
drawbacks, but is the least intrusive and thus chosen, not
only because minimum intrusion is a goal of the MiG
project, but also because the least intrusive approach

means the highest number of potential participants. As
shown in Figure 1, the virtual machine allows a guest
operating system to run as an application in the host
operating system. The virtual machine emulates the
underlying hardware, thus creating a secure sandbox that
allows an application written for one operating system, e.g.
Linux, to be executed in another, e.g. Windows.

Figure 1: Full virtualization

The performance penalties are mitigated by kernel support
that enables it to run most of the target application code
directly on the host processor, thus achieving near native
speed.

Regarding security, the virtual machine is a user space
process that cannot do any harm to the host system as long
as the permanent storage is protected properly. If the
virtual machine is destroyed by a malicious application,
the host system is not affected, and the virtual machine can
start afresh.

The authors know of the following such solutions for the
Microsoft Windows platform:

• VirtualPC[7]
• VMWare[8]
• Qemu + Qemu Accelerator Module[9]

Having downloaded and installed one of the virtual
machines, a resource owner only needs to install a screen
saver that starts the virtual machine upon activation and a
tailor­made Linux image that is capable of running the
Grid resource software automatically. In this manner, when
the resource goes into screen saver mode, the virtual
machine is activated and the Linux guest operating system
is booted. The details of how to Grid­enable the hosted
Linux system are explained next.

Hardware

Host OS (Windows)

Windows

application 1

Guest OS (Linux)

application 2

Windows

Linux
app 1 app 2

Linux

3 Enabling the sandbox for the Grid
The main problem with scavenging CPU­cycles from
personal computers is that the vast majority are hidden
behind a NAT router, i.e. they do not have global IP
address and are therefore not reachable from the Internet.

Hence, to enable the sandbox for Grid Computing, care
must be taken to circumvent the missing inbound Internet
access. Naturally, this issue is highly dependent on the
Grid middleware in question. In this work, the sandbox is
enabled for the Minimum intrusion Grid, MiG, which is
presented next, before the details of how to tailor the
sandbox for MiG are explained.

3.1 Minimum intrusion Grid

MiG[10][11] is a stand­alone approach to Grid that does
not depend on any existing systems, i.e. it is a completely
new platform for Grid computing. The philosophy behind
MiG is to provide a Grid infrastructure that imposes as few
requirements on users and resources as possible.

The idea is to ensure that users only need a signed X.509
certificate, trusted by Grid, and a web browser that
supports HTTP and HTTPS. A resource only needs to
create a MiG user on the system and to support inbound
ssh and outbound HTTPS. Initially, the resource must
register to the MiG system using a certificate.

By keeping the Grid system disjoint from both users and
resources, as shown in Figure 2, this model allows the Grid
system to appear as a centralized black­box to both users
and resources, and all upgrades and trouble shooting can
be performed locally within the Grid without intervention
from neither users nor resource administrators. Thus, all
functionality is placed in a physical Grid system.

Figure 2: The abstract MiG model

The basic functionality in MiG starts with users submitting
jobs to MiG and resources sending requests for jobs. A
resource then receives an appropriate job from MiG,

executes the job, and sends the result to MiG that can
inform the user of the job completion. Thus, MiG provides
full anonymity; users and resources interact only with
MiG, never with each other.

3.2 The MiG Linux Image

As explained above, all that is required for a resource to
join MiG, is to create a grid user account and support for
incoming SSH and outgoing HTTPS.

So basically, the MiG Linux image can be built using any
Linux distribution that runs an x86 system. Since the
virtual machine provides a standardized virtualized set of
hardware, compatibility amongst the wide range of
different hardware setups on the resources will not be an
issue.

The main concerns with respect to the distribution is the
size and the start­up time. Both issues matter only for
practical reasons, the size should be minimized to avoid an
excessively large download, and, naturally, the start­up
time should be minimized as much as possible.

As a base for the MiG Linux image we have chosen
ttylinux[12], which is a minimalistic distribution that is
easy to customize and, despite its very scarce space usage,
provides an environment similar to larger distributions. The
only shortcoming is the missing HTTPS support, so this
had to installed manually.

In order to circumvent the missing inbound Internet access
on resources that use NAT, it must be ensured that all
communication is initiated by the resource. In MiG, this
was easily integrated by small changes that only apply for
sandboxes. In addition, it allows for directing jobs that
users point out as Public Resource Computing jobs directly
to a free sandbox.

The generic MiG Linux Image consists of a kernel and a
Ram­disk that altogether take up less than 3 MB. An online
generator modifies the generic image by giving it a unique
resource name and a session id needed for requesting a job.
Further, the resource owner can choose the size of a hard
disk image file to provide as storage for the sandbox. Thus,
certified resource owners can have a complete image built
with a unique key allowing the sandbox to automatically
request and execute Grid jobs.

In the standard MiG model, the identity of a resource
requesting a job is verified by keeping the public SSH key
of the resource in the MiG system and copying all job files
to the resource over SSH. The sandbox model however, is
modified to use a pull model on the resource where all files
are transferred using HTTPS. Hence, a firewall in front of
a resource only needs to be open for HTTP and HTTPS to
allow the resource to run Grid jobs.

4 Runtime environments
Once the basic sandbox is in place it is possible to execute
user applications within the virtual Linux machine. Many
applications can be passed as executables from the Grid job
and these need no further components to execute. Other,
commonly used, applications may benefit from a
preinstalled runtime environment, such as they are found
on ordinary Grid resources.

Installing runtime­environments in the sandboxed
environment could be done as on a conventional resource,
which however would require the PC owners to personally
maintain the sandboxed Linux distribution and this model
is thus not desirable. Alternatively the sandbox image
could be distributed with the initial Linux image, but this
would greatly increase the size of the distribution image
and in addition be a very static model.

The chosen solution allows individual research groups to
maintain runtime environments for the sandboxed
resources and at the same time allows the individual PC
owners to control which runtime environments are
downloaded and at which time. The runtime environments
are kept in groups in virtual disk­partitions, in the form of
a single file.

Figure 3: Runtime environments are maintained by the
respective VGrids and grouped in virtual disks. Users are

obliged to download the MiG Linux image, but can choose
among the groups of runtime environments.

As shown in Figure 3, the PC owner can download a group
of runtime environments from the VGrids, MiG's notion of
a virtual organization, that maintain the runtime
environments and when a job that uses a runtime
environment is received by the sandboxed resource, the
virtual Linux machine will mount the file system that
contains the runtime environment. This way each runtime
environment is kept isolated from the rest of the system,
and can easily be built and maintained by the research
groups that need them to be available for their executions.

5 MiG features
To improve and simplify the sandbox model further, MiG
contains two components that apply: File access and
scheduling.

5.1 Remote File Access

One difficulty that users report when using Grid is file
access, since files that are used by Grid jobs must be
explicitly uploaded to a Grid storage element and result
files must also be downloaded explicitly. The MiG model
introduces home catalogs for all Grid users, and all file
references are relative to this home­catalog. This
eliminates all naming problems, since MiG provides one
simple access entry to a user's home­catalog. Furthermore,
using the MiG Remote File Access library [13], a resource
can, transparently and without recompiling or relinking
applications, access application input and output files
remotely, thus only downloading needed data and only
uploading modified data.

5.2 Scheduling

Contrary to the majority of the existing Grid middlewares,
where several levels of scheduling results in jobs being
submitted to a resource where another level of scheduling
takes place, MiG makes the scheduling for fairness much
simpler as the local scheduling comes before the Grid
scheduling. Thus, a single job is never left waiting a long
time for CPU cycles once it has been submitted to a
resource.

Existing Screen Saver Science systems all target problems
that have many, usually millions, of independent tasks that
often run for tens or hundreds of hours. Once a task has
been assigned to a computer it will be processed while the
computer is in screen saver mode. Processing is suspended
if the screensaver is suspended and similarly resumed
again along with the screensaver. An artefact of this model
is that one never knows when the result of a given task is
ready, and it is very hard to determine if the task has been
lost or if it is simply only allowed to proceed very slowly.

For applications such as computational chemistry this
model is very poorly suited. The number of tasks is usually
in the tens or hundreds and it is often the case that analysis
of the results can only start once the result of every task is
in.

This is easily addressed by putting an upper time limit on
each job, and if the time limit is exceeded, the job is
resubmitted to another resource. However, in order to
schedule a job with a deadline to a screen saver resource,
we need to know how long the resource is availabe, i.e.
how much time it takes before the screen saver is
deactivated. To predict the available time slot of a screen
saver resource, we use exponential average on an hourly

basis, which has proved to converge against the actual
resource idle time quite fast.

6 Experiment
To verify our model, we have connected 8 sandbox
ressources to MiG and submitted jobs that we pointed out
as sandbox jobs. The 8 resources are all identical Windows
PCs that host the virtual Linux machine that runs the Grid
client code and includes the required runtime environment.
The jobs are all NAMD[17] jobs, which is a software
package for simulation of biomolecular systems.

Since we have 8 machines, we have chosen to submit 25
jobs. This means that there is 3 jobs for each machine and
to avoid balanced execution, one last machine needs to
execute one additional job before the experiment is
completed. Further, using the 'minimization' option in
NAMD effectively ensures different running times, thus
ensuring unbalanced execution.

Running the jobs sequentially on one of the PCs results in a
total running time of 2 hours, 25 minutes, and 22 seconds.
When submitted to the Grid, the 25 jobs completed in 31
minutes and 45 seconds. Thus, despite the overhead, the
model is deemed successful.

7 Conclusion
This work has shown how to eliminate the factors that have
previously impeded the fusion of Public Resource
Computing and Grid Computing to effectively utilize idle
CPU cycles from desktop machines for any kind of Grid
job.

The prohibiting factors include NAT­hidden resources,
means to utilize Windows desktops, the workload required
by a non­expert resource owner to install and manage all
resource software, and the security issues involved with
installing a large software base on the resource.

Using sandboxing technology and a generic Linux image,
the Minimum intrusion Grid has successfully eliminated
all of these limitations. Users need only download a bundle
consisting of a screen saver, a virtual machine, and a
special MiG Linux image in order to share their idle
resources, whether they run Linux or Windows. The MiG
system has proved flexible enough to easily deal with
computers behind network address translators, and mobile
processes and automatic resubmission of jobs solve the
problem with resources that are cut off the network or
leave the screen saver mode. Finally, the sandboxed
environment ensures that the host system cannot be
compromised.

Using this approach, a desktop computer volunteers as a
Grid resource upon screen saver activation, and as soon as
the screen saver is deactivated, the executing job either

stops or migrates. Thus, the resource owner is completely
unaffected by the Grid job.

8 References
[1]I. Foster, “The Grid: A New Infrastructure for 21st
Century Science”, Physics Today, 55(2):42­47,2002

[2]http://boinc.berkely.edu

[3]B. Calder, A.A. Chien, J. Wang, D. Yang,''The Entropia
Virtual Machine for Desktop Grids"

[4]R.J. Figueiredo, P.A. Dinda, J.A.B. Fortes, "A Case for
Grid Computing on Virtual Machines"

[5]N. Kiyanclar, "A Survey of Virtualization Techniques
Focusing on Secure On­Demand Cluster Computing"

[6]http://www.vmware.com/pdf/virtualization.pdf

[7]http://www.microsoft.com/windows/virtualpc/default.m
spx

[8]http://www.vmware.com/products/player/

[9]http://fabrice.bellard.free.fr/qemu/

[10]B. Vinter ``The architecture of the Minimum intrusion
Grid: MiG'' In Communicating Process Architectures: pp.
189­201 Broenink J, Roebbers H, Sunter J, Welch P, Wood
D (eds.) IOS Press, 2005

[11]Henrik Hoey Karlsen, Brian Vinter, "Minimum
intrusion Grid ­ The Simple Model," wetice, pp. 305­310,
14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise
(WETICE'05), 2005

[12]http://www.minimalinux.org/ttylinux/

[13]Rasmus Andersen, Brian Vinter, "Transparent Remote
File Access in the Minimum Intrusion Grid," wetice, pp.
311­318, 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise
(WETICE'05), 2005

[14]W.L. George, J. Scott, "Screen Saver Science:
Realizing Distributed Parallel Computing with Jini and
JavaSpaces"

[15]M.J Litzkow, M. Livny, M.W. Mutka, "Condor­a
hunter of idle workstations", Proc. of the 8th International
Conference of Distributed Computing Systems, pp. 104­
111, June, 1988

[16]P. Barham et al., "Xen and the Art of Virtualization", In
Proc. SOSP 2003, Bolton Landing, New York, U.S.A. Oct
19­22, 2003

[17]James C. Phillips et al., “Scalable molecular dynamics
with NAMD”, Journal of Computational Chemistry,
26:1781­1802, 2005

Appendix B

Publication 2

Concurrency and Computation: Practice & Experience, Volume 19, Issue 9 (June 2007), Sec-

ond International Workshop on Emerging Technologies for Next-generation GRID (ETNGRID

2005), John Wiley and Sons Ltd, ISSN:1532-0626, pp. 1287-1298

Rasmus Andersen, Brian Vinter: Direct Application Access to Grid Storage

141

CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. 2005; volume... :1–15 Prepared using cpeauth.cls [Version:
2002/09/19 v2.02]

Direct Application Access to
Grid Storage

Rasmus Andersen∗,†, Brian Vinter∗

Department of Computer Science, University of Copenhagen,
Denmark, Universitetsparken 1, DK-2100 Copenhagen,
Denmark

SUMMARY

This paper describes the ideas behind and the implementation of a thin user-level layer
to be installed on Grid resources. The layer fits in the Minimum intrusion Grid design
by imposing as few requirements on the resource as possible and communicates with the
server using only trusted and widely used protocols.

The model offers transparent, on-demand remote file access. By catching all application
operations on files, these operations are directed towards the remote copy on the server,
thus eliminating the need for transferring the complete file.

This implementation is targeted at the Minimum Intrusion Grid project, which strives
for minimum intrusion on the resource executing a job. “Minimum intrusion” implies
that a client need not install any dedicated Grid software. Hence, the proposed model
is forced to use a user-level layer that automatically overrides the native I/O calls.

key words: Grid Computing, Remote File Access, Minimum intrusion Grid

1. Introduction

Currently, while still in its early stages, the Grid[1] is primarily a domain for scientific
applications. When such jobs are submitted to a commodity Grid, they are forwarded to
a suitable resource that downloads all needed files and executes the job.

However, due to the well known fact that often only fragments of files are actually accessed
and files for this kind of applications can be exceedingly large, we would be better off using
a resource client that downloads only the needed data from the files in question and uploads
only modified data.

In this paper, a layer providing on-demand remote file access is presented. This enables the
resource to limit its file retrieval to a set of file fragments that hold the needed data, rather

∗Correspondence to: Department of Computer Science, University of Copenhagen, Denmark, Univer-
sitetsparken 1, DK-2100 Copenhagen, Denmark
†E-mail: rasmus@diku.dk

Copyright c© 2005 John Wiley & Sons, Ltd.

2 R. ANDERSEN, B. VINTER

than downloading the entire files. A natural extension to this model is to apply prefetching to
increase performance as well as encryption to ensure optimal security during the transfer on
the Internet and the processing on the resource.

The model is targeted at the Minimum intrusion Grid, MiG, which provides a Grid
infrastructure with minimal requirements on the resource, but it is portable to other Grid
solutions.

1.1. Minimum Intrusion Grid

The philosophy behind the MiG is to provide a Grid infrastructure that imposes as few
requirements on users and resources as possible.

MiG is a stand-alone approach to Grid that does not depend on any existing systems, i.e.
it is a completely new platform for Grid computing.

The idea is to ensure that users only need a signed X.509 certificate, trusted by Grid, and
a web browser that supports HTTP and HTTPS. A resource on the other hand must allow
inbound SSH connections and outbound HTTPS, and in addition create a local user, the Grid
user, who can use secure shell, SSH, to enter the resource. All Grid jobs are executed by this
dedicated user on behalf of the users that initially submitted the job. Finally, the resource
owner must have a signed Grid certificate in order to register the resource.

By keeping the Grid system disjoint from both users and resources, as shown in Figure 1,
this model allows the Grid system to appear as a centralized black-box to both users and
resources, and all upgrades and trouble shooting can be performed locally within the Grid
without intervention from neither users nor resource administrators. Thus, all functionality
is placed in a physical Grid system. A more detailed description of the architecture and the
functionality can be found in [2] and [3].

The challenge is to make the desire for minimum intrusion coexist with a large set of features,
including scalability, autonomity, i.e. updating grid without causing users and resources
inconvenience, anonymity, i.e. users and resources are anonymous to each other, fault tolerance,
firewall compliance, etc.

In order for this client to comply with MiG, it must be ensured that it is entirely user-level
and is installable without administrator privileges but still automatically overrides the native
file system routines. Thus user applications need not be recompiled or rewritten using a custom
MiG API.

1.1.1. File access in MiG

One difficulty that users report when using Grid is file access, since files that are used by
Grid jobs must be explicitly uploaded to a Grid storage element and result files must also
be downloaded explicitly. The MiG model introduces home-catalogs for all Grid users, and
all file references are relative to this home-catalog. This eliminates all naming problems when
implementing the proposed access layer, since MiG provides one simple access entry to a user’s
home-catalog.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

DIRECT APPLICATION ACCESS TO GRID STORAGE 3

Figure 1. The abstract MiG model

1.2. Motivation

Job submissions in most Grids follow the intuitive flow: the user submits a job that the Grid
forwards to a resource that downloads the executable along with the input files, the resource
executes the job, and eventually the outputfiles are uploaded to the file server.

Often, only the first part or scattered fragments of input files are really needed. For Grid
resources, this results in wasting storage and bandwidth by downloading entire files when only
small pieces are needed.

Furthermore, lots of valuable time is lost as the job execution is delayed until everything
has been downloaded. Of course, with huge input files the problem is more evident, and will
be a limiting factor of performance, since the download time becomes a significant part of the
total time from job submission to job termination. Similarly, the outputfiles may equally well
be partial. This suggests the need for a resource model which automatically downloads only
the needed data and uploads only modified data.

This paper describes the problems we face when designing such a layer for MiG in section 2.
The implementation of the corresponding solutions is given in section 3. Section 4 shows the
performance of the client before we conclude in section 5.

1.3. Related Work

Numerous systems, such as NFS and AFS, provide transparent access to remote files. Only a
few run entirely in user space, for instance FUSE, Filesystem in User Space, and LUFS, Linux
Userland FileSystem. LUFS enables mounting of a number of file systems including SshFS,
thus allowing a user to mount files accessible by ssh in the file hierarchy. However, since these

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

4 R. ANDERSEN, B. VINTER

systems require root privileges to install a kernel module on the resource, they don’t fit in the
MiG model.

The Ufo Global File System[4] supports extending or altering the functionality of certain
system calls by intercepting them in a user level module. The interception is achieved by
standard tracing facilities. This strategy avoids the need for recompilation, relinking and
administrator privileges. Using Ufo, one can transparently access personal accounts at remote
sites using different protocols. The only drawback to this model is the interception method,
which is quite expensive. Ufo is a great alternative for applications that issue a small number
of system calls, but this is not the case for the Grid jobs in this project.

The ORFA client[5] provides efficient access to remote file systems using a preloaded light-
weight shared library that overrides standard file access routines. The file management is
handled by virtual file desriptors that enable remote files to be accessed and manipulated
as local files. The exact same approach is used in this project. However, neither a system
providing on-demand file access nor a protocol supporting reading and writing ranges of bytes
has been found.

2. Design

Providing on-demand transparent remote file access for a resource in a Grid environment
first of all requires a protocol that supports retrieval or sending of randomly requested or
modified data. Next, we have to make sure that certain file access routines on the resource
are automatically overridden and redirected to the file on the server. Finally, since the local
file management is overruled, a local file management mechanism to ensure correct file access
behaviour is needed.

2.1. File Data Transfer

HTTP/1.1 supports transferring ranges of bytes from a file in GET requests, but there is no
range parameter in PUT requests, which is needed for remote writing. Since no file transfer
protocol has been found to support range requests for both PUT and GET, a custom protocol
is developed. The protocol should also support OPEN and CLOSE requests. Due to the MiG
restriction of firewall compliance, the connection is encapsulated in an SSH-tunnel.

2.2. Catching Access to Job Files

The basic idea of the layer is to make user applications think the job files really exist in their
entirety on the resource, yet they only exist on the server. This is achieved by interposing a
user space file access layer between the application and the operating system. The purpose of
this layer is to catch access to job files and direct them to the server holding the files.

Figure 2 shows the file access model. All file access routines issued from the user application
are handled by the MiG file access layer that sends a request to the server (1). The server then
replies (2) and an appropriate action is taken by the file access layer before the application

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

DIRECT APPLICATION ACCESS TO GRID STORAGE 5

User User

Kernel Kernel

(2)

Virtual FS

MiG Layer

Application

(3)

MiG File Server

Virtual FS

RESOURCE SERVER

(1)

Figure 2. Overview of the MiG File Access Model

receives the result (3). The dotted lines on the resource depict local management of remote
files with and without server and kernel intervention, explained in 2.3.

Access to files not mentioned as job files are forwarded to the native file system.
Reading a block from an input file would result in a server request for the specified data that

would be delivered in the buffer supplied by the application. The resource executing the job,
would only have to download the executable before initiating the job. Subsequent file accesses
result in fetching only the requested data and performing operations conforming to POSIX
behavior on the fragment of the remote file.

2.3. File Handling

A shortcut to overriding the complete set of file manipulating routines is taken by actually
creating the remote input file on the resource. Besides the obvious advantage of not
implementing all file access routines, including maintenance of their evolution, we also avoid
implementing complex UNIX functionalities. Instead, the input file is created on the resource
and before any file access, it is ensured that accessed data is available.

Thus, as the dotted line on figure 2 illustrates, some remote file accesses, i.e. open, upon
server response result in requesting the resource kernel system to create the file, whereas other
calls, i.e. read, remain in the MiG layer on receipt of the server response and returns data
directly to the application. Had the requested data already been fetched, it would have been
returned immediately without server or kernel intervention.

Table I shows the set of file access routines that are being overridden.

3. Implementation

The idea is to make the MiG file access layer do all file management, i.e. maintaining a file
pointer and checking file access etc. This is achieved by keeping a user-level structure, that
upon an open call gathers all information about the file. The layer then uses the real open
call to create the file locally and maps that file into memory in its entirety. The file descriptor

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

6 R. ANDERSEN, B. VINTER

Table I. Overridden file access routines.

Description Functions

File Access open, close, read, write (and similar stream functions)
File position lseek, fseek, ftell, fgetpos, fsetpos, rewind
Synchronization fsync, fdatasync, msync
Memory mapping mmap, munmap, mremap
Memory protection mprotect

returned from the open call is finally given to the application. Creating and mapping the file
in its entirety does not waste memory, since nothing is allocated until it is needed.

3.1. Virtual File Descriptors

All input files are described by virtual file descriptors. The virtual file descriptor is a structure
containing several pieces of information about the file: the local file descriptor that is returned
to the application, the socket descriptor, the length of the file, a pointer to the location in
memory where the file resides, the file name, flags indicating access mode, etc.

Figure 3 shows how the layer interacts with the descriptor management in the kernel I/O
subsystem. The figure also depicts the mapping of an input file in a snapshot where two
fragments of the file have been accessed, and thus retrieved from the file server, see section
3.2.

3.2. Memory Mapping of Input Files

All remote input files opened by the user application are created on the resource and mapped
into memory. Although the file is initially empty, it is mapped in its full length. Subsequent
read calls will get data from the server and fill in requested pieces.

As shown in figure 3, the memory mapped file is highly fragmented, because only the needed
data is retrieved, while only used space is actually allocated. Accesses to empty memory
addresses within the scope of the file thus result in segmentation faults. Hence, a procedure
to handle segmentation faults must be introduced. This is implemented using the sigaction
system call that invokes a procedure upon receipt of a SIGSEGV signal. This procedure gets
the faulting address, determines the file owning the address, translates the address into a file
offset, and sends a request to the server for the block surrounding the offset.

Mapping input files into memory has several advantages:

• The layer only deals with memory addresses when accessing files.
• Direct memory access; the layer reads data from the socket directly into the correct

location in memory. This prevents copying from a buffer.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

DIRECT APPLICATION ACCESS TO GRID STORAGE 7

record

Network

File

system

record

��������������

File descriptor

Socket descriptor

Length

Map_address

Filepointer

Virtual file descriptor

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

���������������������
�������
�������

�������
�������
�������

�������
�������
�������

�������
�������
�������

����
����
����

����
����
����

����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����

KERNEL MEMORY

Per−process
open−file table

Memory

input file
le

ng
th

FILE SERVER

Figure 3. Interaction with the I/O subsystem.

• Reading prefetched, cached or already copied data is returned immediately without a
system call.

• The memory mapped image may be returned directly to the application if it issues an
mmap call.

Any negative side-effects, such as excessive page-swapping due to the larger active address
space, is still to be demonstrated before analyses can be made.

3.3. File Access on the Resource

Linux supports preloading of user defined libraries to override a subset of the standard I/O
functions. By setting the LD PRELOAD environment variable, the linker first checks the
preloaded library for a matching symbol name. Thus, one can write a private set of I/O
functions, while functions not overridden are automatically handled by the native system.
This feature requires user applications to be dynamically linked, which most frequently is the
case. Statically linked applications are not supported by this model.

If the application creates a file that is not declared in the job script, the layer should forward
the creation request to the native I/O system. Since the open call is overridden, the linker must
be instructed to search for the next matching symbol. This is done using the dlfcn library that
provides a handle, RTLD NEXT, for finding the next occurrence of a function in the original
search order after the current library.

Naturally, all functions that are overridden must exhibit the same behaviour as the
corresponding system function and conform to the ANSI C standard.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

8 R. ANDERSEN, B. VINTER

Forward to glibc

Return

Send request

Copy addresses

Check filepointer

Check file

Handle request

Requested data

Data request

Remote file

Boundaries ok

Sigsegv

Local file

Invalid
boundaries

No sigsegv

SERVER

Read call

Figure 4. Data flow diagram for read calls.

Figure 4 shows the data flow for a read call. First, the layer determines whether the file is a
job file or not. In the former case the call is forwarded to the native I/O system, in the latter
the virtual file descriptor is retrieved. Then, the boundaries of the file are checked to avoid
unnecessary requests.

Next, the layer copies data directly from the file pointer to the user buffer. As explained in
section 3.2, this may raise a SIGSEGV that invokes the procedure to get the requested data.
If the application reads a chunk larger than the network data-transfer size, the copying will
continue raising SIGSEGV, which causes further data to be transferred. Eventually all data
requested in the read call is fetched and the function can return. Hence the cycle in the figure.

Writing to a file results in sending the content of the supplied buffer to the server that writes
to the real file. If the file is open for both reading and writing, the data is also copied to the
location in memory pointed to by the file pointer. Seeking in a file moves the file pointer.

If the user calls mmap on an input file, and the access modes for the call match the open
mode of the file, the layer just returns the address at which it mapped the file itself. Closing
a file results in synchronizing the file to disk, unmapping it, calling the real close on the file
descriptor, and closing the socket.

3.4. Prefetching and Block Size Granularity

One can never tell if user applications read reasonable amounts of data; one might read in
chunks of 100 bytes, another in chunks of 1k bytes. Clearly, sending a network request for such

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

DIRECT APPLICATION ACCESS TO GRID STORAGE 9

data amounts is very inefficient. For this reason, the layer always fetches blocks of multiples of
4k. This increases network performance and eases the file management due to the alignment
of the blocks in memory.

Thus, if the user application requests bytes 1024 to 2047, the layer sends a request for the
block surrounding the specified range, i.e. a request for bytes 0-4095, for a block size of 4k.

The choice of the block size depends only on the user application. If the application reads
all blocks sequentially without much data processing, a large block size is preferred. The file
access layer would then be able to continuously read the next block, thus always reading a
block ahead and hiding the latency.

However, if the application only reads small scattered fragments of the file, reading ahead
is useless and the application would have to wait for at large block to arrive. Thus, in this
scenario a small block is preferred.

Since it is impossible to tell the nature of user applications in advance, we need to make the
block size adapt dynamically to the application, based on a 1-block read-ahead prefetching
algorithm.

Every time the file access layer receives a block from the server, a thread is started to fetch
the next block. The next time the application calls read, it is noted whether the prefetching is
finished and whether the prefetched block is the one we need now. Based on these observations,
the blocksize either increases, decreases or remains unchanged.

3.5. Security

In this project, only security issues regarding job files are considered. Executing a job on
a foreign resource will always suffer from the inability to completely elude the resource
administrator from surveying, copying or deleting job files. If the job files are highly
confidential, we can never guarantee that the resource administrator cannot gain access to
them. However, we can make it very hard to intrude on them.

First of all, everything is transferred on the Internet in SSH-tunnels. Secondly, in scenarios
where optimal security is required, a user can choose to have the files block-encrypted on the
file server. The file access layer then defers decrypting to the moment before copying to the
user buffer. After the copying, it is reencrypted.

Of course, the data now lies unencrypted in the user buffer, but it is now the responsibility
of the user.

4. Performance

The performance of the proposed model is measured by some experiments that cover the access
patterns that apply to most applications. The results are then compared to, on the one hand,
local execution, where the application and the files are co-located, and on the other, a standard
Grid model where all files are downloaded prior to the job execution.

When comparing to a standard Grid model, we choose to compare to the performance of a
basic transfer method, curl [6]. This way any other project may perform the same experiment

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

10 R. ANDERSEN, B. VINTER

and by translation compare their performance to that of this model. Such systems could include
bbftp[7] and UDT[8].

The prefetcher and the dynamically adjusting block size are introduced in the model solely
to improve performance. The impact of these mechanisms are studied lastly.

4.1. Experiments

The model is tested in 4 scenarios. Firstly, we investigate the basic overhead, secondly the
performance in an I/O limited application is examined. Thirdly an I/O balanced is analyzed,
and finally we test the model in a scenario where only a small portion of a huge file is used.

In order to determine the basic overhead of the remote access protocol, the first experiment
simply reads a 1-byte file and verifies the content. This experiment provides us with a baseline
for the performance of the remote access model.

In the second test, the application checksums a 1 GB file. The calculations that are involved
are so few and simple that the application is simply limited by I/O performance. Naturally,
the latency of getting a new page from disk is less than retrieving the data through the remote
access layer. Thus, this is the kind of application that does not really perform well on Grid.
Still, the copy-semantics should be faster than the remote access layer, since bulk transfer of
a complete file is more efficient than the blocked access model.

In the third experiment, a 1GB input file, which requires some processing from the
application is traversed. The input file contains a series of numbers that the application reads
and then computes a corresponding fibonacci value on one of the numbers. This test will show
the benefit of using prefetching in combination with starting the job immediately without
waiting for the input file to arrive and should prove favorable to the remote access model.

Finally, a large file containing a B+ tree of order 4 is searched using a random key. The test
is run with 10 different keys. A B+ tree is an ideal structure for the remote access model since
it is designed to branch out in a large number of directions and to contain a lot of keys in each
node. This ensures that the height of the tree is relatively small. Thus, only a small number
of nodes, one in each level of the tree, must be read to retrieve an item.

4.2. Results

Table II shows the results of the 4 experiments. The results of using the proposed layer, shown
in column 4, are compared to a model that just downloads the entire input file and executes
the job, column 3. Local execution with local input files is shown in column 2. All experiments
are performed on the same dedicated resource and server, both 2.4 GHz Intel Celeron with
512 MB RAM, using a 100Mbps network connection.

As the result of reading a 1 byte file reveals, using the proposed remote file access layer does
not incur much overhead compared to the local execution. This experiment also shows that
the layer is faster than using external curl to download the file.

The result of the I/O intensive application is surprising since bulk transfer is faster than
requesting the entire file block-wise. The reason why the remote file access model is faster is
due to a combination of the prefetcher and the server. The prefetcher keeps increasing the

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

DIRECT APPLICATION ACCESS TO GRID STORAGE 11

Table II. Result of experiments in seconds.

Experiment Local Copy Remote

1 B file 0.0002 0.1520 0.0080
Checksum 50.1100 130.1000 114.0300
Fibonacci 632.8300 721.2200 600.7200
B+ tree 0.0002 30.6920 0.0186

block size, because it detects sequential access, and the python server is actually faster than
the dedicated apache server that curl consults.

The result of the I/O balanced application, the Fibonacci experiment, shows that the
layer is able to hide the transfer time during data processing because it is faster than the
download model. Amazingly, running this application using the proposed layer is faster than
local execution. This is due to a combination of perfect prefetching and the design shown in
figure 2. Almost all read requests are returned immediately by the file access layer without
server or kernel intervention. Thus, all requested blocks are already in memory prior to the
read calls. During local execution, all blocks are fetched using a system call and expensive disk
access.

The B+ tree experiment performs excellently on the proposed model. The depth of the tree
is 9, hence only 9 blocks are fetched plus an additional header block and wasted blocks from
the prefetcher. Often the size of the B+ tree file is much larger than this one (357 MB), which
in effect prohibits this kind of applications from execution with Grid implementations that
use the download model. The speedup between the download model and the proposed model
is a factor of 1650. Naturally, a native execution baseline is much more efficient at this stage,
however overheads less than a second should be acceptable for any job one may choose to
submit to Grid.

4.3. Performance in a heterogeneous network

The ability to mitigate the penalties incurred by heterogeneous network conditions is best
illustrated by the following figures that show the impact on the execution time as the latency
between the resource and the server increases. The latencies to different university centers are
simulated on the file server by inserting a sleep call between the request and the response.

Figure 5 shows the overhead and b-tree applications. Since the overhead application only
reads 1 byte, the effects of increased latency are noticeable but insignificant.

Since the B+ tree application reads a fixed number of scattered blocks from the file, the
latency is added to each block transfer time.

In Figure 6 the benefit of a dynamic block size is apparent: The running time of the fibonacci
experiment is unaffected by the increased latency. As the latency increases, the library fetches

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

12 R. ANDERSEN, B. VINTER

 0

 0.5

 1

 1.5

 2

 190 88 54 32 13 4 0

T
im

e
[s

]

Latency [ms]

KU AUC UIT Kent Forth USA

Overhead
B+tree

Figure 5. Results of the overhead and B+tree applications

 100

 200

 300

 400

 500

 600

 700

 190 88 54 32 13 4 0

T
im

e
[s

]

Latency [ms]

KU AUC UIT Kent Forth USA

Checksum
Fibonacci

Figure 6. Results of the checksum and fibonacci applications

larger blocks, thus achieving a larger bandwidth and providing more data for processing in
each request.

The checksum application is more affected by the increased latency, because the application
is I/O bound.

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

DIRECT APPLICATION ACCESS TO GRID STORAGE 13

5. Conclusion

The MiG project aims at providing a new stand-alone Grid infrastructure that imposes as
few requirements on users and resources as possible. The on-demand transparent remote file
access layer is specifically designed towards this project without compromising neither the
design requirements nor the features of this Grid project.

Using this user-level layer, it has been shown that a resource does not need to neither
download entire input files before job execution nor upload output files after the job has
terminated. Instead it just starts the job, downloads portions of the input file when needed,
and uploads modified data when written. This functionality is achieved without requiring user
application to use special API’s or to be recompiled.

The results show that this model provides access to the Grid for a whole niche of applications
that were previously impeded by unnecessary transfer of an enormous amount of data, namely
applications using partial file traversal on huge input files, such as B+ trees.

This is also the case for applications such as high-energy physics applications that analyze
relatively small fragments of massive physics database files.

REFERENCES

1. Foster I. A new infrastructure for 21st century science. In Physics Today 2002 55(2):42–47.
2. Vinter B. The architecture of the Minimum intrusion Grid: MiG. In Communicating Process Architectures:

189–201 Broenink J, Roebbers H, Sunter J, Welch P, Wood D (eds.) IOS Press, 2005;
3. Karlsen HH, Vinter B. Minimum intrusion Grid: the simple model. In Proceedings of the fourteenth

IEEE International Workshops on Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE-2005):305–310 IEEE Computer Society, 2005;

4. Alexandrov AD, Ibel M, Schauser KE, Scheiman CJ. Extending the Operating System at the User Level:
the UFO Global File System. In 1997 Annual Technical Conference on UNIX and Advanced Computing
Systems (USENIX’97): 77–99

5. Goglin B, Prylli L. Transparent remote file access through a shared library client. In Proceedings of the 2004
International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA
2004):1131–1137 CSREA Press, 2004

6. Curl - transfer a URL, http://curl.haxx.se/, 2006-09-07
7. bbftp, large files transfer protocol, http://doc.in2p3.fr/bbftp/, 2006-09-07
8. UDT: UDP-based Data Transfer Protocol, http://udt.sourceforge.net/, 2006-09-07

Copyright c© 2005 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2005; volume... :1–15
Prepared using cpeauth.cls

Appendix C

Publication 3

Proceedings of the Sixth International Conference on Engineering Computational Technology,

ECT 2008, Athens, Greece. B.H.V. Topping (Editor), Civil-Comp Press, Stirling, United King-

dom, ISBN 978-1-905088-26-3, paper 5, 2008. R. Andersen, B. Vinter, D.A. Power and J.P.

Morrison: Supporting MiG and WebCom Interaction

155

Supporting MiG & WebCom Interaction
R. Andersen1, B. Vinter1, D.A. Power2 and J.P. Morrison2

1eScience Centre, University of Copenhagen,
Copenhagen, Denmark

2Department of Computer Science, University College Cork,
Cork, Ireland

Keywords: MiG, WebCom, sandbox, workflow, grid, PRC Model

The Minimum intrusion Grid (MiG) [1] and WebCom [2] are two separate and
independent middleware implementations, developed at different universities for dif-
ferent target groups. Both systems implement grid middleware properties, and provide
a fully functional grid system, yet they are fundamentally different by design and im-
plementation. Despite their differences, both middleware solutions were designed for
user transparency with the vision of the ability to facilitate a grid operating system
that would fully leverage the grid potential.

This report presents a collaborative effort between these two grid middleware sys-
tems, where we present a methodology that on the one hand provides WebCom users
access to special sandboxed environments on a computing platform composed of the
resource richness of the PRC model, and on the other hand, MiG users can exploit the
ease of use of the Visual programming model offered by WebCom by embedding their
applications within a dynamic workflow execution environment. This also eases uti-
lization of the MiG sandboxes significantly thus effectively expanding the user group
of the MiG system.

The PRC model has shown its potential in many scenarios; many scientific projects
utilize a PRC platform, and many private people are willing to contribute. Equally
high on the hype curve is the trend of visually aided application development. Each
of the two middlewares are specialized in each of these domains, which makes a com-
bined effort quite unique. Ultimately, the potential of this work allows people with no
or only little knowledge about programming and Grid technology to easily make use
of the enormous pool of aggregated compute resources in the Grid.

Using sandbox technology, the resource platform is rendered uniform, and applica-
tions are securely isolated from other processes on the host system and vice verse. The
applications are constructed using Condensed Graphs where the traditional complexi-
ties involved in developing parallel and distributed applications are removed from the
user burden.

The report details initial investigations into these interactions between the two quite
different grid middlewares, by adding functionality to the WebCom that facilitate the

1

targeting and execution of MiG jobs. A test application proved successful and jus-
tified the need for further research to be conducted; many different scenarios seem
ideal for this collaboration, including the use of more scientific computations such as
Fast Fourier Transformations and extending the nodes available when creating visual
applications for MiG.

References

[1] B. Vinter: The Architecture of the Minimum intrusion Grid: MiG. Proceedings
of Communicating Process Architectures 2005

[2] J.P. Morrison, B. Clayton, D. Power, A. Patil: WebCom-G: Grid Enabled
Metacomputing- The Journal of Neural, Parallel and Scientific Computation.
Special Issue on Grid Computing. Editors H.R. Arabnia, G.A. Gravvanis, M.P.
Bekakos, Vol. 12(3), PP. 419-438, September, 2004

2

Abstract

This paper presents a unique collaboration between two grid middleware systems:
the Minimum Intrusion Grid (MiG) and WebCom. Although both systems implement
grid middleware properties, and provide a fully functional grid system, they are fun-
damentally different by design and implementation, and target different end-users.

A strategy that is mutually beneficial is obtained by supporting MIG and WebCom
interactions that on the one hand provides WebCom users access to special sandboxed
environments on a computing platform composed of the resource richness of the PRC
model. On the other hand, MIG users can exploit the ease of use of the Visual pro-
gramming model offered by the dynamic workflow execution environments offered
by WebCom.

Keywords: MiG, WebCom, sandbox, workflow, grid, PRC Model

1 Introduction

When first introduced, one of the big selling points of Grid Computing [1], was to
make distributed computing resources as easily accessible as electricity in a power
grid. Today, more than a decade later, the prohibitive barrier between grid application
developers and efficient exploitation of the huge pool of aggregated resources still
exists; developers still face several challenges when attempting to interact and utilize
the Grid and a deeper insight to the underlying technologies is required. Providing
uniform access to distributed heterogeneous resources to end users in the same manner
that we get electricity from a socket in the wall remains an illusion.

Many Grid solutions exist, most of them are either built upon, or direct descen-
dants of the Globus toolkit [2]. These systems have several shortcomings [3] that
would greatly complicate a solution similar to the methodology presented here, most

1

importantly their lack of strong scheduling, poor scalability, firewall dependencies on
connected resources and client, and their big resource and client software packages.

Gaining widespread acceptance as an important computing platform depends on
making the technology accessible to general exploitation, not only for grid developers
but also for non specialists. In practice, hiding the underlying complexities of a Grid
system not only requires grid applications to be freed from all architectural details of
the computational resources connected to the Grid, but also the set of tools needed to
develop the applications and interact with the Grid system.

The Minimum intrusion Grid (MiG) [3] and WebCom [4] are two separate and
independent middleware implementations, developed at different universities for dif-
ferent target groups. Both systems implement grid middleware properties, and provide
a fully functional grid system, yet they are fundamentally different by design and im-
plementation. Despite their differences, both middleware solutions were designed for
user transparency with the vision of the ability to facilitate a grid operating system
that would fully leverage the grid potential. This report presents a collaborative effort
between these two grid middleware systems.

MiG strives for lowering the entry cost for users and resource providers by moving
as much functionality as possible into a fat, centralized black-box grid system. MiG
leverages the concept of ‘sandboxes‘ to provide a non-intrusive and highly dynamic
Grid computing infrastructure. Once a sandbox job is submitted to MiG, a sandbox is
instantiated on a resource providers hardware. This sandbox then fetches and executes
the application. Once this sandbox has completed its task, results are returned to MiG,
and the sandbox is subsequently terminated. Thus every application in such a sandbox
is guaranteed to execute in a fresh environment. This facilitates a great degree of
non-intrusiveness on host resources and has proved to close the gap between Grid
Computing and Public Resource Computing (PRC) models.

WebCom focuses on providing a suite of tools encompassing application develop-
ment through to execution. Applications are expressed as workflows constructed from
tasks of varying complexities such as grain-size, target execution environments and
resource requirements. These applications are constructed from a ‘palette’ of services
and submitted to a WebCom instance for execution. This mechanism allows for users
with little knowledge of programming to create and execute applications of varying
complexity on a vast range of distributed computing architectures from Networks of
Workstations, to Clusters, to Grid computing infrastructures.

Whilst it is clear that both systems target different audiences and application ex-
ecution models, a strategy that is mutually beneficial is obtained by supporting MiG
and WebCom interactions. Both middlewares are highly capable of providing spe-
cialised features unique to their own domain. However, by utilising these features, we
present a methodology that on the one hand provides WebCom users access to special
sandboxed environments on a computing platform composed of the resource richness
of the PRC model, and on the other hand, MiG users can exploit the ease of use of
the Visual programming model offered by WebCom by embedding their applications
within a dynamic workflow execution environment. This also eases utilization of the

2

Figure 1: The abstract MiG model.

MiG sandboxes significantly thus effectively expanding the user group of the MiG
system.

The following section gives a deeper introduction to each of the two middleware
systems. Next, Section 3 describes in technical details the implementation of the
presented approach. A motivating test application is presented in Section 4, and the
report is closed by conclusions and future work in Section 5.

2 Grid Systems Introduction

2.1 Minimum intrusion Grid

MiG is a stand-alone approach to Grid that does not depend on any existing systems,
i.e. it is a completely new platform for Grid computing. The philosophy behind the
MiG is to provide a Grid infrastructure that imposes as few requirements on users
and resources as possible. The overall goal is to ensure that users only need a signed
X.509 certificate, trusted by Grid, and a web browser that supports HTTP and HTTPS.
A fully functional resource only needs to create an MiG user on the system and to
support inbound ssh and outbound HTTPS.

By keeping the Grid system disjoint from both users and resources, as shown in Fig-
ure 1, this model allows the Grid system to appear as a centralized black-box to both
users and resources, and all upgrades and trouble shooting can be performed locally
within the Grid without intervention from neither users nor resource administrators.
Thus, all functionality is placed in a physical Grid system.

The basic functionality in MiG starts with users submitting jobs to MiG and re-
sources sending requests for jobs. A resource then receives an appropriate job from
MiG, executes the job, and sends the result to MiG that can inform the user of the
job completion. Thus, MiG provides full anonymity; users and resources interact only
with MiG, never with each other.

3

2.2 MiG Sandboxes

Typically, the resource farm of a grid system is comprised of unix/linux computers
from many different compute centres. While the computational power provided by
these may be significant, it is in no way comparable to the increasingly popular Public
Resource Computing (PRC) models, such as BOINC [6], a middleware for volunteer
computing1. Disguised as a screen saver, the PRC client software harnesses the idle
time CPU cycles from millions of privately owned Internet-connected PCs across the
globe.

However, there is a huge gap between such systems and Grid Computing in that
the entry cost in terms of workload for application developers is far from the vision
of a grid operating system2. In order to close this gap, MiG introduced sandboxes
capable of tapping the enormous amount of unused processing power from standard
desktop computers. First and foremost, minimizing the workload required by resource
owners for installing and managing a Grid resource, and ensuring the integrity of the
donated resource is utterly important. Therefore, all grid application are sandboxed in
a virtualized environment.

Due to the renewed popularity of virtualization over the last few years, virtual
machines are being developed for numerous purposes and therefore exist in many
designs, each of them in many variants with individual characteristics. Despite the
variety of designs, the underlying technology encompasses a number of properties
beneficial for Grid Computing [7]:

Platform Independence: Since moving application code around as freely as appli-
cation data is an intrinsic part of a grid system, it is highly profitable to enable appli-
cations to be executed anywhere in the grid. Virtual machines bridge the architectural
boundaries of computational elements in a grid by raising the level of abstraction of
a computer system, thus providing a uniform way for applications to interact with the
system. Given a common virtual workspace environment, grid users are provided with
a compile-once-run-anywhere solution.

Furthermore, a running virtual machine is not tied to a specific physical resource;
it can be suspended, migrated to another resource and resumed from where it was
suspended.

Host Security: To fully leverage the computational power of a grid platform, secu-
rity is just as important as application portability. Today, most grid systems enforce
security by means of user and resource authentication, a secure communication chan-
nel between them, and authorization in various forms. However, once access and
authorization is granted, securing the host system from the application is left to the

1In 2006, the BOINC projects reached 400 TFlop/s, while BlueGene/L topped the top 500 list of
supercomputers with 280 TFlop/s

2For instance, according to the BOINC website, it takes three man-months to port an existing appli-
cation to the BOINC framework and about $5000 for hardware used for project maintenance

4

operating system.

Ideally, rather than handling the problems after system damage has occurred, harm-
ful - intentional or not - grid applications should not be able to compromise a grid
resource in the first place.

Virtual machines provide stronger security mechanisms than conventional operat-
ing systems, in that a malicious process running in an instance of a virtual machine is
only capable of destroying the environment in which it runs, i.e. the virtual machine.

Application Security: Conversely to disallowing host system damage, other pro-
cesses, local or running in other virtualized environments, should not be able to com-
promise the integrity of the processes in the virtual machine.

System resources, for instance the CPU and memory, of a virtual machine are al-
ways mapped to underlying physical resources by the virtualization software. The real
resources are then multiplexed between any number of virtualized systems, giving the
impression to each of the systems that they have exclusive access to a dedicated phys-
ical resource. Thus, grid jobs running in a virtual machine are isolated from other
grid jobs running simultaneously in other virtual machines on the same host as well
as possible local users of the resources.

Resource Management and Control: Virtual machines enable increased flexibility
for resource management and control in terms of resource usage and site administra-
tion. First of all, the middleware code necessary for interacting with the Grid can be
incorporated in the virtual machine, thus relieving the resource owner from installing
and managing the grid software. Secondly, usage of physical resources like memory,
disk, and CPU usage of a process is easily controlled with a virtual machine.

Performance: As a virtual machine architecture interposes a software layer between
the traditional hardware and software layers, in which a possibly different instruction
set is implemented and translated to the underlying native instruction set, performance
is typically lost during the translation phase. Despite of recent advances in new virtual-
ization and translation techniques, and the introduction of hardware-assisted capabil-
ities, virtual machines usually introduce performance overhead and the goal remains
achieving near-native performance only. The impact depends on system characteris-
tics and the applications intended to run in the machine.

To summarize, virtual machines are an appealing technology for Grid Computing
because they solve the conflict between the grid users at the one end of the system
and resource providers at the other end. Grid users want exclusive access to as many
resources as possible, as much control as possible, secure execution of their applica-
tions, and they want to use certain software and hardware setups.

At the other end, introducing virtual machines on resources enables resource own-
ers to service several users at once, to isolate each application execution from other
users of the system and from the host system itself, to provide a uniform execution

5

Hardware

Host OS (Windows)

Windows

application 1

Guest OS (Linux)

application 2

Windows

Linux
app 1 app 2

Linux

Figure 2: Full virtualization; applications running in the guest OS in the virtual ma-
chine are isolated and can only compromise the VM, not the host system

environment, and managed code is easily incorporated in the virtual machine.

2.3 The MiG Sandboxes

Taking advantage of these virtualization properties, the MiG sandbox solution ef-
fectively combines Grid Computing and PRC computing. Contributors download a
screen saver, a virtual machine of their own choice, and a custom made MiG Linux
image. Upon screen saver activation, the virtual machine boots the MiG Linux image
in which all grid jobs will be running. As soon as the screen saver deactivates, the
virtual machine is shut down, and all resources are given back to the local user.

As shown in Figure 2, the virtual machine is just a normal process running in
the host OS, which typically would be Windows. The virtual machine emulates the
underlying physical hardware, thus creating a secure sandbox environment that allows
an application written for one OS to be executed in another.

While the MiG sandboxes are quite similar to the ‘normal’ native resources in
the MiG, a few things differ. Most importantly, since most typical desktop computers
reside behind NAT routers it is not possible to achieve the MiG requirement of inbound
ssh access on resourcers. Therefore, to stay in the philosophy of minimum intrusion,
sandboxes use a strict pull-based model where all communication is initiated from
the resource. For further details, see [5]. For MiG users who wish to deploy their
applications on the virtualized sandbox platform, all that is necessary is to specify the
’sandbox’ keyword in the job description file.

2.4 WebCom

Problem solving for parallel systems traditionally lay in the realm of message passing
systems such as PVM and MPI on networks of distributed machines, or in the use
of specialised variants of programming languages like Fortran and C on distributed
shared memory supercomputers. The WebCom System[8] relates more closely to
message passing systems, although it is much more powerful. Message passing ar-

6

chitectures normally involve the deployment of a codebase on client machines, and
employ a master or server to transmit orpushmessages to these clients.

Technologies such as PVM, MPI and other metacomputing systems place the onus
on the developer to implement complete parallel solutions. Such solutions require a
vast knowledge on the programmer’s part in understanding the problem to be solved,
decomposing it into its parallel and sequential constituents, choosing and becoming
proficient in a suitable implementation platform, and finally implementing necessary
fault tolerance and load balancing/scheduling strategies to successfully complete the
parallel application. Even relatively trivial problems tend to give rise to monolithic
solutions requiring the process to be repeated for each problem to be solved.

WebCom removes much of these traditional considerations from the application de-
veloper; allowing solutions to be developed independently of the physical constraints
of the underlying hardware. It achieves this by employing a two level architecture:
the computing platform and the development environment. The computing platform
is implemented as an Abstract Machine (AM), capable of executing applications ex-
pressed as Condensed Graphs. Expressing applications as Condensed Graphs greatly
simplifies the design and construction of solutions to parallel problems. The Abstract
Machine executes tasks on behalf of the server and returns results over dedicated sock-
ets. The computing platform is responsible for managing the network connections,
uncovering and scheduling tasks, maintaining a balanced load across the system and
handling faults gracefully. Applications developed with the development environment
are executed by the abstract machine. The development environment used is specific
for Condensed Graphs. Instructions are typically composed of both sequential pro-
grams (also called atomic instructions) and Condensed nodes encapsulating graphs of
interacting sequential programs. In effect, a Condensed Graph on WebCom represents
a hierarchical job control and specification language. The same Condensed Graphs
programs execute without change on a range of implementation platforms from sili-
con based Field Programmable Gate Arrays[9] to the WebCom metacomputer and the
Grid.

2.4.1 Architecture Overview

The WebCom abstract machine is constructed from a set of modules that plug into
a module called thebackplane. Each module in the WebCom system falls into one
of two categories: it is either aCoremodule or aUsermodule. Modules are loaded
based on a initial configuration, thus bootstrapping the computational platform. Core
modules include theCompute Engine, Fault Tolerance, Scheduling and Load balanc-
ing via theDistributor, Security, Communications, Job ManagementandInformation
Management. User modules can be provided to add additional functionality to the
WebCom abstract machine. This architecture is outlined in Figure 3.

Compute Engine: The compute engine is responsible for low level task execution.
Task composition varies depending on the compute engine in use. The default Con-

7

Figure 3: WebCom Abstract Machine Architecture showing how WebCom modules
plug into the Backplane module.

densed Graphs compute engine is responsible for executing applications expressed as
Condensed Graphs.

Fault Tolerance: The fault tolerance module detects and corrects faults that occur
within the Abstract Machine. Mechanisms in place for fault tolerance range from
simply rescheduling failed tasks to employing a unique processor replacement strategy
[10].

Distributor: The distributor is responsible for allocating work to clients. The dis-
tributor operates according to a set of installed policies. Typically, a system-wide
default policy exists that allows the distributor to select clients for task execution.
These policies are plugable and hierarchal in nature and specify items such as the se-
lection algorithm and associated configuration parameters. Nodes within a Condensed
Graphs application are executed according to the installed policy. In addition, nodes
themselves can specify their own distribution policy. Such nodes will be allocated to
clients based on that policy. This provides great flexibility within the AM, as an ap-
plication is not tied to one particular scheduling algorithm. Different nodes in a single
application can be scheduled using different algorithms. It is possible that multiple ap-
plications executing on a single abstract machine can execute using multiple selection
algorithms within the distributor.

Security: The security manager is responsible for authenticating the tasks, results
and other messages transmitted throughout the WebCom infrastructure. The current
security manager is based on theKeynote[11] standard.

Communications Manager Module: The communications manager is responsible
for communicating tasks to clients. Once the distributor has decided where to allocate

8

a task, it is placed in a queue for the selected client. The communications manager
module serves this queue, transmitting the task to the client. Tasks are sent based upon
a Pull Requestmechanism. When a client is willing to accept work, it issues a pull
request. A WebCom will respond to this request bypushingthe task to the client.

Job Manager: Each application within the WebCom AM executes within its own
job space. The job manager [12] can be used to monitor the progress of job execution,
pause and restart jobs and also suspend jobs.

2.5 Combined Potential

By utilising the strengths both the MiG and WebCom platforms, we have identified
a number of areas where this collaboration can provide significant advances for both
user communities. We will elaborate on some of these advantages in the remainder of
this section.

For the MiG user community: MiG users submit through a script. Once the job
enters the MiG system, the user has to periodically poll it to enquire about the jobs
status. In most cases, the user will have a rough idea as to how often they need to issue
this poll, however, it is possible that they may not issue this poll in a timely manner.
Using WebCom as a submission engine for MiG, the user will be notified when the job
has been completed. This is determined by WebCom issuing the poll for the job status
at regular intervals. At worst, the maximum time the user will be waiting for such
a notification would be equivalent to the polling interval the MiG Compute Engine
employs.

A second potential benefit to the MiG user community is that this system provides
a platform whereby users can construct scientific workflows using an intuitive inter-
face. Just drag and drop the required nodes, connect the arcs and execute the resulting
application. As the work presented here describes our initial investigations, it is ap-
parent that a more complete suite of nodes would be required. However, this is easily
achievable.

A third benefit to the MiG user community could be to support the PRC model
of computing at the resource level. Resource donators can choose which projects
their particular sandbox will support. With an ever increasing number of projects
being supported by MiG, WebCom’s targeting mechanism can be used to provide a
more flexible approach to application execution, targeting applications to particular
sandboxes. This would happen transparently to the user.

For the WebCom user community: The sandbox model may be of particular in-
terest to users of WebCom. Creating jobs in a sandboxed environment allows for
greater scope in deployment of WebCom. WebCom itself could be pre-packaged with
a particular configuration. MiG could be used to deploy and instantiate any number

9

Figure 4: High Level computation showing MiG compute engine

of these packages. When executed, a dynamic WebCom platform would be created,
allowing users to execute applications within a fresh, secure environment. This has
potential for creating multiple WebCom instances whose lifetime may only exist for
the duration of a single application.

WebCom’s targeting can be use to include MiG jobs in a higher level workflow.
Scientific computations are typically better suited to native execution. Native MiG
computations could be easily invoked to leverage the underlying resources.

3 Implementation

At the basis of supporting MiG interaction from WebCom lies the client side of the
MiG system shown on the left in Figure 1. When incorporating a MiG client in an-
other system, the ’minimum intrusion’ property of MiG is highly valuable, as the only
requirements to the client is a valid X.509 certificate trusted by MiG and outbound
HTTP and HTTPS. There are several ways for users to interact with the MiG system:
Either through a standard web browser or by several types of scripts. A job is defined
by a minimal Resource Specification Language(mRSL) text file. The user holding the
certificate automatically gets a home directory and must upload all grid-related files to
this home directory. Then, all file names mentioned in the job description are relative
to the user’s home directory, just as if it were local.

Initial support for MiG interpretability is provided at two levels: the first being the
provision of a new Engine Module called the MigEngine and the second the provision
of a suite of nodes that can be included in the WorkFlow being developed. At the

10

Figure 5: Multiple WebCom machines, showing targeting of MiG jobs.

simplest level a node that executes a MiG job description file is provided. When the
MiG compute engine receives an appropriate instruction, it carries out the operations
required for that instruction.

The instruction to execute a job submission script file goes through a number of
stages: First the appropriate mRSL file is saved to some predetermined location, next
the MiG compute engine invokes the MiG platforms submission script. The result of
this submission is a job id. This id can be used to obtain information about the jobs
progression such as its current status and what result was received. Typically, within
the MiG system, these operations are conducted periodically by the user.

WebComs MiG Compute Engine can be used to remove this task from the user.
When the compute engine submits the task for execution it then proceeds to poll the
mig system at regular intervals to obtain the status of a job.

In the initial version of the MiG Compute engine, once a job finishes it returns the
jobs status to the user. At this stage the user can manually retrieve any output files,
error files generated by the job.

On an extended WebCom network, Figure 5, it is possible for a user to construct
workflow applications containing MiG jobs without having to install or join the MiG
platform. When such a workflow is submitted to a WebCom not capable of executing
it directly (that WebCom does not have a MiG Compute Engine installed locally), it
advertises the need for another WebCom that has a a MiG Compute Engine plugged
in.

Other WebCom instances on the network that match the requested criteria will
respond. When a response is received the task will subsequently be scheduled to a
responder and WebComs targeting mechanism is then invoked to ensure the task is

11

Figure 6: Simple Application developed in the WebCom IDE

delivered to the selected responder. In the case where there are multiple responders to
a request, the first responder is the one that will be selected. In the case where there
are no responders (no WebCom has a MiG Compute Engine plugged in), the task is
put into a waiting queue. Periodically, tasks in this queue are passed to the distributor
for re-allocation. This results in a further request for a WebCom with a MiG compute
engine. Tasks will continue to wait, possibly indefinitely, until a suitable responder is
found.

4 Test Application

To illustrate the process of executing a MiG application, a simple application was
created. This is shown in Figure 6. The test application simply loads a mRSL file
and feeds that as input to theExecute MRSL Code task. The final result is then
passed back to the user. Typically nodes in a condensed graph will be targeted for
execution on a Condensed Graphs compute engine. However, theExecute MRSL
Code node shown in the figure must be targeted for execution on a MiG Compute
Engine. This targeting information can be seen in theEdit Property Valuedialog
that is visible. This is necessary, because as described earlier it is the MiG Compute
Engine that possesses the knowledge as how to execute this type of node. When the

12

Execute MRSL Code node finishes the status is passed on to theX node.

The test configuration for this application included one computer that acted as a
MiG gateway: This computer had the MiG submission system and a WebCom instance
installed. The WebCom system installed on this machine had both the Condensed
Graphs and MiG execution engine modules installed.

A second machine with WebCom was used for constructing, and executing the
application. Once the application was submitted, execution proceeded as expected:
The specific MiG nodes were targeted to the WebCom instance with the MiG compute
engine installed.

5 Conclusions & Future Work

This paper presented details of our initial investigation into supporting interactions
between two different computing systems: The Minimum Intrusion Grid (MiG) and
WebCom. Initial investigations concentrated on providing added functionality to the
WebCom system that facilitate the targeting and execution of MiG jobs. Applications
consisting of MiG jobs are created within the WebCom IDE and executed on the Web-
Com computational platform. The initial implementation proved successful although
there is significant scope for further research.

Further research can be conducted in to the number of potential benefits to both
systems user communities: such as more fine grained application targeting for MiG
users, deploying and establishing dynamic WebCom compute environments, investi-
gating the use of more scientific computations such as Fast Fourier Transformations
for example and extending the palette of nodes available to the users when creating
the workflows.

In addition to the items outlined above, further research and gathering of results
generated by MiG can be conducted. The current prototype implementation just re-
turns the status code to the user, along with the job id. Currently, the user has to
manually retrieve the results.

Additional nodes can be provided for the complete suite of MiG commands, each
command would then have a direct correspondent when creating visual applications.

Acknowledgements

The work presented here was part funded by the Boole Centre for Research in In-
formatics, Science Foundation Ireland under the WebCom-G project and the Danish
NABIIT program committee.

13

References

[1] I. Foster, C. Kesselman: The Grid: Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, Elsevier Press (2004) 593-620

[2] I. Foster, C. Kesselman:The Globus project: a status report. Proceedings of the
Seventh Heterogeneous Computing Workshop, March 1998, IEEE Computer So-
ciety Press, pp. 4–19

[3] B. Vinter: The Architecture of the Minimum intrusion Grid: MiG. Proceedings
of Communicating Process Architectures 2005

[4] J.P. Morrison, B. Clayton, D. Power, A. Patil: WebCom-G: Grid Enabled
Metacomputing- The Journal of Neural, Parallel and Scientific Computation.
Special Issue on Grid Computing. Editors H.R. Arabnia, G.A. Gravvanis, M.P.
Bekakos, Vol. 12(3), PP. 419-438, September, 2004

[5] R. Andersen, B. Vinter: Harvesting Idle Windows CPU Cycles for Grid Com-
puting. Proceedings of GCA-2006

[6] D.P. Anderson: BOINC: a system for public-resource computing and storage.
Proceedings of the Fifth IEEE/ACM International Workshop on Grid Computing
(GRID’04)

[7] R. Figueiredo, P. Dinda, J. Fortes: A Case for Grid Computing on Virtual Ma-
chines. Proceedings of the International Conference on Distributed Computing
Systems (ICDCS), May 2003

[8] J.P. Morrison, D.A. Power, J.J. Kennedy: An Evolution of the WebCom Meta-
computer. The Journal of Mathematical Modelling and Algorithms: Special is-
sue on Computational Science and Applications, 2003(2), pp 263-276

[9] J.P. Morrison, P.J. O’Dowd. P.D. Healy: Searching RC5 Keyspaces with Dis-
tributed Reconfigurable Hardware. Proceedings of ERSA 2003, Las Vegas, June
23-26, 2003

[10] J.J. Kennedy: Design and Implementation N-Tier Metacomputer with Decen-
tralised Fault Toerance. PhD Thesis, University College Cork, Ireland, May 2004

[11] M. Blaze et al: The Keynote Trust Management System, Version 2. Internet
Request for Comments 2704. September 1999

[12] N. Cafferkey, P.D. Healy, D.A. Power, J.P. Morrison: Job Management in We-
bCom. In Proceedings of the 6th International Symposium on Parallel and Dis-
tributed Computing (ISPDC) - IEEE Press, Hagenberg, Austria, July 4th-8th,
2007

14

Appendix D

Publication 4

Proceedings of the 2008 International Conference on Grid Computing & Applications, GCA

2008, Las Vegas, Nevada, USA. CSREA Press 2008, ISBN 1-60132-068-X, pp. 175-181

Rasmus Andersen, Brian Vinter: The Scientific Byte Code Virtual Machine

172

The Scientific Byte Code Virtual Machine
Rasmus Andersen

University of Copenhagen
eScience Centre

2100 Copenhagen, Denmark
Email: rasmus@diku.dk

Brian Vinter
University of Copenhagen

eScience Centre
2100 Copenhagen, Denmark

Email: vinter@diku.dk

Abstract—Virtual machines constitute an appealing technology
for Grid Computing and have proved a promising mechanism
that greatly simplifies and enforces the employment of grid
computer resources.

While existing sandbox technologies to some extent provide
secure execution environments for applications deployed in a
heterogeneous platform as the Grid, they suffer from a num-
ber of problems including performance drawbacks and specific
hardware requirements.

This project introduces a virtual machine capable of execut-
ing platform-independent byte codes specifically designed for
scientific applications. Native libraries for the most prevalent
applications domains mitigate the performance penalty. As such,
grid users can view this machine as a basic grid computing
element and thereby abstract away the diversity of the underlying
real compute elements.

Regarding security, which is of great concern to resource
owners, important aspects include stack isolation by using a
harvard memory architecture, and no support for neither I/O
nor system calls to the host system.

Keywords: Grid Computing, virtual machines, scientific appli-
cations.

I. I NTRODUCTION

Although virtualization was first introduced several decades
ago, the concept is now more popular than ever and has
revived in a multitude of computer system aspects that benefit
from properties such as platform independence and increased
security. One of those applications is grid Computing[5] which
seeks to combine and utilize distributed, heterogeneous re-
sources as one big virtual supercomputer. Regarding utilization
of the public’s computer resources for grid computing, virtual-
ization, in the sense of virtual machines, is a necessity forfully
leveraging the true potential of grid computing. Without virtual
machines, experience shows that people are, with good reason,
reluctant to put their resources on a grid where they have to not
only install and manage a software code base, but also allow
native execution of unknown and untrusted programs. All these
issues can be eliminated by introducing virtual machines.

As mentioned, virtualization is by no means a new concept.
Many virtual machines exist and many of them have been
combined with grid computing. However, most of these were
designed for other purposes and suffer from a few prob-
lems when it comes to running high performance scientific
applications on a heterogeneous computing platform. Grid
computing is tightly bonded to eScience, and while standard
jobs may run perfectly and satisfactory in existing virtual

e−Science

Virtual MachinesGrid

Fig. 1. Relatationship between VMs, the Grid, and eScience

machines, ’gridified’ eScience jobs are better suited for a
dedicated virtual machine in terms of performance.

Hence, our approach addresses these problems by develop-
ing a portable virtual machine specifically designed for scien-
tific applications: The Scientific Byte Code Virtual Machine
(SciBy VM).

The machine implements a virtual CPU capable of executing
platform independent byte codes corresponding to a very large
instruction set. An important feature to achieve performance
is the use of optimized native libraries for the most prevalent
algorithms in scientific applications. Security is obviously very
important for resource owners. To this end, virtualizationpro-
vides the necessary isolation from the host system, and several
aspects that have made other virtual machines vulnerable have
been left out. For instance, the SciBy VM supports neither
system calls nor I/O.

The following section (II) motivates the usage of virtual
machines in a grid computing context and why they are
beneficial for scientific applications. Next, we describe the
architecture of the SciBy VM in Section III, the compiler in
Section IV, related work in Section VI and conclusions in
Section VII.

II. M OTIVATION

The main building blocks in this project arise from proper-
ties from virtual machines, eScience, and a grid environment
in a combined effort, as shown in figure 1.

The individual interactions impose several effects from the
viewpoint of each end, described next.

A. eScience in a Grid Computing Context

eScience, modelling computationally intensive scientific
problems using distributed computer networks, has driven the
development of grid technology and as the simulations get

more and more accurate, the amount of data and needed
compute power increase equivalently. Many research projects
have already made the transition to grid platforms to accom-
modate the immense requirements for data and computational
processing. Using this technology, researchers gain access to
many networked computers at the cost of a highly heteroge-
neous computing platform. Obviously, maintaining application
versions for each resource type is tedious and troublesome,
and results in a deploy-port-redeploy cycle. Further, different
hardware and software setups on computational resources
complicate the application development drastically. One never
knows to which resource a job is submitted in a grid, and
while it is possible to assist each job with a detailed list of
hardware and software requirements, researchers are better left
off with a virtual workspace environment that abstracts a real
execution environment.

Hence, a virtual execution environment spanning the hetero-
geneous resource platform is essential in order to fully leverage
the grid potential. From the view of applications, this would
render a resource access uniform and thus the much easier
”compile once run anywhere” strategy; researchers can write
their applications, compile them for the virtual machine and
have them executed anywhere in the Grid.

B. Virtual Machines in a Grid Computing Context

Due to the renewed popularity of virtualization over the last
few years, virtual machines are being developed for numerous
purposes and therefore exist in many designs, each of them
in many variants with individual characteristics. Despitethe
variety of designs, the underlying technology encompassesa
number of properties beneficial for Grid Computing [4]:

1) Platform Independence:In a grid context, where it is
inherently intrinsic to move around application code as freely
as application data, it is highly profitable to enable applications
to be executed anywhere in the grid. Virtual machines bridge
the architectural boundaries of computational elements ina
grid by raising the level of abstraction of a computer system,
thus providing a uniform way for applications to interact with
the system. Given a common virtual workspace environment,
grid users are provided with a compile-once-run-anywhere
solution.

Furthermore, a running virtual machine is not tied to a
specific physical resource; it can be suspended, migrated to
another resource and resumed from where it was suspended.

2) Host Security: To fully leverage the computational
power of a grid platform, security is just as important as
application portability. Today, most grid systems enforcese-
curity by means of user and resource authentication, a secure
communication channel between them, and authorization in
various forms. However, once access and authorization is
granted, securing the host system from the application is left
to the operating system.

Ideally, rather than handling the problems after system
damage has occurred, harmful - intentional or not - grid
applications should not be able to compromise a grid resource
in the first place.

Virtual machines provide stronger security mechanisms than
conventional operating systems, in that a malicious process
running in an instance of a virtual machine is only capable
of destroying the environment in which it runs, i.e. the virtual
machine.

3) Application Security: Conversely to disallowing host
system damage, other processes, local or running in other
virtualized environments, should not be able to compromise
the integrity of the processes in the virtual machine.

System resources, for instance the CPU and memory, of
a virtual machine are always mapped to underlying physical
resources by the virtualization software. The real resources are
then multiplexed between any number of virtualized systems,
giving the impression to each of the systems that they have
exclusive access to a dedicated physical resource. Thus, grid
jobs running in a virtual machine are isolated from other grid
jobs running simultaneously in other virtual machines on the
same host as well as possible local users of the resources.

4) Resource Management and Control:Virtual machines
enable increased flexibility for resource management and
control in terms of resource usage and site administration.First
of all, the middleware code necessary for interacting with the
Grid can be incorporated in the virtual machine, thus relieving
the resource owner from installing and managing the grid
software. Secondly, usage of physical resources like memory,
disk, and CPU usage of a process is easily controlled with a
virtual machine.

5) Performance:As a virtual machine architecture inter-
poses a software layer between the traditional hardware and
software layers, in which a possibly different instructionset is
implemented and translated to the underlying native instruction
set, performance is typically lost during the translation phase.
Despite of recent advances in new virtualization and trans-
lation techniques, and the introduction of hardware-assisted
capabilities, virtual machines usually introduce performance
overhead and the goal remains achieving near-native perfor-
mance only. The impact depends on system characteristics and
the applications intended to run in the machine.

To summarize, virtual machines are an appealing technology
for Grid Computing because they solve the conflict between
the grid users at the one end of the system and resource
providers at the other end. Grid users want exclusive access
to as many resources as possible, as much control as possible,
secure execution of their applications, and they want to use
certain software and hardware setups.

At the other end, introducing virtual machines on resources
enables resource owners to service several users at once,
to isolate each application execution from other users of
the system and from the host system itself, to provide a
uniform execution environment, and managed code is easily
incorporated in the virtual machine.

C. A Scientific Virtual Machine for Grid Computing

Virtualization can occur at many levels of a computer
system and take numerous forms. Generally, as shown in
Figure 2, virtual machines are divided in two main categories:

System virtual machines and process virtual machines, each
branched in finer division based on whether the host and guest
instruction sets are the same or different. Virtual machines with
the same instruction set as the hardware they virtualize do exist
in multiple grid projects as mentioned in Section VI. However,
since full cross-platform portability is of major importance, we
only consideremulatingvirtual machines, i.e. machines that
execute another instruction set than the one executed by the
underlying hardware.

Virtual Machines

Process VMs System VMs

Different ISADifferent ISA Same ISASame ISA

Fig. 2. Virtual machine taxonomy. Similar to Figure 13 in [9]

System virtual machines allow a host hardware platform
to support multiple complete guest operating systems, all
controlled by a virtual machine monitor and thus acting as a
layer between the hardware and the operating systems. Process
virtual machines operate at a higher level in that they virtualize
a given platform for user applications. A detailed description
of virtual machines can be found in [9].

The overall problem with system virtual machines that
emulate the hardware for an entire system, including appli-
cations as well as an operating system, is the performance
loss incurred by converting all guest system operations to
equivalent host system operations, and the implementation
complexity in developing a machine for every platform type,
each capable of emulating an entire hardware environment for
essentially all types of software.

Since the application domain in focus is scientific appli-
cations only, there is really no need for full-featured operating
systems. As shown in Figure 3, process level virtual machines
are simpler because they only execute individual processes,
each interfaced to the hardware resources through a virtual
instruction set and an Application Binary Interface.

Applications

Operating System

Applications

ISA

Virtual Machine
ABI

ABI
ISA

Virtual Machine

Operating System

Fig. 3. System VMs (left) and Process VMs (right)

Using the process level virtual machine approach, the virtual
machine is designed in accordance with a software devel-
opment framework. Developing a virtual machine for which
there is no corresponding underlying real machine may sound
counterintuitive, but this approach has proved successfulin
several cases, best demonstrated by the power and usefulness
of the Java Virtual Machine. Tailored to the Java programming
language, it has provided a platform independent computing
environment for many application domains, yet there is no

commonly used real Java machine1.
Similar to Java, applications for the SciBy VM are compiled

into a platform independent byte code which can be executed
on any device equipped with the virtual machine. However,
applications are not tied to a specific programming language.
As noted earlier, researchers should not be forced to rewrite
their applications in order to use the virtual machine. Hence,
we produce a compiler based on a standard ansi C compiler.

D. Enabling Limitations

While the outlined work at hand may seem comprehensive,
especially the implementation burden with virtual machines for
different architectures, there are a some important limitations
that greatly simplify the project. Firstly, the implementation
burden is lessened drastically by only giving support for
running a single sequential application. Giving support for
entire operating systems is much more complex in that it
must support multiple users in a multi-process environment,
and hardware resources such as networking, I/O, the graphics
processor, and ’multimedia’ components of currently used
standard CPUs are also typically virtualized.

Secondly, a virtual machine allows fine-grained control
over the actions taken by the code running in the machine.
As mentioned in Section VI, many projects use sandbox
mechanisms in which they by various means check all system
instructions. The much simpler approach taken in this project
is to simply disallow system calls. The rationale for this
decision is that:

• scientific applications perform basic calculations only
• using a remote file access library, only files from the grid

can be accessed
• all other kinds of I/O are not necessary for scientific

applications and thus prohibited
• indispensable systems calls must be routed to the grid

III. A RCHITECTURAL OVERVIEW

The SciBy Virtual Machine is an abstract machine executing
platform independent byte codes on a virtual CPU, either by
translation to native machine code or by interpretation. How-
ever, in many aspects it is designed similarly to conventional
architectures; it includes an Application Binary Interface,
an Instruction Set Architecture, and is able to manipulate
memory components. The only thing missing in defining the
architecture is the hardware. As the VM is supposed to be
run on a variety of grid resources, it must be designed to
be as portable as possible, thereby supporting many different
physical hardware architectures.

Based on the previous sections, the SciBy VM is designed
to have 3 fundamental properties:

• Security
• Portability
• Performance

That said, all architectural decisions presented in the follow-
ing sections rely solely on providing portability. Security is

1The Java VM has been implemented in hardware in the Sun PicoJavachips

obtained by isolation through virtualization, and performance
is solely obtained by the use of optimized native libraries
for the intended applications and taking advantage of the
fact that scientific applications spend most of their time in
these libraries. The byte code is as such not designed for
performance. Therefore, the architectural decisions do not
necessarily seek to minimize code density, minimize code
size, reduce memory traffic, increase the average number of
clock cycles per instruction, or other architectural evaluation
measurements, but more for simplicity and portability.

A. Application Binary Interface

The SciBy VM ABI defines how compiled applications
interface with the virtual machine, thus enabling platform
independent byte codes to be executed without modification
on the virtual CPU.

At the lowest level, the architecture defines the following
machine types arranged in big endian order:

• 8-bit byte
• 16-, 32-, or 64-bit halfword
• 32-, 64-, or 128-bit word
• 64-, 128-, or 256-bit doubleword

In order to support many different architectures, the ma-
chine exists in multiple variations with different word sizes.
Currently, most desktop computers are either 32- or 64-bit
architectures, and it probably won’t be long before we see
desktop computers with 128-bit architectures. By letting the
word size be user-defined, we capture most existing and near-
future computers.

Fundamental primitive data types include, all in signed
two’s complement representation:

• 8-bit character
• integers (1 word)
• single-precision floating point (1 word)
• double-precision floating point (2 words)
• pointer (1 word)

The machine contains a register file of 16384 registers, all
1 word long. This number only serves as a value for having
a potentially unlimited amount of registers. The reasons for
this are twofold. First of all due to forward compatibility,
since the virtual register usage has to be translated to native
register usage, in which one cannot tell the upper limit on
register numbers. So basically, in a virtual CPU, one should
be sure to have more registers than the host system CPU.
Currently, 16384 registers should be more than enough, but
new architectures tend to have more and more registers.
Secondly, for the intended applications, the authors believe
that a register-based architecture will outperform a stack-based
one[8]. Generally, registers have proved more successful than
other types of internal storage and virtually every architecture
designed in the last few decades uses a register architecture.

Register computers exist in 3 classes depending on where
ALU instructions can access their operands, register-register
architectures, register-memory architectures and memory-
memory architectures. The majority of the computers shipped

nowadays implement one of those classes in a 2- or 3-operand
format. In order to capture as many computers as possible, the
SciBy VM supports all of these variants in a 3-operand format,
thereby including 2-operand format architectures in that the
destination address is the same as one of the sources.

B. Instruction Set Architecture

One key element that separates the SciBy VM from con-
ventional machines is the memory model: The machine de-
fines a Harvard memory architecture with separate memory
banks for data and instructions. The majority of conventional
modern computers use a von Neumann architecture with a
single memory segment for both instructions and data. These
machines are generally more vulnerable to the well-known
buffer overflow exploits and similar exploits derived from
’illegal’ pointer arithmetic to executable memory segments.
Furthermore, the machine will support hardware setups that
have separate memory pathways, thus enabling simultaneous
data and instruction fetches. All instructions are fetchedfrom
the instruction memory bank which is inaccessible for appli-
cations: All memory accesses from applications are directed
to the data segment. The data memory segment is partitioned
in a global memory section, a heap section for dynamically
allocated structures, and a stack for storing local variables and
function parameters.

1) Instruction Format: The instruction format is based on
byte codesto simplify the instruction stream. The format is
as follows: Each instruction starts with a one-byteoperation
code (opcode) followed by possibly more opcodes and ends
with zero or more operands, see Figure 4. In this sense, the
machine is a multi-opcode multi-address machine. Having
only a single one-byte opcode limits the instruction set to only
256 different instructions, whereas multiple opcodes allows for
nested instructions, thus increasing the number of instructions
exponentially. A multi-address design is chosen to support
more types of hardware.

OP OP

0 8 32 4816

R1 R2 R3

0 8

OP R1 R2 R3

OP OP

56

R1 R2 R3OP

0 8 16 24 40

24 40

Fig. 4. Examples of various instruction formats on register operands.

2) Addressing Modes:Based on the popularity of address-
ing modes found in recent computers, we have selected 4
addressing modes for the SciBy VM, all listed below.

• Immediate addressing: The operand is an immediate, for
instance MOV R1 4 which moves the number 4 to register
1.

• Displacement addressing: The operand is an offset and
a register pointing to a base address, for instance ADD

R1 R1 4(R2) which adds to R1 the value found 4 words
from the address pointed out by R2.

• Register addressing: Operand is a register, for instance
MOV R1 R2

• Register indirect addressing: Address part is a register
containing the address of an operand, for instance ADD
R1, R1, (R2), which adds to R1 the value found at the
address pointed out by R2.

3) Instruction Types:Since the machine defines a Harvard
architecture, it is important to note that data movement is
carried out byLOAD andSTORE operations which operate on
words in the data memory bank.PUSH and POP operations
are available for accessing the stack.

Table I summarizes the most basic instructions available in
the SciBy VM. Almost all operations are simple 3-address
operations with operands, and they are chosen to be simple
enough to be directly matched by native hardware operations.

Instruction group Mnemonic
Moves load, store
Stack push, pop
Arithmetic add, sub, mul, div, mod
Boolean and, or, xor, not
Bitwise and, or, shl, shr, ror, rol
Compare tst, cmp
Control halt, nop, jmp, jsr, ret, br, beeq, br lt, etc

TABLE I
BASIC INSTRUCTIONSET OF THESCIBY VM

While these instructions are found in virtually every com-
puter, they exist in many different variations using various
addressing modes for each operand. To accommodate this
and assist the compiler as much as possible, the SciBy VM
provides regularity by making the instruction set orthogonal
on both operations, data types, and the addressing modes. For
instance the ’add’ operation exists in all 16 combinations of
the 4 addressing modes on the two source registers for both
integers and floating points. Thus, the encoding of an ’add’
instruction on two immediate source operands takes up 1 byte
for choosing arithmetic, 1 byte to select the ’add’ on two
immediates, 2 bytes to address one of the 16384 registers
as destination register and then 16 bytes for each of the
immediates, yielding a total instruction length of 36 bytes.

C. Libraries

In addition to the basic instruction set, the machine imple-
ments a number of basic libraries for standard operations like
floating-point arithmetic and string manipulation. These are
extensions to the virtual machine and are provided on an per-
architecture basis as statically linked native libraries optimized
for specific hardware.

As explained above, virtual machines introduce a perfor-
mance overhead in the translation phase from virtual machine
object code to the native hardware instructions of the un-
derlying real machine. The all-important observation hereis
that scientific applications spend most of their running time
executing ’scientific instructions’ such as string operations,

linear algebra, fast fourier transformations, or other library
functions. Hence, by providing optimized native libraries, we
can take advantage of the synergy between algorithms, the
compiler translating them, and the hardware executing them.

Equipping the machine with native libraries for the most
prevalent scientific algorithms and enabling future support for
new libraries increases the number of potential instructions
drastically. To address this problem, multiple opcodes allows
for nested instructions as shown in Figure 5. The basic
instructions are accessible using only one opcode, whereas
a floating point operation is accessed using two opcodes, i.e.
FP lib FP sub R1 R2 R3, and finally, if one wishes to use
the WFTA instruction from theFFT_2 library, 3 opcodes are
necessary:FFT lib FFT 2 WFTA args.

Halt

Load

Store

Push

Pop

Str_lib

FP_lib

Fp_add

FP_sub

FFT_1

FFT_2

FFT_3

String_move

String_cmp

WFTA

PFA

FFT_lib

Fig. 5. Native libraries as extension to the instruction set

A special library is provided to enable file access. While
most grid middlewares use a staging strategy that downloads
all input files prior to the job execution and uploads output files
afterwards, the MiG-RFA [1] library accesses files directlyon
the file server on an on-demand basis. Using this strategy,
an application can start immediately, and only the needed
fragments of the files it accesses are transferred.

Ending the discussion of the architecture, it is important to
re-emphasize that all focus in this part of the machine is on
portability. For instance, when evaluating the architecture, one
might find that:

• Having a 3-operand instruction format may give unnec-
essarily large code size in some circumstances

• Studies may show that the displacement addressing mode
is typically used to nearby addresses, thereby suggesting
that these instructions only need a few bits for the operand

• Using register-register instructions may give unnecessar-
ily high instruction count in some circumstances

• Using byte codes increases the code density
• Variable instruction encoding decreases performance

Designing an architecture includes a lot of trade-offs, and
even though many of these issues are zeroed by the interpreter
or translator, the proposed byte code is far from optimal by
normal architecture metrics. However, the key point is that
we target only a special type of applications on a very broad
hardware platform.

IV. COMPILATION AND TRANSLATION

While researchers do not need to rewrite their scientific
applications for the SciBy VM, they do need to compile their
application using a SciBy VM compiler that can translate
the high level language code to the SciBy VM code. While
developing a new compiler from scratch of course is a possi-
bility, it is also a significant amount of work which may prove
unprofitable since many compilers designed to be retargetable
for new architectures already exist.

Generally, retargetable compilers are constructed using the
same classical modular structure: A front end that parses the
source file, and builds an intermediate representation, typically
in the shape of a parse tree, used for machine-independent
optimizations, and a back end that translates this parse tree to
assembly code of the target machine.

When choosing between open source retargetable compilers,
the set of possibilities quickly narrows down to only a few
candidates: GCC and LCC. Despite the pros of being the most
popular and widely used compiler with many supported source
languages in the front end, GCC was primarily designed for
32-bit architectures, which greatly complicates the retargeting
effort. LCC however, is a light-weight compiler, specifically
designed to be easily retargetable to a new architecture.

Once compiled, a byte code file containing assembly in-
struction mnemonics is ready for execution in the virtual
machine, either by interpretation or by translation, where
instructions are mapped to the instruction set of the host ma-
chine using either a load-time or run-time translation strategy.
Results remain to be seen, yet the authors believe that in case
a translator is preferable to an interpreter, the best solution
would be load-time translator, based on observations from
scientific applications:

• their total running time is fairly long which means that
the load-time penalty is easily amortized

• they contain a large number of tight loops where run-
time translation is guaranteed to be inferior to load-time
translation

V. EXPERIMENTS

To test the proposed ideas, a prototype of the virtual
machine has been developed, in the first stage as a simple
interpreter implemented in C. There is no compiler yet, so all
sample programs are hand-written in assembly code with the
only goal of giving preliminary results that will show whether
development of the complete machine can be justified.

The first test is a typical example of the scientific appli-
cations the machine targets: A Fast Fourier Transform (FFT).
The program first computes 10 transforms on a vector of
varying sizes, then checksums the transformed vector to verify
the result. In order to test the performance of the virtual
machine, the program is also implemented in C to get the
native base line performance, and in Java to compare the
results of the SciBy VM with an existing widely used virtual
machine.

The C and SciBy VM programs make use of the fftw
library[6], while the Java version uses an FFT algorithm from

Vector size Native SciBy VM Java
524288 1.535 1.483 7.444
1048576 3.284 3.273 19.174
2097152 6.561 6.656 41.757
4194304 14.249 14.398 93.960
8388608 29.209 29.309 204.589

TABLE II
COMPARISON OF THE PERFORMANCE OF ANFFT APPLICATION ON A 1.86

GHZ INTEL PENTIUM M PROCESSOR, 2MB CACHE, 512 MB RAM

Vector size Native SciBy VM Java
524288 0.879 0.874 4.867
1048576 1.857 1.884 10.739
2097152 3.307 3.253 23.520
4194304 6.318 6.354 50.751
8388608 13.045 12.837 110.323

TABLE III
COMPARISON OF THE PERFORMANCE OF ANFFT APPLICATION ON A

DUAL CORE 2.2 GHZ AMD ATHLON 4200 64-BIT, 512KB CACHE PER

CORE, 4GB RAM

the SciMark suite[7]. Obviously, this test is highly unfair
in disfavor of the Java version for several reasons. Firstly,
the fftw library is well-known to give the best performance,
and comparing hand-coded assembly with compiler-generated
high-level language performance is a common pitfall. How-
ever, even though Java-wrappers for the fftw library exist,it
is essential to put these comparisons in a grid context. If the
grid resources were to run the scientific applications in Java
Virtual Machine, the programmers - the grid users - would
not be able to take advantage of the native libraries, since
allowing external library calls breaks the security of the JVM.
Thereby, the isolation level between the executing grid joband
the host system is lost2. In the proposed virtual machine, these
libraries are an integrated part of the machine, and using them
is perfectly safe.

As shown in Table II the FFT application is run on the 3
machines using different vector size,219, ..., 223. The results
show that the SciBy VM is on-par with native execution, and
that the Java version is clearly outperformed.

Since the fftw library is multithreaded, we repeat the ex-
periment on a dual core machine and on a quad dual-core
machine. The results are shown in Table III and Table IV.

From these results it is clear that for this application there

2In fact there is a US Patent (#6862683) on a method to protect native
libraries

Vector size Native SciBy VM Java
524288 0.650 0.640 4.955
1048576 1.106 1.118 12.099
2097152 1.917 1.944 27.878
4194304 3.989 3.963 61.423
8388608 7.796 7.799 134.399

TABLE IV
COMPARISON OF THE PERFORMANCE OF ANFFT APPLICATION ON A

QUAD DUAL -CORE INTEL XEON CPU, 1.60 GHZ, 4MB CACHE PER CORE,
8GB RAM

Appendix E

Publication 5

Submitted to the Journal of Grid Computing, 2009. Rasmus Andersen, Brian Vinter: Perfor-

mance and Portability of the SciBy VM

179

Journal of Grid Computing manuscript No.
(will be inserted by the editor)

Performance and Portability of the SciBy Virtual Machine

Rasmus Andersen · Brian Vinter

Received: date / Accepted: date

Abstract The Scientific Bytecode Virtual Machine is a virtual machine designed

specifically for performance, security, and portability of scientific applications deployed

in a Grid environment. The performance overhead normally incurred by virtual ma-

chines is mitigated using native optimized scientific libraries, security is obtained by

sandboxing techniques. Lastly, by executing platform-independent bytecodes, the ma-

chine is highly portable.

To evaluate the machine, we demonstrate several use-case scenarios from some of

the intended application domains. Further, we show the ease of porting the machine

and distributing its jobs to a variety of predominant architectures and compare the

results with native execution.

Keywords Grid Computing · Volunteer Computing · Virtual Machine · Scientific

Applications

1 Introduction

In this project, we try to combine strengths from Volunteer Computing and Grid

Computing [11] to form a very powerful computing platform. To harness the compute

power from this platform, and put in on tap for researchers with immediate needs for

massive amounts of CPU-cycles, we have introduced the Scientific Bytecode Virtual

Machine (SciBy VM) [5].

Designed specifically for scientific applications, we take advantage of some well-

known facts about scientific applications to achieve close to optimal performance on

a variety of hardware platforms. Secondly, by executing a platform-independent byte-

code, the machine is higly portable, analogously to the Java Virtual Machine [17]. While

R. Andersen
E-mail: rasmus@diku.dk

B. Vinter
eScience Centre, University of Copenhagen, Universitetsparken 1, 2100 Copenhagen
Tel.: +45 353-21421
E-mail: vinter@diku.dk

2

JVM is not appropriate for high performance computing, it has proved extremely suc-

cessful for a number of application domains due to the ease of portability. Finally, as

security cannot be underestimated when allowing arbitrary code to execute on donated

resources, the machine implements several layers of security to ensure not only the host

machine, but also the integrity of the application.

2 Motivation

As a computing platform, Volunteer Computing has shown its potential with many

successful projects utilizing the idle time from the donated resources. For instance, at

the time of writing, the very popular Folding@Home project [9] operates at whapping

4.3 petaflop/s. In comparison, the Roadrunner supercomputer tops the supercomputer

top 500 list with a peak performance of 1.1 petaflop/s.

A natural extension to the Volunteer Computing scheme is to ’gridify’ it. In their

current form, primarily based on the BOINC framework [6], these public resource

computing projects are merely one-way systems; one can only donate resources. A

resource has a pre-installed program that continuously fetches new data to execute, as

opposed to a Grid, where resources continuously fetch new programs. The entry cost for

a researcher to actually submit new programs to these Volunteer Computing systems

is high enough to render them useless for smaller research projects in need of compute

power 1.

In our perception, an important aspect of Grid Computing is to allow seamless

access for researchers to the huge amount of connected resources, thus creating the

illusion of unified access to one big supercomputer. Gaining widespread acceptance

as an important computing platform depends on the ability of making the technol-

ogy accessible to general exploitation, not only for computer specialists, but also for

researchers from other areas, since they are the real end-users of the systems.

The need for compute power increases rapidly, primarily driven by eScience, i.e.

computationally intensive scientific simulations with enormous amounts of data. As

the simulations get more and more accurate, the requirements to the compute platform

increase equivalently.

’Gridifying’ a Volunteer Computing system, i.e. not only making it easy for the

public to donate their idle resources, but also enabling researchers to utilize these pub-

lic resources, gives a whole new dimension to a Grid. However, the two systems differ

significantly on two aspects: Security and portability. Firstly, a resource in a Volun-

teer Computing system only hosts one single application that keeps getting new data,

while a resource in Grid system hosts arbitrary untrusted applications. Hence, there is

a substantial difference in the security level to ensure the host system. Secondly, while a

’standard’ Grid is typically composed of Linux/Unix desktop computers, clusters, and

supercomputers from different trusted compute centres, a volunteer computing grid

drastically increases the heterogeneity of the system. For instance, the client statis-

tics from the Folding@Home project reveals that the biggest contributors are NVIDIA

GPUs and PlayStation 3’s, markedly trailing ATI GPUs and Windows machines. Linux

and Mac machines are barely noticeable. Obviously, porting a single Volunteer Com-

1 According to the BOINC website, http://boinc.berkeley.edu/trac/wiki/BoincIntro, it
takes 3 man-months to port an existing application to the BOINC framework and about $5000
for hardware used for project management

3

puting application to these architectures is considerably easier than enabling arbitrary

programs to run on any architecture.

With the abundance of new powerful architectures in personal computers and de-

vices, we now face many radically different CPU architectures, GPU architectures, op-

erating systems, software environments, and specific limitations to memory, network,

and disk usage. Therefore, enabling execution of arbitrary code on connected resources

requires a lot of work in specifying an execution environment. Ultimately, before non-

computer specialists can adopt this computing platform, it is necessary to hide these

complexities of the Grid system, and free the applications from all architectural details

of the computational resources connected to the Grid.

Specifying or standardizing an execution environment - an executable code for-

mat and runtime environment - and ensuring the safety of the host machine, is by

no means an easy task. However, as outlined in [5], virtual machines can help bridge

the architectural boundaries by raising the abstraction level from the underlying hard-

ware, thus enabling moving around application code as freely as application data. The

Java Virtual Machine Specification [13] and the Common Intermediate Language [15]

from MicroSoft are two examples that have proved very useful with many different

virtual machine implementations. Once compiled into the byte code of the respective

standards, an application can run on any of these machines. The drawback of these

systems is the requirement of using a specialized programming language rarely used

in scientific applications, and the performance drawback from executing byte codes

instead of native machine code.

The approach taken in this project is to use a hybrid model, in which a completely

platform-independent - and thus highly portable - bytecode is augmented with the

ability of calling native libraries to improve performance. With respect to security,

virtualization reduces the problem of requiring donators to trust arbitrary programs

to only trust the virtual machine that executes the programs. In effect, virtualization

increases the application integrity and eases the resource management and control.

3 Related Work

During the last decade, virtual machines [18] have been revived and used for many

different purposes. VMware [27], Xen [20], and VirtualBox [24] are some of the most

popular system virtual machines. With the ability of hosting multiple complete guest

operating systems, applications can be isolated safely, and recent progress - even with

hardware support - has provided near-native speed. However, they are typically tied

to a limited set of platform architectures and difficult to port.

Application virtual machines, for instance JVM and .Net VM, only support run-

ning a single application. Applications are expressed as portable intermediate language

representations [13,15] and executed by abstract virtual machines [17,19]. As opposed

to system virtual machines, these machines are highly portable, yet their performance

drawback hinders them from being used for high performance computing.

Virtual machines are just one way of providing a sandbox, i.e. a confined envi-

ronment in which a host system allows untrusted 3rd-party code to execute without

compromising the host. Native code sandboxes allows a native application to execute

under a well-defined set of constraints, all expressed in native code themselves. Since

the introduction by Wahbe [23], the literature contains many variants for different ar-

chitectures. The vx32 [10] would be of primary interest for a Volunteer System since it

4

has minimal intrusion on the host system, thus lowering the workload for the people

trying to donate their resources. Where many similar systems require modifications to

the host system, for instance kernel modifications, special privileges and permissions,

vx32 runs on unmodified host systems. Applications just need to be linked to a user-

level library, which then sandboxes the application in a secure execution environment.

vx32 is limited to x86 architectures.

An upcoming interesting sandbox is Google’s Native Client [26]. Aimed at browser-

based applications, the system tries to run compute-intensive applications in the ad-

dress space of the browser at native speed. When an application is sent to a browser, a

Native Client plugin loads the Native Client container, which is a sandbox containing

native libraries enabling the application to execute at native speed. Like vx32, Native

Client is limited to x86 architectures, and since the workload required to express all

types of security restrictions in native machine code is quite substantial, porting to

other architectures is unlikely to happen within foreseeable future.

4 The SciBy Virtual Machine

In the Sciby VM, we combine intermediate bytecode in a virtual machine with native

libraries to achieve near-native performance on many different architectures. To our

knowledge, this is the first research project that introduces this type of hybrid machine.

From a user perspective, the SciBy Virtual Machine [5] is an abstract virtual ma-

chine capable of executing platform-independent bytecodes corresponding to a single

sequential application. Users will need to use a designated compiler to translate their

source code into the bytecode, which is then sent to and executed by an interpreter

on any available resource. The compiler is based on gcc [2], thus taking benefit of the

many source languages accepted by the front end of the compiler; only the back end

has been modified to target the SciBy architecture.

For deployment as a virtual machine for scientific applications in a merged Grid

and Volunteer Computing system, the machine is designed solely for portability, host

system security, and performance.

4.1 Security

Host system security is ensured by a virtual machine to isolate untrusted code in a

sandbox. Typically, this type of software based fault isolation [23] focuses on disal-

lowing unsafe instructions access to memory outside the sandbox, illegal instructions,

privileged instructions, etc. In SciBy VM, we made the deliberate choice of disallowing

system calls, including all types of I/O, altogether. Thus, we only allow instructions

that perform transformations on data, control flow instructions, and data movement

instructions. Dedicated for scientific applications, there is really no need for system

calls, and the only type of I/O necessary, is access to input files and output files; this is

achieved using the Remote File Access library, presented in Section 4.4. Indispensable

system calls will be routed back to the Grid for execution.

A typical sandbox feature, which the SciBy VM also implements, is a Harvard

memory model with separate segments for data and code to ensure correct access to

data, and preventing jumps to instructions outside the code area. Using this model, the

5

machine is less vulnerable to typical exploits derived from ’illegal’ pointer arithmetic

to other executable memory segments.

4.2 Portability

Portability is obtained by designing a completely platform-independent bytecode and

by virtualizing a very broad hardware platform. The instruction set includes all typi-

cal instructions for data transformation, control flow, and data movement. To capture

most of the physical computer platforms, it is designed as an orthogonal multi-opcode

multi-address set of instructions in a 3-operand format, thereby permitting easy trans-

lation to 2-operand architectures. Addressing modes include immediate addressing,

displacement addressing, register addressing, and indirect addressing.

Virtualization occurs at many levels in various computer subsystems. It typically

provides an illusion of hardware configurations that are not physically available, for

instance virtual memory which gives each process the illusion of having exclusive access

to the entire address space of the machine. With the SciBy VM, much focus is placed on

being forward compatible by virtualizing hardware setups of the future. Most notably,

as the tendency goes towards more and more registers, the machine provides a virtually

unlimited number of registers. Just to provide a number for the compiler, it is set to

16384 128-bit registers. Further, as there is now a shift from 32 bit towards 64 bit

architectures, the next step probably being 128 bit, the SciBy VM supports all these

word sizes.

4.3 Performance

Performance is obtained by augmenting the instruction categories with one essential

category: Instructions that can call external native library functions. Executing byte-

codes in a virtual machine will incur performance overhead, but the key point here

is to utilize the fact that scientific applications spend most of their time in these

libraries. The characteristics of these applications, for instance bioinformatics, high-

energy physics, or image processing analysis, is a small but very time-consuming code

size. Typically, these application set up input and output files, and then enter some

dense loop structures in which time-consuming calls to an external library are con-

tinuously made. In the SciBy VM, the surrounding code is replaced by the portable

bytecode, but with support for calling native optimized libraries in order to achieve

near native performance, this is illustrated in Figure 1.

Obviously, native libraries are not portable and a version of the machine must be

equipped with statically linked libraries for every architecture, and made available for

people willing to participate. However, with the success of a library follows ports to

other architectures, and it is a simple and small task to embed a library in the machine.

4.4 Remote File Access

As mentioned above, the SciBy VM does not have access to a file system on the host

machine. Instead of transferring input and output files to the resource executing a job,

the files remain in the home directory of the job owner at a file server, and are then

6

Physical Machine

Virtual Machine

Bytecode

Translator/
Interpreter

fft

Machine Language
Program

imageblas

Native
Operating System

Fig. 1 An untrusted application converted to bytecode, running in VM with embedded sci-
entific native libraries.

accessed remotely using the Remote File Access Library [4] (RFA) in the Minimum

intrusion Grid, described below. Imposed as a user-level library between an application

and the host operating system, it intercepts all file access routines and directs them to

the server on which the file in question resides.

This type of on-demand remote file access enables the resource to limit its file

retrieval to a set of file fragments holding the needed data, thus only downloading

needed data and only uploading modified data. Especially for scientific applications,

this technique can be a big advantage compared to the traditional staging technique.

On initialization, a job can start right away; it does not need to wait for potentially huge

files to be transferred from a file server. And often, only the first parts, or scattered

fragments of a file are really needed. For instance, high-energy physics applications

typically find their data in huge database input files, but the amount of blocks read

from the file is relatively small. Similarly, output files are written remotely on demand.

Using prefetching to hide the latency, and a strategy for dynamically adjusting

block sizes in the data transfer that adapts to the application’s data access pattern, and

mitigates fluctuating network conditions, the file access library has proved to have very

good performance. Compared to staging techniques, tests have shown that speedups

of above one thousand are well within the realm of possibilities. In optimal scenarios,

it can even be superior to local file access, for instance with CPU-bound applications,

where the block transfer times, and more importantly, the system calls for the file

access, can be completely hidden by computations.

5 Deployment

While both the SciBy virtual machine and the remote file access library were indepen-

dently developed and applicable in many systems, they are targeted at, and deployed

in, the Minimum intrusion Grid.

7

Grid

Client Resource

Resource

Resource
Client

Client

Client

Fig. 2 The abstract MiG model

5.1 Minimum intrusion Grid

MiG [22,16] is a stand-alone approach to Grid that does not depend on any existing

systems, i.e. it is a completely separate platform for Grid computing. The philosophy

behind the MiG is to provide a Grid infrastructure that imposes as few requirements

on users and resources as possible.

Driven by the aim of minimum intrusion on participating parties, the idea is to

ensure that users only need a signed X.509 certificate, trusted by Grid, and a web

browser that supports HTTP and HTTPS. A resource only needs to create an MiG

user on the system and to support inbound ssh and outbound HTTPS. Initially, the

resource must register to the MiG system using a certificate.

By keeping the Grid system disjoint from both users and resources, as shown in

Figure 2, this model allows the Grid system to appear as a centralized black-box to both

users and resources, and all upgrades and trouble shooting can be performed locally

within the Grid without intervention from neither users nor resource administrators.

Thus, all functionality is placed in a physical Grid system.

The basic functionality in MiG starts with users submitting jobs to MiG and re-

sources sending requests for jobs. A resource then receives an appropriate job from

MiG, executes the job, and sends the result to MiG that can inform the user of the

job completion. Thus, MiG provides full anonymity; users and resources interact only

with MiG, never with each other.

5.2 Porting SciBy VM and Distributing jobs

The process of porting the SciBy VM to other architectures is straightforward. The

interpreter is written in strict ANSI-C making it highly portable. In all experiments

presented in the next section, the source files were copied to the test machine and com-

piled. The applications were compiled into bytecode files on a single machine and then

transferred for immediate execution. As regards the libraries, they were all available for

the tested platforms. So once built on the particular platform, the library is embedded

into the virtual machine for the platform in question.

People willing to donate can then download a version of the machine matching

their platform from the website, and just like the native code sandbox [3] provided by

the MiG, screen saver software will contact the Grid for a job on activation. During

download, a resource description file is generated stating resource features such as which

8

libraries are available. It is then up to the scheduler to match the resource description

with job description files, as shown below.

Researchers in need of compute power compile their source code into the SciBy VM

bytecode, for instance fourier.bin, which needs to be uploaded to one’s home directory

in MiG. Next, submitting the job to the MiG can be done either through the website

using an X.509 certificate or by downloading scripts to automate the process. The job

description, in MiG known as a mRSL file, used for submitting the job to the MiG is:

::EXECUTE::

scibyvm fourier.bin

::NOTIFY::

jabber: my_id@jabber.org

::INPUTFILES::

fourier.bin

::OUTPUTFILES::

outputimage.pgm

::CPUTIME::

900

::ARCHITECTURE::

SciBy-VM

::RUNTIMEENVIRONMENT::

libfourier

The MiG has already run the native code sandbox volunteer computing project,

based on existing virtual machines, for a long time, and has proved flexible enough to

deal with resources behind NAT routers, and with such dynamic and transient compute

elements as screen saver resources.

6 Evaluation

The Fast Fast Fourier Transform (FFT) is an obvious choice for evaluating the SciBy

VM, since it is a fundamental kernel in so many scientific applications, for instance

data compression, fluid dynamics, seismic imaging, image processing, computer tomog-

raphy, data filtering, spectral analysis, and digital signal processing. The core of these

applications is the necessity of computing Fourier transforms, and the performance

of this type of application relies heavily on the routines available for performing the

transforms.

In this test, our application uses the fftw [12] library to perform 10 transforms on

a vector of varying sizes, 219, ..., 223, and then checksums the result vector to verify

the result. The application is compared to a native C-version on 3 different machines:

– A 1.86 GHz Intel Pentium M, 2 MB cache, 512 MB RAM

– A dual core 2.2 GHz AMD Athlon 4200 64-bit, 512 kB cache per core, 4 GB RAM

– A dual quad core Intel Xeon, 1.60 GHz, 4 MB cache per core, 8 GB RAM

As shown in Table 1, the performance of the SciBy VM is on par with native

execution, and when taking advantage of a multi-threaded library, it can utilize multi-

core architectures.

To give a deeper evaluation of the performance and portability, we invent new

experiments as examples of typical scientific applications and evaluate them on different

9

Pentium M AMD Athlon Intel Xeon
Vector size Native SciBy VM Native SciBy VM Native Sciby VM
524288 1.535 1.483 0.879 0.874 0.650 0.640
1048576 3.284 3.273 1.857 1.884 1.106 1.118
2097152 6.561 6.656 3.307 3.253 1.917 1.944
4194304 14.249 14.398 6.318 6.354 3.989 3.963
8388608 29.209 29.309 13.045 12.837 7.796 7.799

Table 1 Comparison of SciBy VM and native performance on an FFT application on 3
different architectures.

architectures. The results in all experiments are the average of 3 consecutive runs, all

measured in seconds using the Linux time command. Firstly, we turn to the field of

image processing, then, we perform some experiments using a BLAS library.

6.1 Image Processing

Image processing is widely used in many scientific applications, such as medical imag-

ing, computer graphics rendering, sensing and detection systems, and in general, over

the last few years it is becoming a topic of interest for a broad scientific community.

Using fourier [8], a portable image processing and analysis library, we write a sample

application that applies a series of transformations, for instance gaussian adaptive

smoothing filter, on a raw 2592x1944 pixel pgm image. We then run the application in

4 different setups:

– Native: Run natively, with the image in the local file system

– SciBy VM: Run inside the SciBy VM with the image in the local file system (sus-

pending the local file access restriction)

– Native + RFA: Run natively, using the Remote File Access library to access the

file 200 km away (standard 5 Mbps ADSL-line).

– SciBy VM + RFA: Run inside the SciBy VM using the RFA library as above.

These tests are performed on 4 architectures:

– An Intel Core 2 1.86 GHz processor, 2GB memory, running 32 bit Ubuntu linux,

– An AMD Athlon 64-bit processor 3000+, 1GB memory, running Debian-amd64

– A 3.2 GHz PowerPC 64-bit processor, 2 hardware threads, from the Cell Broadband

Engine, running 32-bit Yellow Dog Linux2

– an Intel Core 2 2.4 GHz processor, 4GB memory, running Mac OSX.

Table 2 shows that there is no overhead when running inside the virtual machine in

any of the setups. Since the entire file is used in an unbalanced fashion, there is no gain

from using the RFA library. The time to transfer the image using curl and lighttpd

was 46.293 seconds, which is exactly the difference between the runs with and without

RFA. Thus, a staging technique would be equal to accessing the file remotely.

Next, to illustrate utilization of a multi-core architecture, we use the diplib [21] im-

age processing library, which is multi-threaded. In this test, we apply the very compute-

intensive second order derivative Laplace filter on the image, and execute on the 8-core

Intel Xeon 1.60 GHz with 8 GB memory. Using the taskset command, the experiment

is carried out using 1,2,4, and 8 cores.

2 The fourier image library does not utilize the SPEs in the Cell BE.

10

Table 2 Results from the fourier application on a single-core host machine including transfer
time of the image data from Grid

Arch. Native SciBy Native+RFA SciBy+RFA

Core 2 96.36 96.41 96.87 96.90
AMD 78.93 78.89 78.75 79.01
PPC 166.18 164.25 167.76 166.21
Mac 58.72 59.05 59.55 60.01

Table 3 Results from the diplib application on an 8-core host machine. The image transfer
time, 46 seconds, is not included

Cores Native SciBy Native+RFA SciBy+RFA

1 101.53 101.34 147.47 147.80
2 51.36 51.94 97.76 97.60
4 27.74 27.63 73.23 73.54
8 15.14 15.23 61.87 61.90

Table 4 Results from the video processing, including transfer time of the image from the Grid

Arch. Native SciBy Native+RFA SciBy+RFA

Core 2 376.58 377.11 261.81 262.01
AMD 260.24 260.13 192.89 193.11

From the results in Table 3, we can once again conclude that there is no overhead

from using the virtual machine. And, there is immediate support for multi-core utiliza-

tion. Again, since the diplib image reads the entire image before it processes it, there

is no gain from the remote file access library.

To wrap up image processing performance tests, a final example uses the ffmpeg [7]

library to decode frames from a video file. Each decoded frame is then transformed using

the Imlib2 [14] image library. In this case, we just a apply a simple blurring effect to

every frame. Since the ffmpeg balances I/O and processing, i.e. it consecutively reads

data for a single frame, and then decodes it, the RFA library can take advantage of the

prefetching, thus having every frame available in the instant it is needed. Therefore,

as shown in 4, using the RFA library is faster than using local file access. The test is

performed on the Intel and AMD computers only.

6.2 Basic Linear Algebra Subroutines

BLAS (Basic Linear Algebra Subroutines)is widely used for high-performance computing

and benchmarking. BLAS is a set of efficient routines for most of the basic vector and

matrix operations. They are widely used as the basis for other high quality linear

algebra software packages, for instance lapack and linpack. In this test, we perform a

series of operations from the ATLAS [25] and GotoBLAS [1] libraries on a 500 by 500

matrix. It is all computed in memory, so there is no file access. The results displayed

in 5 once again show that the SciBy VM achieves near native speed.

11

Table 5 Results from the BLAS benchmark

Arch. Native SciBy VM

Core 2 38.466 38.211
AMD 46.340 46.870
PPC 43.513 43.662
Mac result not available yet

7 Conclusions and Future Work

Merging Volunteer Computing and Grid Computing systems is a big step towards

realizing one of the initial ideas of Grid Computing, namely harnessing idle CPU power

from all types of computer resources and putting them on tap for world-wide sharing.

To harness the compute power from an ever-increasing farm of architectures and use

it for scientific research, 3 fundamental obstacles have been identified and dealt with:

portability, security, and performance. To this end, we have presented and evaluated

the SciBy Virtual Machine.

Security is an all-important topic when utilizing other people’s computers. The

virtual machine ensures host system integrity by isolating the application in a secure

execution environment.

Bytecodes and a virtual machine executing them provides platform-independence

at the cost of performance. In this paper we have introduced a hybrid model, where

the machine executes mobile bytecodes and uses native optimized libraries to mitigate

the performance drawback. Thus, the model applies best to applications that spend

most of their time in the libraries, which is the case for scientific applications.

Using typical scientific libraries, we have evaluated the machine’s performance and

found it to be on par with native execution. For other types of applications, the machine

will currently perform poorly, but lessons learned from similar machines will surely

alleviate this problem.

References

1. Gotoblas, http://www.tacc.utexas.edu/resources/software/.
2. The gnu compiler collection, http://gcc.gnu.org.
3. Rasmus Andersen and Brian Vinter, Harvesting idle windows cpu cycles for grid comput-

ing, GCA (Hamid R. Arabnia, ed.), CSREA Press, 2006, pp. 121–126.
4. , Direct application access to grid storage: Research articles, Concurr. Comput. :

Pract. Exper. 19 (2007), no. 9, 1287–1298.
5. , The scientific byte code virtual machine, GCA, 2008, pp. ppp–ppp.
6. David P. Anderson, Boinc: A system for public-resource computing and storage, GRID ’04:

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing (Wash-
ington, DC, USA), IEEE Computer Society, 2004, pp. 4–10.

7. Fabrice Bellard, ffmpeg, http://www.ffmpeg.org/.
8. M. Emre Celebi, fourier, http://mac.softpedia.com/get/Development/Libraries/

Fourier.shtml.
9. Folding@home, Folding@home distributed computing, http://folding.stanford.edu/.

10. Bryan Ford and Russ Cox, Vx32: lightweight user-level sandboxing on the x86, ATC’08:
USENIX 2008 Annual Technical Conference on Annual Technical Conference (Berkeley,
CA, USA), USENIX Association, 2008, pp. 293–306.

11. Ian Foster, The grid: A new infrastructure for 21st century science, Physics Today 55(2)
(2002), 42–47.

12

12. Matteo Frigo and Steven G. Johnson, The design and implementation of FFTW3, Pro-
ceedings of the IEEE 93 (2005), no. 2, 216–231, special issue on ”Program Generation,
Optimization, and Platform Adaptation”.

13. James Gosling, Bill Joy, Guy Steele, and Gilad Bracha, Java language specification, third
ed., Addison-Wesley Professional, July 2005.

14. Carsten Haitzler, Imlib2, http://docs.enlightenment.org/api/imlib2/html/.
15. ECMA International, Standard ecma-335 - common language infrastructure (cli), 4 ed.,

June 2006.
16. Henrik Hoey Karlsen and Brian Vinter, Minimum intrusion grid - the simple model, WET-

ICE ’05: Proceedings of the 14th IEEE International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprise (Washington, DC, USA), IEEE Computer So-
ciety, 2005, pp. 305–310.

17. Tim Lindholm and Frank Yellin, The java(tm) virtual machine specification (2nd edition),
Prentice Hall PTR, April 1999.

18. William Mcewan, Virtual machine technologies and their application, Accessed 14 March
2003 www.ddj.com/documents/s=882/ddj0008f/ 0008f.htm, 2002, pp. 55–62.

19. Erik Meijer, Redmond Wa, and John Gough, Microsoft clr overview.
20. Ian Pratt, Keir Fraser, Steven Hand, Christian Limpach, Andrew Warfield, Dan Magen-

heimer, Jun Nakajima, and Asit Mallick, Xen 3.0 and the art of virtualization, Proceedings
of Linux Symposium 2005, July 2005.

21. Michael van Ginkel, diplib, http://www.diplib.org.
22. Brian Vinter, The Architecture of the Minimum intrusion Grid (MiG), Communicating

Process Architectures 2005, sep 2005, pp. –.
23. Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L. Graham, Efficient

software-based fault isolation, In Proceedings of the 14th ACM Symposium on Operating
Systems Principles, 1993, pp. 203–216.

24. Jon Watson, Virtualbox: bits and bytes masquerading as machines, Linux J. 2008 (2008),
no. 166, 1.

25. R. Clint Whaley and Antoine Petitet, Minimizing development and maintenance costs
in supporting persistently optimized BLAS, Software: Practice and Experience 35 (2005),
no. 2, 101–121.

26. Bennet Yee and David Sehr, Native client: A sandbox for portable, untrusted x86 native
code, Tech. report, 2001.

27. Vmware, http://www.vmware.com/.

Appendix F

Publication 6

Recent Developments in Grid Technology and Applications. G.A. Gravvanis, J.P. Morrison,

H.R. Arabnia and D.A. Power, Editors Rasmus Andersen, Martin Rehr, Brian Vinter: Cycle-

Scavenging in Grid Computing

192

Cycle-Scavenging in Grid Computing 141

Chapter 1

CYCLE-SCAVENGING IN GRID COMPUTING

Rasmus Andersen, Martin Rehr, and Brian Vinter∗

University of Copenhagen, Department of Computer Science

PACS 05.45-a, 52.35.Mw, 96.50.Fm.Keywords: .

Key Words: cycle scavenging, Grid Computing, Public Resource Computing, Minimum
intrusion Grid, Virtual MachinesAMS Subject Classification: 53D, 37C, 65P.

Abstract

Grid Computing and Public Resource Computing systems each provide means of
obtaining and utilizing distributed computational resources. In this chapter we explore
the benefits and potential of combining the two fields into a system that offers the
flexibility of Grid Computing and the resource richness of the cycle-scavenging PRC
systems.

Important aspects of a combined effort include host system security, application
security, platform independence, and resource managementand control.

Sandboxing technology accommodates these requirements, and two different mod-
els offered by the Minimum intrusion Grid are presented. Both of them use virtual ma-
chines to sandbox Grid Computing jobs on idle personal desktop computers and have
proved to close the gap between Grid Computing and Public Resource Computing.

∗E-mail address: vinter@diku.dk

142 R. Andersen, M. Rehr, and B. Vinter

1 Introduction

Cycle scavenging, or Screen Saver Science, is an increasingly popular computing paradigm
used within many fields of science that seek to tap the enormous amount of unused pro-
cessing power from the millions of computers connected to the Internet. The paradigm is
best known from the many successful Public Resource Computing, PRC,projects, such as
SETI@Home, where the idle time cycles are used for a dedicated scientific application.

Grid Computing [6] and PRC each provide increasingly interesting means of obtaining
computational resources. Grid Computing is mostly used for connecting university super-
computers, while PRC is predominantly used by research projects for harvesting PC-based
idle CPU cycles for a small number of research projects. However, eventhough the two
fields appear closely related, little effort has been made to combine them into a system that
offers the flexibility of Grid computing with the resource richness of the PRC model.

One of the Grid promises is to make it possible to share and effectively use distributed
resources on an unprecedented scale. Specifically, this includes harnessing the unused ca-
pacity of idle desktop PCs. Harnessing ’free’ cycles through PRC is of great interest since
a modern PC is powerful and highly underutilized, and as such cycle harvesting provides
huge calculation potential if one combines millions of them in a computing Grid. A lot
of research has been done to Grid-enable idle resources, yet no widely accepted system to
effectively scavenge idle cycles, in particular idle Windows cycles, has been found. Most
known Grid systems such as ARC which is based on the Globus toolkit and Condor [3]
are unsuitable for PRC computing, as they work under the underlying assumption that the
resources are available indefinitely, while PRC resources are transientby nature.

Ensuring the safety of a donated resource while it executes a Grid job in a PRC context
is an all important topic since all free resources will vanish if the model proves harmful
to the hosts. Contrary to standard PRC tasks, a Grid job may take any form and include
the execution of any binary. Therefore it is necessary to take precautions to ensure that the
execution of Grid jobs cannot harm donated resources neither intentionally nor by accident.

Extending the PRC concept to actual Grid Computing, security and installation of soft-
ware on the host resource are equally important issues to a successfulsolution. All PRC
projects known to the authors require the donor to install software on the resource that
should contribute, which alone eliminates users from donating resources from computers
that they do not have administrative rights on. The software installation also opens up
possible exploits and requires the donor to perform updates on that software. This is not
desirable and may reduce the amount of donated resources.

Our goal is to design Grid PRC sandbox models that with a minimal effort from the
resource owner can execute Grid jobs in a secure environment. This chapter addresses the
problems that need to be solved in order to combine PRC and Grid Computing by scav-
enging idle desktops for general scientific use. First of all, under the restrictions mentioned
above, a method to gain access to the CPU cycles on the idle resource must befound. In
this aspect, security is a major issue. Ideally, a resource owner should neither install any
software nor execute any foreign applications that, intentionally or not, could compromise
his system. Secondly, the resource, possibly hidden by a Network Address Translation
router and a firewall, must be attached to the Grid without forcing modification torouters
or firewalls. Thirdly, it must be ensured that a given resource has installed the correct soft-

Cycle-Scavenging in Grid Computing 143

ware base that a given Grid job requires. Finally, we introduce extra features to improve
the model; for instance, a method to predict the idle time period of a resource in advance.
Using this method, a job with a time deadline is submitted to a resource that is predictedto
be available in the specified time frame.

The approach taken here is to use virtual machines to provide a sandbox that by default
includes everything needed to execute Grid jobs and completely separates them from the
resource host system. This separation ensures that, on the one hand, agrid job cannot
compromise the host system, and on the other hand, the grid job is protected from other
users of the system. Two different models have been implemented: Firstly the The MiG-
SSS, which is based on system virtual machines that execute an entire linux guest operating
system specifically designed as a Grid resource. Secondly, the One-Click MiG Applet
Resource, which is based on Java applet technology and enables users with a standard Java-
enabled web browser to donate their idle time PCs with a single click on a website, thereby
starting a Java applet capable of executing Grid jobs written for this framework.

1.1 Related Work

BOINC [2] is a software platform that allows many different distributed computing projects
to utilize idle volunteered computer resources. Many Public Resource Computing systems
use BOINC, and research groups can with little effort create new projects. A project in-
volves a set of applications that will be run in a BOINC client on a user’s resource. As
such, BOINC could be used for this project by running the proposed virtual machine as the
project application.

A few projects have been found to combine Screen Saver Science with Gridcomputing,
for instance the Entropia Virtual Machine [4], which is a commercial product, and the
survey [5] that is merely an extensive introduction to the approach of using virtual machines
for Grid computing.

2 Sandboxing in a Grid Context

Although virtualization was introduced several decades ago, the concept is now more pop-
ular than ever and has revived in a multitude of computer system aspects thatbenefit from
properties such as platform independence and increased security. One of those applications
is Grid computing, where the ultimate goal of combining and utilizing distributed, heteroge-
neous resources as one big virtual supercomputer necessitates these properties. Regarding
utilization of the public’s computer resources for grid computing, virtualization, in the sense
of virtual machines, is a necessity for fully leveraging the true potential of Grid computing.
Without virtual machines, experience shows that people are, with good reason, reluctant to
put their resources on a grid since they have to not only install and managea software code
base, but also allow native execution of unknown and untrusted programs. All these issues
can be eliminated by introducing virtual machines.

eScience, modelling scientific problems using computers, has driven the development
of Grid technology, and as the simulations get more and more accurate, the amount of data
and needed compute power increase equivalently. Many research projects have already
made the transition to Grid platforms to accommodate the immense requirements for data

144 R. Andersen, M. Rehr, and B. Vinter

and computational processing. Using this technology, researchers gainaccess to many
networked computers at the cost of a highly heterogeneous computing platform. Obviously,
maintaining application versions for each resource type is tedious and troublesome, and
results in a deploy-port-redeploy cycle. Further, different hardware and software setups
on computational resources complicate the application development drastically. One never
knows to which resource a job is submitted in a grid, and while it is possible to assist each
job with a detailed list of hardware and software requirements, researchers are better left
off with a virtual workspace environment that abstracts a real executionenvironment.

Hence, a virtual execution environment spanning the heterogeneous resource platform
is essential in order to fully leverage the grid potential. From the view of applications, this
would render a resource access uniform and thus allow the much easier ”compile once run
anywhere” strategy; researchers can write their applications, compile them for the virtual
machine and have them executed anywhere in the Grid.

Due to the renewed popularity of virtualization over the last few years, virtual machines
are being developed for numerous purposes and therefore exist in many designs, each of
them in many variants with individual characteristics. Despite the variety of designs, the
underlying technology encompasses a number of properties beneficial for Grid Computing:

Platform Independence: In a grid context, where it is intrinsic to move around appli-
cation code as freely as application data, it is highly profitable to enable applications to
be executed anywhere in the grid. Virtual machines bridge the architectural boundaries of
computational elements in a grid by raising the level of abstraction of a computersystem,
thus providing a uniform way for applications to interact with the system. Given a common
virtual workspace environment, grid users are provided with a compile-once-run-anywhere
solution.

Furthermore, a running virtual machine is not tied to a specific physical resource; it can
be suspended, migrated to another resource and resumed from where itwas suspended.

Host Security: To fully leverage the computational power of a grid platform, security is
just as important as application portability. Today, most grid systems enforcesecurity by
means of user and resource authentication, a secure communication channel between them,
and authorization in various forms. However, once access and authorization is granted,
securing the host system from the application is left to the operating system.

Ideally, rather than handling the problems after system damage has occurred, harmful
- intentional or not - grid applications should not be able to compromise a grid resource in
the first place.

Virtual machines provide stronger security mechanisms than conventional operating
systems, in that a malicious process running in an instance of a virtual machineis only
capable of destroying the environment in which it runs, i.e. the virtual machine.

Application Security: Conversely to disallowing host system damage, other processes,
local or running in other virtualized environments, should not be able to compromise the
integrity of the processes in the virtual machine.

System resources, for instance the CPU and memory, of a virtual machine are always
mapped to underlying physical resources by the virtualization software. The real resources

Cycle-Scavenging in Grid Computing 145

are then multiplexed between any number of virtualized systems, giving the impression
to each of the systems that they have exclusive access to a dedicated physical resource.
Thus, grid jobs running in a virtual machine are isolated from other simultaneous grid jobs
running in other virtual machines on the same host as well as possible local users of the
resources.

Resource Management and Control: Virtual machines enable increased flexibility for
resource management and control in terms of resource usage and site administration. First
of all, the middleware code necessary for interacting with the Grid can be incorporated in
the virtual machine, thus relieving the resource owner from installing and managing the
grid software. Secondly, usage of physical resources like memory, disk, and CPU usage of
a process is easily controlled with a virtual machine.

Performance: As a virtual machine architecture interposes a software layer between the
traditional hardware and software layers, in which a possibly differentinstruction set is im-
plemented and translated to the underlying native instruction set, performance is typically
lost during the translation phase. Despite of recent advances in new virtualization and trans-
lation techniques, and the introduction of hardware-assisted capabilities, virtual machines
usually introduce performance overhead and the goal remains achievingnear-native perfor-
mance only. The impact depends on system characteristics and the applications intended to
run in the machine.

To summarize, virtual machines are an appealing technology when combining Grid
Computing and PRC because they solve the conflict between the grid users at the one end
of the system and resource providers at the other end. Grid users want exclusive access
to as many resources as possible, as much control as possible, secure execution of their
applications, and they want to use certain software and hardware setups. At the other end,
introducing virtual machines on resources enables resource owners toservice several users
at once, to isolate each application execution from other users of the system and from the
host system itself, to provide a uniform execution environment, and managed code is easily
incorporated in the virtual machine.

3 Enabling the sandboxes for the Grid

The main problem with scavenging personal computers is that the vast majorityare hidden
behind a NAT router, i.e. they do not have global IP address and are therefore not reachable
from the Internet. Hence, to enable the sandbox for Grid Computing, caremust be taken to
circumvent the missing inbound Internet access. Naturally, this issue is highly dependent on
the Grid middleware in question. In this work, the sandboxes are designed for the Minimum
intrusion Grid, MiG, which is presented next, before the details of how to tailorthe two
sandboxes for MiG are explained.

3.1 Minimum intrusion Grid

MiG [8] [7] is a stand-alone approach to Grid that does not depend on any existing systems,
i.e. it is a completely new platform for Grid computing. The philosophy behind theMiG is

146 R. Andersen, M. Rehr, and B. Vinter

Figure 1: The abstract MiG model

to provide a Grid infrastructure that imposes as few requirements on usersand resources as
possible.

The idea is to ensure that users only need a signed X.509 certificate, trusted by Grid,
and a web browser that supports HTTP and HTTPS. A resource only needs to create an
MiG user on the system and to support inbound ssh and outbound HTTPS.Initially, the
resource must register to the MiG system using a certificate.

By keeping the Grid system disjoint from both users and resources, as shown in Figure
1, this model allows the Grid system to appear as a centralized black-box to both users and
resources, and all upgrades and trouble shooting can be performed locally within the Grid
without intervention from neither users nor resource administrators. Thus, all functionality
is placed in a physical Grid system that, although it appears as centralized system, in reality
is a distributed system itself.

The basic functionality in MiG starts with users submitting jobs to MiG and resources
sending requests for jobs. A resource then receives an appropriatejob from MiG, executes
the job, and sends the result to MiG that can inform the user of the job completion. Thus,
MiG provides full anonymity; users and resources interact only with MiG, never with each
other.

3.1.1 Scheduling

The centralized black box design of MiG makes it capable of strong scheduling, which
implies full control of the jobs being executed and the resource executing them. Each job
has an upper execution time limit, and when the execution time exceeds this time limit the
job is rescheduled to another resource. This makes the MiG system very well suited to host
PRC resources, as they by nature are very dynamic and frequently join and leave the Grid
without notifying the Grid middleware.

Cycle-Scavenging in Grid Computing 147

3.2 Cycle-Scavenging using System Virtual Machines

In MiG-SSS, the screen saver model based on system virtual machine, thebasic idea is to
let resource owners install a sandbox to provide a secure execution environment in which
the Grid job is completely isolated from the host machine and vice versa. Such asandbox
can take the shape of a virtual machine, which is exactly the approach that we have taken
in this work. Two techniques can be used to provide a virtual machine: Emulation and
Virtualization[5]. Emulation provides the functionality of the target processor completely in
software, which makes it a very secure approach. Also, the ability to emulateone processor
type on any other processor type makes it ideal for this scenario. However, the method of
interpreting the entire guest operating system, rather than running it on the native hardware,
results in a significant performance drawback. When emulating a PC architecture on a PC, a
compatibility layer that enables the target code to be run directly on the host processor, can
reduce the performance penalty. On the other hand, virtualization partitionshardware in
multiple contexts, thus enabling running multiple operating systems on the same hardware
resources simultaneously. Several virtualization approaches exist[6]:

• Bare-metal Architecture

• Para-virtualization

• Full Virtualization, also known as Transparent Virtualization, or Hosted Architecture

The Bare-metal Architecture approach runs the guest operating systemin Ring 0, the
most privileged protection level in x86 architectures. Running multiple operating systems
in the same protection level could potentially result in one of the systems compromising the
other. Clearly, this approach is not acceptable for resource owners.The Para-virtualization
approach needs to modify the host system by interposing a hypervisor between the operating
system and the hardware. The hypervisor then takes on the Ring 0 and theoperating system
must be explicitly ported to run in Ring 1. These modifications to the host operating system
exclude this approach. The Full Virtualization approach has performance drawbacks, but is
the most secure and thus chosen. As shown in Figure 2, the virtual machineallows a guest
operating system to run as an application in the host operating system. The virtual machine
emulates the underlying hardware, thus creating a secure sandbox that allows an application
written for one operating system, e.g. Linux, to be executed in another, e.g.Windows.

The performance penalties are mitigated by kernel support that enables itto run most
of the target application code directly on the host processor, thus achieving near native
speed. Regarding security, the virtual machine is a user space processthat cannot do any
harm to the host system as long as the permanent storage is protected properly. If the
virtual machine is destroyed by a malicious application, the host system is not affected, and
the virtual machine can start afresh. The following such solutions exist for the Windows
platform:

• VirtualPC

• VMWare

• VirtualBox

148 R. Andersen, M. Rehr, and B. Vinter

Windows Application 1 Windows Application 2

Linux
App 1 App 2

Linux

Guest OS (Linux)

Host OS (Windows)

Hardware

Figure 2: Full Virtualization

• Qemu + Qemu Accelerator Module

Having downloaded and installed one of the virtual machines, a resource owner only
needs to install a screen saver that starts the virtual machine upon activation and a tailor-
made Linux image that is capable of running the Grid resource software automatically. In
this manner, when the resource goes into screen saver mode, the virtual machine is activated
and the Linux guest operating system is booted. The details of how to Grid-enable the
hosted Linux system are explained next.

3.2.1 The MiG Linux Guest OS

As explained above, all that is required for a resource to join MiG, is to create a grid user
account and support for incoming SSH and outgoing HTTPS. So basically, the MiG Linux
image can be built using any Linux distribution that runs an x86 system. Since the vir-
tual machine provides a standardized virtualized set of hardware, compatibility amongst
the wide range of different hardware setups on the resources will notbe an issue. The main
concerns with respect to the distribution is the size and the start-up time. Both issues mat-
ter only for practical reasons, the size should be minimized to avoid an excessively large
download, and, naturally, the start-up time should be minimized as much as possible. In
order to circumvent the missing inbound Internet access on resources that use NAT, it must
be ensured that all communication is initiated by the resource. In MiG, this was easily in-
tegrated by small changes that only apply for sandboxes. In addition, it allows for directing
jobs that users point out as Public Resource Computing jobs directly to a free sandbox. The
generic MiG Linux Image consists of a kernel and a Ram-disk that altogethertake up less
than 3 MB. An online generator modifies the generic image by giving it a uniqueresource
name and a session id needed for requesting a job. Further, the resource owner can choose
the size of a hard disk image file to provide as storage for the sandbox. Thus, certified
resource owners can have a complete image built with a unique key allowing thesandbox

Cycle-Scavenging in Grid Computing 149

to automatically request and execute Grid jobs. In the standard MiG model, the identity
of a resource requesting a job is verified by keeping the public SSH key ofthe resource
in the MiG system and copying all job files to the resource over SSH. The sandbox model
however, is modified to use a pull model on the resource where all files aretransferred us-
ing HTTPS. Hence, a firewall in front of a resource only needs to be open for HTTP and
HTTPS to allow the resource to run Grid jobs.

3.2.2 Runtime Environments

Once the basic sandbox is in place, it is possible to execute user applicationswithin the
virtual Linux machine. Many applications can be passed as executables from the Grid job
and these need no further components to execute. Other, commonly used, applications may
benefit from a preinstalled runtime environment, such as they are found onordinary Grid
resources.

Installing runtime environments in the sandboxed environment could be done as on a
conventional resource, which however would require the PC owners topersonally maintain
the sandboxed Linux distribution; this model is obviously not desirable. Alternatively the
sandbox image could be distributed with the initial Linux image, but this would greatly
increase the size of the distribution image and in addition be a very static model.

The chosen solution allows individual research groups to maintain runtime environ-
ments for the sandboxed resources and at the same time allows the individualPC owners
to control which runtime environments are downloaded and at which time. The runtime
environments are kept in individual virtual disk-partitions, in the form of asingle file. The
PC owner can download individual runtime environments from the VGrids, MiG’s notion
of a virtual organization, that maintain the runtime environments and when a job that uses a
runtime environment is received by the sandboxed resource, the virtualLinux machine will
mount the file system that contains the runtime environment. This way each runtimeenvi-
ronment is kept isolated from the rest of the system, and can easily be built and maintained
by the research groups that need them to be available for their executions.

3.3 Cycle-Scavenging using Java Applets

As explained above, all that is required for a PRC resource to join MiG is a sandbox and
support for outgoing HTTPS. The previous solution presented above requires installation
of non standard software to activate and execute the sandbox. In this model, “MiG One-
Click”1 the work imposed on the resource donor is taken to the extreme: No softwareinstall
is needed.

To reach our stated goal of no Grid specific software installation and no modification of
the donated machines firewall settings, we are forced to use software which is an integrated
part of a common Internet connected resource.

We found that amongst the most common software packages for any PC typeplatform
there is a Java enabled web browser. The web browser provides a common way of securely

1The URL accessed to activate the web browser as a sandboxed MiG Javaresource is called “MiG One-
Click”, as it requires one click to activate it.

150 R. Andersen, M. Rehr, and B. Vinter

communicating with the Internet, which is allowed by almost all firewall configurations of
the resources we target.2

The web browser provides us with a communication protocol, but it does notby itself
provide a safe execution environment, however all of the most common graphics enabled
web browsers have support for Java applets that are capable of executing Java byte-code
located on a remote server.

The Java applet security model, ASM, prevents the Java byte-code executed in the ap-
plet from harming the host machine and thereby provides the desired sandbox effect for us
to trust the execution of unknown binaries on donated resources.

The choice of web browsers and Java applets as the execution framework results in
some restrictions on the type of jobs that may be executed in this environment:

• Applications must be written in Java

• Applications must apply to ASM

• The total memory usage is limited to 64 MB including the Grid framework

• Special methods must be used to catch output

• Special methods must be used for file access

By accepting the limitations described above, a web browser can be turned into a Grid
resource simply by entering a specific URL. This triggers the load and execution of an applet
which acts as our Grid gateway and enables retrieving and executing a Java byte-code based
Grid job. The details of this process are described next.

3.3.1 The Applet Grid Resource

Several changes to the Grid middleware are needed to allow Java applets to act as Grid
resources. First of all the Grid middleware must support resources which can only be ac-
cessed through a pull based model, which means that all communication is initiatedby the
resource, i.e. the applet. This is required because the ASM rules prevents the applet from
initiating listening sockets, and to meet our requirement of functioning behind afirewall
with no Grid specific port modifications. Secondly, the Grid middleware needsa schedul-
ing model where resources are able to request specific type of jobs, e.g. a resource can
specify that only jobs which are tagged to comply to the ASM can be executed.

The Java applet technology makes it is possible to turn a web browser into a MiG
sandbox without installing any additional software. This is done automatically when the
user accesses the MiG One-Click web page, which loads an applet into the web browser.
This applet functions as a Grid resource script and is responsible for requesting pending
jobs, retrieving and executing granted jobs, and delivering the results ofthe executed jobs
to the MiG server.

To make the applet work as a resource script, several issues must be addressed. First of
all ASM disallows local disk access. Because of this both executables andinput/output files

2Resources located behind firewalls that do not support outgoing HTTPSis considered out of range for this
PRC, however it is not unseen that outbound HTTPS is blocked.

Cycle-Scavenging in Grid Computing 151

Figure 3: The structure of a One-Click job

must be accessed directly at the Grid storage. Secondly only executablesthat are located
at the same server as the initial applet are permitted to be loaded dynamically. Thirdly text
output of the applet is written to the web browser’s Java console and not accessible by the
Grid middleware.

When the applet is granted a job by the MiG server, it retrieves a specification of the
job which specifies executables and input/output files. The applet then loads the executable
from the Grid, this is made possible by the MiG server which sets up an URL from the
same site as the resource applet was originally loaded which points to the location of the
executables. This allows unknown executables to be loaded and comply with the ASM
restrictions on loading executables. Figure 3 shows the structure of a One-Click job.

Executable jobs that are targeted for the MiG One-Click model must comply with a
special MiG One-Click framework, which defines special methods for writing stdout
andstderr of the application to the MiG system3. Normally the stdout and stderr of the
executing job is piped to a file in the MiG system, but a Java applet, by default, writes the
stdout and stderr to the web browsers Java console. We have not beenable to intercept this
native output path. Input and output files that are specified in the job description must be
accessed directly at the Grid storage unit since the ASM rules prohibits local file access. To
address this issue the MiG One-Click framework provides file access methods that trans-
parently provide remote access to the needed files. Note that the MiG system requires input
files and executables to be uploaded to the MiG server before job submissionwhich ensures
that the files are available at the Grid storage unit.

In addition to the browser applet a Java console version of the MiG resource has been
developed, to enable the possibility of retrieving and executing MiG One-Clickjobs as a
background process. This requires only a Java virtual machine. To obtain the desired secu-
rity model, a customized Java security policy is used, which provides the same restrictions
as the ASM.

3The result of a MiG job is the stdout/stderr and the return code of the application that is executed.

152 R. Andersen, M. Rehr, and B. Vinter

3.3.2 Checkpointing

PRC resources will join and leave the Grid dynamically, which means that jobs with large
running time have a high probability of being terminated before they finish their execution.
To avoid wasting already spent CPU-cycles a checkpointing mechanism is build into the
applet framework. Two types of checkpointing have been considered for inclusion, trans-
parent checkpointing and semi-transparent checkpointing.

Transparent Checkpointing All to the authors known transparent checkpoint mecha-
nisms provided to work with Java, require the JVM to be replacement or access to the /proc
file system on Linux/Unix operating system variants, as the default JVM does not support
storing program counter and stack frame. Since our goal is to use a web browser with the
Java applet as a Grid resource neither of those solutions are satisfactory, since both the re-
placement of the JVM and access to the /proc file system violates the Java applet security
model. Furthermore most PRC resource will be running the Windows operating system
which do not support the /proc file system.

Semi-transparent Checkpointing Since transparent checkpointing is not applicable to
the One-Click model, we went on to investigate what we call semi-transparentcheck-
pointing. Semi-transparent checkpointing covers that the One-Click framework provides
a checkpoint method for doing the actual checkpoint, but the application programmer is
still responsible for calling the checkpoint method when the application is in a checkpoint
safe state.

The checkpoint method stores the running Java object on the MiG server through
HTTPS. Since it can only store the object state, and not stack information and program
counters, the programmer is responsible for calling the checkpoint method at a point in the
application, where the current state of the execution may be restored fromthe object state
only. To restart a previously checkpointed job, the resource applet framework first discovers
that a checkpoint exists and then loads the stored object.

3.4 MiG Features

To improve and simplify the sandboxes further, MiG contains two components that apply:
Strong scheduling and remote file access.

3.4.1 Scheduling

Contrary to the majority of the existing Grid middlewares, where several levelsof schedul-
ing results in jobs being submitted to a resource where another level of scheduling takes
place, MiG makes the scheduling for fairness much simpler as the local scheduling comes
before the Grid scheduling. Thus, a single job is never left waiting a long time for CPU
cycles once it has been submitted to a resource.

Existing Screen Saver Science systems all target problems that have many,usually mil-
lions, of independent tasks that often run for tens or hundreds of hours. Once a task has
been assigned to a computer it will be processed while the computer is in screen saver mode.
Processing is suspended if the screensaver is suspended and similarly resumed again along

Cycle-Scavenging in Grid Computing 153

with the screensaver. An artefact of this model is that one never knows when the result of a
given task is ready, and it is very hard to determine if the task has been lostor if it is simply
only allowed to proceed very slowly.

For applications such as computational chemistry this model is very poorly suited. The
number of tasks is usually in the tens or hundreds and it is often the case thatanalyses of
the results can only start once the result of every task is in.

This is easily addressed by putting an upper time limit on each job, and if the time limit
is exceeded, the job is resubmitted to another resource. However, in order to schedule a
job with a deadline to a screen saver resource, we need to know how long the resource is
available, i.e. how much time it takes before the screen saver is deactivated.To predict
the available time slot of a screen saver resource, we use exponential average on an hourly
basis, which has proved to converge against the actual resource idle timequite fast.

3.4.2 Remote File Access

One difficulty that users report when using Grid is file access, since filesthat are used by
Grid jobs must be explicitly uploaded to a Grid storage element and result files must also
be downloaded explicitly. The MiG model introduces home catalogs for all Gridusers, and
all file references are relative to this home catalog. This eliminates all naming problems,
since MiG provides one simple access entry to a user’s home catalog. Furthermore, using
the MiG Remote File Access library [1], applications running on a Linux resource - as the
ones used in the MiG-SSS model - can, transparently and without recompilingor relink-
ing applications, access application input and output files remotely, thus onlydownloading
needed data and only uploading modified data.

The same ideas have been implemented in the One-Click Model which also provides
transparent remote file access to the jobs that are executed. The MiG storage server supports
partial reads and writes, through HTTPS, of any file that is associated witha job. When the
resource applet accesses files that are associated with a job, a local buffer is used to store the
parts of the file that are being accessed. If a file position which points outside the local buffer
is accessed, the MiG server is contacted through HTTPS, and the bufferis written to the
MiG server if the file is opened in write mode. The next block of data is then fetched from
the server and stored into the buffer and finally the operation returns to theuser application.
The size of the buffer is dynamically adjusted to utilize the previously observed bandwidth
optimally.

3.4.3 Block size estimation

To achieve the optimal bandwidth for remote file access it is necessary to findthe optimal
block size for transfers to and from the server. In this case the optimal block size is a
trade off between latency and bandwidth. We want to transfer as large a block as possible
without excessive latency penalty since the chance of transferring datathat will not be used
increases with the block size.

We define the optimal block sizebsopt as the largest block where a doubling of the block
size does not double the time to transfer it. This can be expressed the following way:

t(x) ∗ 2 > t(x ∗ 2) ∀x < bsopt (1)

154 R. Andersen, M. Rehr, and B. Vinter

t(x) ∗ 2 < t(x ∗ 2) ∀x > bsopt (2)

t(x) = time to transfer block of size x

We do not want block sizes belowbsopt as the timet used to transfer a block of sizex
is less than doubled when the block size is doubled. On the other hand we don’t want ‘too
large’ block sizes as we do not know if the retrieved data is going to be usedor discarded
due to a seek operation beyond the end of the local buffer.

As the One-Click resources can be placed at any sort of connection, and the bandwidth
of the connection thus may differ greatly from one resource to another, itis not possible to
use a fixed block size and reach a good ratio between bandwidth and latency at an arbitrary
type of connection.

The simplest approach would be to use a fixedbsopt based on empirical tests on the
most common connections.

A less trivial, but still simple, approach would be to measure the time it takes to connect
to the server and then choose a block size which ensures the transfer time of that block to
be a factor ofx larger than the time to connect, to make sure that the connection overhead
does not exceed the time of the actual data transfer.

The chosen approach is to estimatebsopt from the time spent transferring blockx − 1
with the time of transferring blockx, starting with an initial small4 block sizebs0 and
then doubling the block size until a predefined cutoff ratioCR is reached. After each data
transfer the bandwidthbwx is calculated and compared to the bandwidth of the previous
transferbwx−1. If the ratio is larger than the predefinedCR:

bwx

bwx−1
> CR (3)

then the block size is doubled:

bsx+1 = bsx ∗ 2 (4)

As the block size is doubled in each step the theoreticalCR to achievebsopt should be2,
since there is no incentive to increase block size once the latency grows linearly with the
size of the data that is transferred.

However in reality, one need to get aCR below2 to achievebsopt. This is due to the
fact that all used block sizes are powers of2, and one cannot rely on the optimal block size
to match a power of2.

Therefore to make sure to get a block size abovebsopt you need a lowerCR. Empirical
tests showed that aCR about1.65 yields good results, see section 4.2

Additional extensions include adapting to the frequency of random seeksin the estima-
tion of theCR. A large amount of random seeks to data placed outside the range of the
current buffer will cause new blocks to be retrieved in each seek. Therefore the block size
should be lowered in those cases to minimize the latency of each seek.

4An initial small block size gives a good result as many file accesses applies to small text files such as
configuration files.

Cycle-Scavenging in Grid Computing 155

4 Experiments

To test the One-Click model we established a controlled test scenario. Eightidentical Pen-
tium 4, 2.4 GHz machines with512 MB ram were used for tests.

4.1 One-Click as concept

The test application used is an exhaustive algorithm for folding proteins written in Java.
This was changed to comply with the applet framework.

A protein sequence of length26 was folded on one machine, which resulted in a total
execution time of2 hours,45 minutes and33 seconds. The search space of the protein was
then divided into50 different subspaces using standard divide and conqueror techniques.
The50 different search spaces were submitted as jobs to the Grid, which provides an av-
erage of6 jobs per execution machine and2 extra jobs to prevent balanced execution. The
search spaces on their own also provide unbalanced execution as the valid protein config-
urations vary from one search space to another and thus results in unbalanced execution
times. The experiment was made without checkpointing the application. The execution
of the 50 jobs completed in29 minutes and8 seconds, a speedup of5.7 for 8 machines.
While this result would be considered bad in a cluster context it is quite useful in a Grid
environment.

To test the total overhead of the model, a set of1000 empty jobs was submitted to the
Grid with only one One-Click execution resource connected. The1000 jobs completed in
19935 seconds, which translates to an overhead of approximately20 seconds per job.

4.2 File access

To achieve the best bandwidth cutoff ratioCR several experiments has been made. In the
experiments a16 MB file was read 100 times by the One-Click resource on a20 Mb/s
broadband Internet connection. All experiments start with an initial block size of 2048
(211) bytes. The first experiment was run with aCR of 0, which means that the block size
is doubled in every transfer. The result is shown in figure 4.

The figure shows how the latency starts to raise dramatically between block size 218

and220 and the bandwidth to latency ratio starts to fall at those block sizes. The bandwidth
to latency ratio between block size218 and220 lies in the interval from1.25 to 1.75. Based
on these observations we performed the same test with aCR of 1.5. The result is shown in
figure 5.

This shows that aCR of 1.5 is too low as block sizes of221 occur and we want the
block sizes to be between218 and220 to limit the maximum latency. Therefore theCR
must be between1.5 and1.75. The test was then run withCR 1.55, 1.60, 1.65, 1.70 and
1.75. The result is shown in figure 6.

We observe that aCR of 1.75 is too high, as only a few block sizes of219 occur and
no block sizes of220 occurs. ACR of 1.55 results in a few block sizes of221 which is
above the block sizes we want.1.60 represents the block sizes we want and block size220

is well represented. ACR of 1.65 represents block size219 well and a few block sizes
of 220 is reached as well, and aCR 1.70 represents block size220 but no block sizes of
221 are represented. We choose aCR of 1.65 as block size220 is considered the braking

156 R. Andersen, M. Rehr, and B. Vinter

Figure 4: The left figure shows the latency as a function of the block size,the right figure
shows the bandwidth ratiobwx

bwx−1
as a function of the block size. Between block size218

and220 the latency starts to raise and the bandwidth ratio starts to fall. This is where the
cutoff is chosen to avoid excessive raise in latency

point where the latency starts to grow excessively, therefore we do notwant it to be to well
represented, but we want it to be represented, which is exactly the caseat aCR of 1.65.

To verify the previous finding that theCR value should be1.65 a test application, which
traverses a16 MB file of random 32 bit integers was developed. First the application was
tested against the framework, where fixed block sizes were used, and then the application
was tested against the framework, where the dynamic block sizes with aCR of 1.65 were
used. The results are shown i figure 7.

The experiment shows, as expected, that the execution time decreases asthe block sizes
increase in the experiments with static block sizes. The execution time in the experiments
with the dynamic block sizes all reside around 256 seconds5 which are satisfactory, as this
shows that compared to largest static buffer size of interest6, the execution time loss using
a dynamic buffer size is at most a factor of four. The reader should notethat this type of
application is the worst case for dynamic buffer sizing as all the data are read sequentially.

5With the exception of 3 runs, which are classified as outliers
6The largest static buffer of interest is217 as this is where the time gained by doubling the buffer, levels out.

Figure 5: The latency as a function of the block size withCR 1.5

Cycle-Scavenging in Grid Computing 157

Figure 6: The latency as a function of the block size withCR 1.55, 1.60, 1.65, 1.70, 1.75

Figure 7: The execution time as a function of the block size and the execution timewith
dynamic block sizes and aCR of 1.65

158 R. Andersen, M. Rehr, and B. Vinter

Figure 8: The time spent checkpointing on a20 Mb/s and a 2048/412 kb/s Broadband
Internet

If the integers were read in random order, the dynamic buffer size execution would perform
much better.

4.3 Checkpointing

The next obvious performance issue is to test the overhead of performing a checkpoint
operation within a process. This was tested by submitting jobs that allocate heapmemory
in the range from0 kB to 8192 kB. Each job first allocatesX kB, whereX is in the order
power of2, and does10 checkpoints, which saves the entire heap space. The performance
was first tested on a20 Mb/s broadband Internet connection.

The test was then repeated using a more modest2048/512 kb/s broadband Internet con-
nection. The result of these tests is shown in figure 8.

In the first test, using the20 Mb/s connection, the checkpoint time is constant as the
memory size grows. We can conclude from this, that the overhead of serializing the Java
object is dominating compared to the actual network transfer time. The oppositeis the case
when we examine the results of the2048/512 kb/s connection. Here we see that the time
spent grows linearly with the size of the allocated memory, from which we may conclude
that on a512 kb/s connection the bandwidth is, not surprisingly, the limiting factor.

The experiments also show that the dynamic block sizes approach increases the execu-
tion time by of factor of four compared to the execution time reached with the largest static
block size in a worst case scenario.

The building checkpointing mechanism has an overhead of15 seconds per checkpoint
on a2.4GHz P4 and the One-Click framework overall is causing approximately20 seconds
of overhead to each execution, compared to local execution. Despite of this, a considerable
speedup is reached in the presented protein experiment.

5 Conclusion

This work has shown how to eliminate the factors that have previously impededthe fusion
of Public Resource Computing and Grid Computing to effectively utilize idle CPU cycles
from desktop machines for any kind of Grid job.

Cycle-Scavenging in Grid Computing 159

The prohibiting factors include NAT-hidden resources, means to utilize Windows desk-
tops, the workload required by a non-expert resource owner to installand manage all re-
source software, and the security issues involved with installing a large software base on
the resource.

Using sandboxing technology we have successfully eliminated all of these limitations.
Two models exist, the MiG-SSS and the One-Click model. In the MiG-SSS model, resource
donors download a bundle consisting of a screen saver, a virtual machine, and a special MiG
Linux image in order to share their idle resources. The MiG One-Click model lowers the
workload imposed on the resource owner to only requiring a visit on a web page.

The MiG system has proved flexible enough to easily deal with computers behind net-
work address translators, and mobile processes and automatic resubmission of jobs solve
the problem with resources that are cut off the network or leave the screen saver mode.

Using the MiG-SSS approach, a desktop computer volunteers as a Grid resource upon
screen saver activation, and as soon as the screen saver is deactivated, the executing job
either stops or migrates. Thus, the resource owner is completely unaffected by the Grid
job. The users submitting jobs to the public resources gain access to a virtualized Linux
environment where standard Linux applications can run unmodified.

In the One-Click framework, resource owners can contribute without installing any
client software at all. By using Java Applet technology, the resource owner simply points a
Java-enabled browser to the MiG One-Click URL which will load an applet acting as a Grid
resouce. Once the user of the donated computer wishes to stop the execution, the browser is
simply closed down or pointed to another URL, and the execution stops. The MiG system
eventually detects this event, by a timeout, and resubmits the job to another resource, where
the job is resumed from the latest checkpoint that was made.

The use of Java applets provides a secure sandboxed executing environment that pre-
vents the executing Grid jobs from harming the donated machine. The disadvantage of this
approach is that all jobs must be written in Java and in addition comply with the presented
framework, including the Java Applet Security Model. However the modifications that are
needed to port an existing Java application are limited to using special methods for stdout
and stderr, applying to the Java applet security model, and using the One-Click framework
for remote file access. The One-Click framework also includes means to provide semi-
transparent checkpointing of the applications at runtime.

Experiments have been performed to find the optimal block size for the remote file
transfer that the framework includes. The experiments show that doubling the block size in
each transfer gives the optimal tradeoff between bandwidth and latency as long as the CR
is below 1.65.

References

[1] Rasmus Andersen and Brian Vinter,Transparent remote file access in the minimum
intrusion grid, WETICE ’05: Proceedings of the 14th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise (Washington,
DC, USA), IEEE Computer Society, 2005, pp. 311–318.

160 R. Andersen, M. Rehr, and B. Vinter

[2] David P. Anderson,Boinc: A system for public-resource computing and storage, GRID
’04: Proceedings of the Fifth IEEE/ACM International Workshop on GridComputing
(Washington, DC, USA), IEEE Computer Society, 2004, pp. 4–10.

[3] Allan Bricker, Michael Litzkow, and Miron Livny,Condor Technical Summary, Version
4.1b, 1992.

[4] Brad Calder, Andrew A. Chien, Ju Wang, and Don Yang,The entropia virtual ma-
chine for desktop grids, VEE ’05: Proceedings of the 1st ACM/USENIX international
conference on Virtual execution environments (New York, NY, USA), ACM, 2005,
pp. 186–196.

[5] Renato J. Figueiredo, Peter A. Dinda, and José A. B. Fortes,A case for grid
computing on virtual machines, ICDCS ’03: Proceedings of the 23rd International Con-
ference on Distributed Computing Systems (Washington, DC, USA), IEEE Computer
Society, 2003.

[6] Ian Foster and Carl Kesselman,The grid: blueprint for a new computing infrastructure,
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, November1998.

[7] Henrik Hoey Karlsen and Brian Vinter,Minimum intrusion grid - the simple model,
WETICE ’05: Proceedings of the 14th IEEE International Workshops on Enabling
Technologies: Infrastructure for Collaborative Enterprise (Washington, DC, USA),
IEEE Computer Society, 2005, pp. 305–310.

[8] Brian Vinter,The Architecture of the Minimum intrusion Grid (MiG), Communicating
Process Architectures 2005, sep 2005, pp. –.

Appendix G

Publication 7

Recent Developments in Grid Technology and Applications. G.A. Gravvanis, J.P. Morrison,

H.R. Arabnia and D.A. Power, Editors Brian Vinter, Rasmus Andersen, Martin Rehr, Jonas

Bardino, and Henrik Karlsen: Towards a Robust and Reliable Grid Middleware

213

In: ISBN:
Editor: © 2007 Nova Science Publishers, Inc.

Chapter

TOWARDS A ROBUST AND RELIABLE GRID MIDDLEWARE

Brian Vinter, Rasmus Andersen, Martin Rehr, Jonas Bardino and
Henrik Karlsen

University of Copenhagen, Department of Computer Science

Abstract

 This chapter describes the philosophy behind a new Grid model, the Minimum intrusion
Grid, MiG. The idea behind MiG is to introduce a ‘fat’ Grid infrastructure which allows much
‘slimmer’ Grid installations on both the user and resource side. Components that differentiate
MiG from Globus and similar models include a zero-size Grid code base that is required to be
installed on client or resource computers, mandatory payment and pricing of Grid services,
end-to-end anonymity between consumers and producers and approximating the perception of
a PC by means of Grid computing. In addition MiG provides a new, simpler approach to
Virtual Organizations and a seamless integration of the Public Resource Computing model
into Grid.

1. The idea behind the Grid

In the mid 1990’s when Grid first was introduced, the idea of getting computing resources
from a socket in the wall helped create a giant hype around Grid-computing. Since then one
could argue that, as money has been poured into Grid research, the ambition level of the same
research has dropped proportionally; to the point where Grid today often appears to be merely
web-services in another wrapping! Grid research and Grid systems seem to be severely
limited by initial choices made towards location, naming and security aspects in Grid. Most,
or even all, of these were not obviously wrong, or were not at all wrong at the time they were
made, but in the end we have ended up with a Grid model that is a long way from providing
computing resources from a socket in the wall, particularly for commercial enterprises and in
particular for private users.

Grid computing is just around the top of the hype-curve, and while large demonstrations
of Grid middleware exist, including Globus toolkit[8] and NorduGrid ARC[9], the tendency
in Grid middleware these days is towards a less powerful model, Grid services, than what was

Brian Vinter et al.

available previously. This reduction in sophistication is driven by a desire to provide more
stable and manageable Grid systems. While striving for stability and manageability is
obviously right, doing so at the cost of features and flexibility is not so obviously correct.

The Minimum intrusion Grid, MiG, is a project that aims to design a new platform for
Grid computing which is driven by a stand-alone approach to Grid, rather than integration
with existing systems. The goal of the MiG project is to provide a Grid infrastructure where
the requirements on users and resources alike, to join Grid, are as small as possible – thus the
minimum intrusion part. While striving for minimum intrusion, MiG still seeks to provide a
feature rich and dependable Grid solution.

2. Grid Middleware

The driving idea behind the Minimum intrusion Grid project is to develop a Grid middleware
that allows users and resources to install and maintain a minimum amount of software to join
the Grid. MiG will seek to allow very dynamic scheduling and scale to a vast number of
processors. As such MiG will close the gap between the existing Grid systems and popular
“Screen Saver Science” systems, like SETI@Home.

2.1 Philosophy behind MiG

“The Minimum intrusion Grid”, this really is the philosophy - we want to develop a Grid
middleware that makes as few requirements as possible. The working idea is to ensure that a
user needs only a signed x509 certificate, trusted by Grid, and a web-browser capable of
secure HTTP, HTTPS. A resource on the other hand must also hold a trusted x509 certificate
and in addition create a user – the Grid user – who can use secure shell, ssh, to enter the
resource and once logged on can open HTTPS connections to the outside. The requirements
then become:

User Resource
Must have certificate Yes Yes
Must have outbound HTTPS Yes Yes
Must have inbound SSH No Yes1

Table 1. Requirements for using MiG

3. What’s wrong with the classic Grid systems?

While there are many Grid middleware systems available most of them are based on, or
descendents of, the Globus toolkit. Thus the description below addresses what the author
believe to be shortcomings in the Globus toolkit, and not all issues may be relevant to all Grid
systems.

1 Some resource models in MiG, known as sandboxes, do not even require inbound ssh.

36

Towards A Robust and Reliable Grid Middleware

3.1 Single point of failure

Contrary to popular claim, all existing Grid middlewares hold a central component that, if it
fails, requires the user to manually choose an alternative. While the single point of failure
may not truly be a single point, but comply with some level of redundancy, none of the
components scale with the size of the Grid. Thus even for a Grid of infinite size a finite
number of failures are required to make the overall Grid fail

3.2 Lack of scheduling

The classic Grid systems perform a job-to-resource mapping. However, an actual scheduling
with a metric of success is not available. Work is underway in this in the community
scheduler[16] but for this scheduler to work, the resources need to be exclusively signed over
to Grid, i.e. a machine can not be accessed both through Grid and a local submission system.

User

User

User

User

GIIS

Resource

Resource

Resource

Resource

Resource

Resource

User

User

User

User

GIIS

Resource

Resource

Resource

Resource

Resource

Resource

Scheduling layout of the Globus Grid model

3.3 Poor scalability

The time taken to perform the job-to-resource mapping in the current systems scales linearly
with the number of sites that are connected. This is already proving to be a problem in
NorduGrid, which is one of the largest known Grids, though only 36 sites are connected.
Imagining tens of thousands of connected sites is not likely. In the Grid service model
scalability issues are more or less eliminated by absence of a single system view from a user
perspective and thus forces the user to visit every site on the Grid before making a decision
on where to place a new job.

37

Brian Vinter et al.

3.4 No means of implementing privacy

The job submission API at the users machine communicates directly with all the potential
sites, thus all sites know the full identity of all jobs on the Grid. This means that the grid user
does not only reviles his or her full identity and intentions to the resource that end up
executing the job, which in itself is bad enough, full disclosure is given to all participating
resources in the Grid. Thus if one wish to make a map of ‘who-does-what’ on the Grid all that
is needed is to place a resource on the Grid and log all incoming requests. There is not even a
need to accept any jobs at all, simply to receive requests and the reject them.

3.5 No means of utilizing ‘cycle-scavenging’

Cycle-scavenging, or Screen Saver Science, utilizes spare CPU cycles when a machine is
otherwise idle. This requires an estimate on how long the machine will be available and all
classic Grid systems just assume that a free resource will be available indefinitely. Cycle
scavenging in Grid has been partly demonstrated in NorduGrid by connecting a network of
workstations running Condor, to NorduGrid, but Grid itself has no means of screen-saver
science.

3.6 Requires a very large installation on each resource and on the user site

The middleware that must be installed on a resource to run NorduGrid, which is probably the
most robust of the well known Grid middlewares, is more than 367 MB including hundreds of
components. All of which must be maintained locally. This means that donating resources to
Grid is associated with significant costs for maintenance; this naturally limits the willingness
to donate resources.

3.7 Firewall dependency

To use the existing middlewares special communication ports to the resource must be opened
in any firewall that protects a resource. This is an obvious limitation for growing Grid since
many system administrators are reluctant towards such port-openings. One project that seeks
to address this problem is the centralized-gateway-machine project under the Nordic Data
Grid Facility[17] that receives jobs and submits them to the actual resource using SSH.

3.8 Highly bloated middleware

The existing middleware solutions provide a very large set of functions that are placed on
each site, making the software very large and increasing the number of bugs, thus the need for
maintenance, significantly.

38

Towards A Robust and Reliable Grid Middleware

3.9 Complex implementation using multiple languages and packages

Many current Grid middlewares have reused a large amount of existing solutions, for data-
transfer, authentication, authorization, queuing, etc. These existing solutions are written in
various languages and thus the Grid middleware uses more than 6 programming languages
and several shell types, in effect raising the cost of maintaining the package further. The
many languages and shells also limit portability to other platforms. The Globus project have
acknowledged this as a problem and have switched entirely to Java for implementing their
middleware.

4 Design Criteria for the Minimum intrusion Grid

All MiG component must design and implement a functional Grid system with a minimal
interface between the Grid, the users, and the resources. The successful MiG middleware
implementation holds the following properties.

4.1 Non-intrusive

Resources and users must be able to join Grid with a minimum of effort and with a minimum
software installation. The set of requirements that must be met to join Grid must also be
minimal. “Minimal” in this context should be interpreted rigidly, meaning that if any
component or functionality in MiG can be removed from the resource or user end, this must
be done, even if adding the component at the resource or user end would be easier.

4.2 Scalable

MiG must be able to contain tens of thousands, even millions, of resources and users without
the size of the system impacts performance. Even individual PCs should be able to join as
resources. For a distributed system, such as MiG, to be truly scalable it is necessary that the
performance of the system is not reduced as the number of associated computers grows.

4.3 Autonomous

MiG should be able to perform an update of the Grid without changing the software on the
user or resource end. Thus compatibility problems that arise from using different software
versions should be eliminated by design. To obtain this feature it is necessary to derive a
simple and well defined protocol for interaction with the Grid middleware. Communication
within the Grid can be arbitrarily complex though since an autonomous Grid architecture
allows the Grid middleware to be upgraded without collaboration from users and resources.

39

Brian Vinter et al.

4.4 Anonymous

Users and resources should not see the identity of each other if anonymity is desired. This is a
highly desirable feature for industrial users that are concerned with revealing their intentions
to competing companies. A highly speculative, example could be two pharmaceutical
companies A and B. Company A may have spare resources on a computational cluster for
genome comparisons, while B may be lacking such resources. In a non-anonymous Grid
model, company B will be reluctant to use the resources at company A since A may be able to
derive the ideas of B from the comparisons they are making. However, in a Grid that supports
anonymous users, A will not know which company is running which comparisons which
makes the information far less valuable. In fact many comparisons will be likely to be part of
research projects that map genomes and will thus reveal nothing but information that is
already publicly available.

4.5 Fault tolerance

Failing machines or processes within the Grid should not stop users or resources from using
the Grid. While obvious, the lack of fault tolerance is apparent in most Grid middlewares
today. The consequences of lacking fault tolerance range from fatal to annoying. Crashes are
fatal when a crashed component effectively stops users from running on Grid, i.e. a hierarchy
of Meta Directory Servers.

If a resource that runs users’ processes crash it becomes costly for the users that are
waiting for the results of the now lost jobs. Finally crashes are merely annoying when a
crashed component simply does not reply and thus slows down the users interactions with the
Grid because of timeouts.

4.6 Firewall compliant

MiG must be able to run on machines behind firewalls, without requiring new ports to be
opened in the firewall. While this requirement is quite simple to both motivate and state,
actually coping within the restraints of this point may prove highly difficult.

4.7 Strong scheduling

MiG provides real scheduling, not merely job-placement, but it needs to do so without
requiring exclusive ownership of the connected resources. Multi-node scheduling should be
possible as should user-defined scheduling for dynamic subtasking. In effect MiG also
supports meta-computing2.

2 Metacomputing is a concept that precedes Grid computing. The purpose of metacomputing is to create a large
virtual computer for executing a single application.

40

Towards A Robust and Reliable Grid Middleware

4.8 Cooperative support

In order to improve the meta-computing qualities, MiG provides access to shared user-
defined data-structures. Through these data-structures a MiG based Grid system can support
collaborating applications and thus improve the usability of Grid.

5 The abstract MiG model

The principal idea behind MiG is to provide a Grid system with an overall architecture that
mimics a classic, and proven, model – the Client-Server approach. In the Client-Server
approach the user sends his or her job to the Grid and receives the result. The resources, on
the other hand, send a request and receive a job. After completing the job the resource sends
the result to the Grid which can forward the reply to the user.

GRID

User

User

User

User

Resource

Resource

Resource

GRID

User

User

User

User

Resource

Resource

Resource

The abstract MiG model

The Grid system should be disjoint from both the users and the resources, thus the Grid
appears as a centralized black-box to both users and resources.

This model allow us to remain in full control of the Grid, thus upgrades and trouble
shooting can be performed locally within Grid, rather than relying on collaboration from a
large number of system administrators. In addition, moving all the functionality into a
physical Grid system, lowers the entry level that is required for both users and resources to
join, thus increasing the chances that more users and resources do join the Grid.

In MiG, storage is also an integrated component and users will have their own ‘home
directory’ on MiG, which can be easily accessed and referenced directly in job-descriptions
so that all issues with storage-elements and replica catalogues is entirely eliminated.

For a user to join, all that is required is an x509 certificate which is signed by a certificate
authority that is trusted by MiG. Accessing files, submitting jobs and retrieving results can the
all be done through a web-browser that supports certificate based HTTPS. As a result the user
need not install any software to access Grid and if the certificate is carried on a personal
storage device, e.g. a USB key, a user can access Grid from any internet enabled machine.

The requirements for resources to join MiG should also be an x509 certificate, but in
addition the resource must create a Grid account in which Grid jobs are run. Initially MiG
requires that this user can SSH into the account, some resources are run in a sandboxed pull
mode instead but these are not described in this chapter..

41

Brian Vinter et al.

6 The simple MiG model

In a simple version of the MiG model there's only a single node acting as the Grid. Clients
and resources then communicate indirectly through that Grid-node. The interface between the
user and Grid should be as simple as possible. The exact protocol remains a topic for
investigation but, if possible, it will be desirable to use only the HTTP protocol or a similar
widely used, and trusted, protocol. Towards the resources the protocol should be equally
simple, but in this case, as we also desire that no dedicated Grid service is running on the
resource, one obvious possibility is to use the widely supported SSH protocol.

When submitting a job, the user sends it to the Grid machine which stores the job in a
queue. At some point a resource requests a job and the scheduler chooses a job to match the
resources that are offered. Once the job is completed the results are sent back to MiG. The
user is informed that the job has completed and can now access MiG and retrieve the results.

GRID

User

User

User

User

Resource

Resource

GRID

User

User

User

User

Resource

Resource

The simple MiG model

6.1 Considering the simple model

The simple model of course, is quite error-prone as the single Grid machine becomes both a
single point of failure and a bottleneck which is not acceptable. The obvious solution is to add
more Grid machines which can act as backup for each other.

7 The full MiG model

The obvious flaw in using the client-server model is that achieving robustness is inherently
hard in a centralized server system where potential faults include:

• Crashed processes
• Crashed computers
• Segmented networks
• Scalability issues

To correctly function in the presence of errors, including the above, error redundancy is
needed. The desired level of redundancy is a subject to further investigations, but should
probably be made dynamic to map the requirements of different systems. To address the
performance issues Grid itself must be distributed so that users can contact a local Grid
server. Thus workload will be distributed through the physical distribution of users.

42

Towards A Robust and Reliable Grid Middleware

Once a job arrives at a Grid server the server must ensure that the job is “deposited” at a
number of other servers, according to the current replication rate. The user should not receive
an acknowledgement of submission before the job has been correctly received and stored at
the required number of servers.

Once a resource has completed a job the resource is expected to deliver the result. If,
however, the client has not provided a location for placing the result, the resource can still
insist on uploading the results. To facilitate this, the Grid should also host storage to hold
results and user input-files, if a resource cannot be allocated at the time the client submits his
job.

To facilitate payment for resources and storage a banking system should be implemented.
To allow inter-organization resource exchange, the banking system should support multiple
banks. Dynamic price-negotiation for the execution of a job is a very attractive component
that is currently a research topic. Supporting price-negotiations in a system such as MiG
where no central knowledge is available is an unsolved problem that must be addressed in the
project. Likewise, scheduling in a system with no central coordination is very hard.

GRID

GRID

GRID

Resource

Resource

Resource

Resource

User

User

User

GRID

GRID

GRID

Resource

Resource

Resource

Resource

User

User

User

The full MiG model

7.1 Considering the full model

One topic for further investigations is: how do we schedule on multiple Grid servers? In
principle we would prefer complete fairness, so that the order in which jobs are executed is
not dependent on where they are submitted, i.e. to which MiG node. Such a full coordination
between all nodes in MiG for each job-submission is not realistic since it will limit scalability,
thus a model that allows scalability while introducing some level of load-balancing and
fairness will have to be invented.

43

Brian Vinter et al.

8 MiG Components

8.1 Storage in MiG

One difficulty that users report when using Grid is file access. Since files that are used by
Grid jobs must be explicitly uploaded to a Grid storage element, result files must be
downloaded equally explicitly. On the other hand it is a well known fact that the expenses
associated with a professional backup strategy often prohibit smaller companies from
implementing such programs, and relies on individual users to do the backup - a strategy that
naturally results in a large loss of valuables annually. Some interesting statistics include:

• 80% of all data is held on PCs (Source, IDC)
• 70% of companies go out of business after a major data loss (Source, DTI)
• 32% of data loss is due to user error (Source, Gartner Group)
• 10% of laptops are stolen annually (Source, Gartner Group)
• 15% of laptops suffer hardware failure annually (Source, Gartner Group)

By using the Grid, we do not just gain access to a series of computational resources, but
also to a large amount of storage. Exploitation of this storage is already known about from
peer-to-peer systems, but under “well-ordered'' conditions it can be used for true Hierarchal
Storage Management, HSM. When working with HSM the individual PC or notebook only
has a working copy of the data which is then synchronized with a real dataset located on Grid.
By introducing a Grid based HSM system, MiG offers solutions to two important issues at
one time; firstly Grid jobs can now refer directly to the dataset in the home-catalog thus
eliminating the need for explicit up- and down-loads of files between the PC and Grid.
Second, and for many smaller companies much more importantly, we can offer a
professionally driven storage-system with professional backup solutions, either conventional
backup systems or, more likely, simple replica based backup - the latter is more likely
because disks are becoming rapidly less expensive and keeping all data in three copies is
easily cheaper than a conventional backup-system and the man-power to run it. A Grid based
HSM system also allows small companies to outsource the service while medium and large
companies can chose to either outsource or implement a Grid HSM in-house. Thus by
introducing Grid based HSM, Grid can offer real value to companies that are not limited by
computational power and these companies will thus be "Grid integrated" when Grid becomes
the de-facto IT infrastructure.

GRID
ResourceUser

Disk

GRID
ResourceUser

Disk

MiG Storage support

44

Towards A Robust and Reliable Grid Middleware

8.2 Scheduling

Scheduling in Grid is currently done at submission-time and usually a scheduled task is
submitted to a system where another level of scheduling takes place. In effect the scheduling
of a job provides neither fairness for users nor optimal utilization of the resources that are
connected to the Grid, and the current scheduling should probably just be called job-
placement. Furthermore, the current model has a built in race-condition since the scheduling
inquires all resources and submits to the one with the lowest time-to-execute. If two or more
jobs are submitted at the same time they will submit to the same resource, but only one will
get the expected timeslot. The MiG model makes scheduling for fairness much simpler as the
local scheduling comes before the Grid scheduling in the proposed model.

Scheduling for the best possible resource utilization is much harder and of much more
value. The problem becomes one that may be described as: given the arrival of an available
resource, and an existing set of waiting jobs, which job is chosen for the newly arrived
resource so that the global utilization will be as high as possible?

The above is in the common case where jobs are more frequent than resources, in the rare
case that resources are more abundant than jobs, the same problem is valid on the arrival of a
job.

When scheduling a job, future arrivals of resources are generally not known, i.e., we are
dealing with an on-line scheduling problem. On-line scheduling is an active research area,
initiated as early as 1966 and continued in hundreds of papers, see and for a survey. This
problem, however, differs from all these on-line scheduling problems investigated previously
in that the resources, not the jobs, arrive over time in the common case. The problem also has
some similarity with on-line variable-sized bin packing , but again with a twist that has not
been considered before; the bins, not the items to be packed, arrive on-line.

8.3 Security and Secrecy

In Grid, security is inherently important, and the MiG system is designed be at least as secure
as the alternative systems. The simple protocols and minimal software based on the resources
make this goal easy to achieve, but still the mechanisms for security must be investigated.
Secrecy is much harder and is currently not addressed in Grid. Privacy will mean much
towards achieving secrecy but other issues are also interesting topics of research. I.e. if a data
file is considered valuable, e.g. a genomic data sequence, how can we hold the contents of
that file secret to the owner of the resource? In other words, can MiG provide means of
accessing encrypted files without asking the users to add decryption support to his
application?

GRID
ResourceUser

Disk

UID

UID+SID

SID

SID

GRID
ResourceUser

Disk

GRID
ResourceUser

Disk

UID

UID+SID

SID

SID

45

Brian Vinter et al.

Anonymity and security model

8.4 Fault-tolerance

In a full Grid system errors can occur at many levels and failures must be tolerated on MiG
nodes, resources, network connections and user jobs. Any single instance of these errors must
be transparent to the user. More complex errors of course, or combinations of the simple
errors, cannot fully be hidden from the users, i.e. if a user is on a network that is segmented
from the remaining internet we can do nothing to address this.

Achieving fault tolerance in a system such as MiG is merely a question of never loosing
information when a failure occurs, e.g. keeping redundant replicas of all information. shows
how a submitted job is replicated when it is submitted.

GRID

GRID

GRID
User

GRID

1. Submit

2. Replica 1

3. Replica 2

4. OK

GRID

GRID

GRID
User

GRID

1. Submit

2. Replica 1

3. Replica 2

4. OK

Replicating a new job

Recovering from a failure is then a simple matter of detecting the failure and restoring the
required number of replica’s as shown in where the number of replicas is three.

46

Towards A Robust and Reliable Grid Middleware

GRID

GRID

GRID
User

GRID

2. Replica 1

3. Replica 2

1. Failure detection

GRID

GRID

GRID
User

GRID

2. Replica 1

3. Replica 2

1. Failure detection

Recovering from a failure

8.5 Load balancing and economics

Load balancing in distributed systems is an interesting and well investigated issue. However
load balancing for, potentially, millions of resources while maintaining a well defined
measure of fairness is still an unsolved issue. However adding economics to the equation
actually makes this easier. Since MiG should support a market oriented economy, where the
price for executing a job is based on demand and supply, this introduces a simple notion of
fairness which is that resources should optimize their income while users should minimize
their expenses.

In case there are more jobs than resources, which is the common case, the next job to
execute is the job that is willing to pay most for the available resource. In case two or more
jobs bid the same for the resource the oldest of the bidders is chosen.

In the rare case that there are more resources offering their services than there are jobs
asking for a resource, the next available job is sent to the resource that will sell its resources
cheapest. In case more resources bid at the same price, the one that have been waiting the
longest wins the bid.

8.6 Shared data-structures for MiG

When people with little knowledge of Grid computing are first introduced to Grid, they often
mistake it for meta-computing and expect the Grid to behave as one large parallel processor
and not a large network of resources. This misunderstanding is quite natural, since such a
Grid computing model would be highly desirable for some applications, of course most
parallel applications cannot make use of such an unbalanced virtual parallel processor.

47

Brian Vinter et al.

However, to support the applications that can make use of Grid as a meta-computing system,
to address this MiG provides support for shared data-structures which are hosted on Grid.

Users who wish to utilize MiG for meta-computing may currently use one of four
approaches

1. Shared files
2. MiGSpace communication
3. SQL database
4. CSP

The use of shared files are often seen in applications that are executed on a LAN and is
quite simple, though not very powerful. Because, MiG works with a Grid based home-
directory and runtime access to the files in this catalog, rather than a pure copy-semantics as
commonly seen with Grid.

MiGSpace communication is in the tradition of Linda. Similar to the Linda tuple space,
tuples provide the granularity for shared entities in MiGSpace. Single variable based
granularity is ineffective in high latency environments. Communication latency is of
significance to the task grain size in distributed shared memory systems. When
communication latency increases, the grain size must be coarser to achieve good
performance. Document based granularity like that found in xSpace is overly specialized. In
contrast to JavaSpaces, tuples in MigSpace are flexible ordered collections of typed elements,
similar to those found in Linda. Arrays, sets and matrices remain relatively common data
structures in scientific computing, even though object oriented designs and languages have
become more popular. MiGSpace supports matrices and arrays with its simple tuple approach.
If desired is very easy to develop a tuple-to-object bridge. The following is a formal definition
of tuples in MigSpace:

A tuple consists of finite collections of ordered typed elements. Each element can be an
actual or a formal. The following notation for a tuple is used:

<P1, P2, P3, ...Pj>,
where Pi is an element.
A tuple consists of only actuals. Actuals have a type and a value. The
following is an example of a tuple with three elements in which all are actuals:
<1int, ”John”string, 2int>
Applications may this write actuals to the MiGSpace and read by using formals. Since

parallel programming with tuple-spaces is a well established paradigm, a large set of
algorithms that are designed for use with tuple-spaces. MiGSpace extends the classic tuple-
space model by introducing the option of reading and writing entire sub-spaces, this is
introduced to help hide latency over wide area networks.

Spaces in MiGSpaces are implemented as files and thus inherit their full security model
from the file-level security.

The SQL interface is quite straight forward, applications may access a MiG hosted SQL
database through a MiG enabled ODBC interface that seamlessly wraps all SQL queries in
the MiG security mechanisms and forwards the request to the MiG server-side SQL engine.
Likewise the reply is wrapped in the security layer and returned to the ODBC layer at the
execution host where the ODBC library translates the reply into standard ODBC format.

CSP, Communication Sequential Processes, is a well established model for designing and
implementing concurrent applications[ref]. In CSP the communication mechanism is
synchronous channels and in MiG-CSP these channels have been extended to a Grid

48

Towards A Robust and Reliable Grid Middleware

environment. The channels too are implemented as files and thus inherit the entire security
model from the MiG file modes.

8.7 Accounting/Price-negotiations

Grid becomes really interesting once users can purchase resources on Grid, thus transforming
Grid from a resource sharing tool into a market place. To support this vision, MiG does not
only do accounting but also support a job bourse, where the price for a task can be
dynamically negotiated between a job and a set of resources. Such dynamic price-setting is
also a known subject, but combining it with load-balancing and fairness in a truly distributed
system has not been investigated.

8.8 User defined scheduling

An advanced extension of the online-scheduling problem is the subtasking problem, where a
job may be divided into many subjobs. If the subtasks have a natural granularity the task is
trivial and known solutions exist, including functioning systems, such as SETI@Home. If, on
the other hand, a subtask can be selected that solves the largest possible problem on the given
resource, the problem becomes very hard and no system provides means for this today.

Job (2GB)

Request (2GB)

Job (2GB)

Request (2GB)

Dynamic sub-scheduling

When comparing with on-line bin packing, this variant of the problem has one further
twist to it; the size of an item (a subtask) may depend on which other items are packed in the
same bin, since the data needed by different subtasks may overlap.

MiG has developed a model where a job can be accompanied with a function for efficient
sub-tasking. The demonstration application for this will be a new version of the Grid BLAST
application, which is used in Bio-Science for genome comparisons. The efficiency of BLAST
depends on two parameters; input-bandwidth and available memory. We currently developing
a dynamic subtasking algorithm that creates subjobs fitted for resources as they become
available.

8.9 Graphics rendering on Grid

Currently Grid is used exclusively for batch job processing. However for Grid to truly meet
the original goal of “computing from a plug in the wall”, graphics and interactivity is needed.

49

Brian Vinter et al.

In this respect MiG makes things more complex than the existing middlewares since MiG
insists on maintaining anonymity, e.g. we insist that a process can render output to a screen-
buffer that it cannot know the address of.

The solution to this problem is similar to the storage model. A ‘per-user’ frame-buffer is
hosted in the MiG infrastructure, and resources can render to this, anonymous, region. Users
on the other hand can choose to import this buffer into their own frame-buffer and thus
observe the output from their processes without the hosts of these processes knowing the
identity of the receiver. The approach for anonymous rendering in MiG is sketched in .

GRID

User

Resource

Resource
GRID

User

Resource

Resource

Anonymous graphics rendering in MiG

9 Virtual Organisations

Facilitating the organization and work of Virtual Organizations is amongst the premiere
advantages of Grid computing. In [4] it is stated that “the real and specific problem that
underlies the Grid concept is coordinated resource sharing and problem solving in dynamic,
multi-institutional virtual organizations.” Resource sharing in this context is not only about
files, but access to all kinds of resources like computational power, external data, software
and specialized hardware. When sharing resources in loosely organized collaborations, such
as virtual organizations, one need the ability to apply a number of rules and conditions which
define the policy of the individual collaborations. Thus, seen at the utmost abstraction level, a
virtual organization is a set of well defined individuals who share a well defined set of
resources. While essential to Grid computing, Virtual Organizations are defined purely as
concept in Grid computing and not strictly defined by a protocol or similar. The most
widespread implementation of Virtual Organizations is the Virtual Organization Membership
Service, VOMS, which essentially works by allowing the user to request a proxy-certificate
from a given Virtual Organization, using that proxy-certificate the user may then continue to
submit the desired job to a resource that accepts the VO proxy-certificate.

50

Towards A Robust and Reliable Grid Middleware

9.1 VOMS

VOMS work by allowing the user to request a proxy certificate that verifies VO membership
from any VOMS server. If the VOMS server has information to the end that the requesting
users is in fact member of the desired VO it returns the proxy-certificate. Using that proxy-
certificate the user may then continue to submit the desired job to a resource that accepts the
VO proxy-certificate. The process is shown in figure 2.

V
O
M
S

Authorization
Database

Resource

Request

Authentication

VOMS Pseudo
Certificate

Query

U
S
E
R

VOMS Pseudo
Certificate

V
O
M
S

Authorization
Database

Resource

Request

Authentication

VOMS Pseudo
Certificate

Query

U
S
E
R

VOMS Pseudo
Certificate

Figure 2. VO membership certificate in VOMS

When presented with a proxy-certificate the resource verifies that the user is member of
an accepted VO and continues the authorization process. The resource may maintain a list
locally with banned users and deny a user access even though VO membership has been
confirmed by the VOMS server through the proxy-certificate.

9.2 CAS

Community Authorization Service, CAS, which is part of the Globus toolkit[8][7], seeks to
provide a more fine grained access control than simply membership of a VO. CAS works by
introducing a new abstraction level in the system called roles. Roles are similar to sub-groups
in a VO except that roles are not only associated with a set of resources but also with the
operations that may be performed on the resources, i.e. a specific role may only provide read
privileges to a data-set but not write privileges. The process that implements this mechanism
is identical to the overall VOMS process as shown in figure 2.

9.3. GridShib

GridShib[5] is a project which seeks to replace ordinary VOMS and CAS systems with a
Shibboleth[1] based authorization model. One of the driving motivations for Grid-Shib is the
same as one of the primary motivations for MiG, namely the need for user privacy.

51

Brian Vinter et al.

9.4 VGrids

The MiG design has made it easy to obtain a lot of the Grid features that was previously very
hard to implement. The development of MiG in general has greatly benefited from the
knowledge and mistakes learned by the first middleware that appeared. The VOMS approach
of proxy certificates is cumbersome and represents some concerns on manageability and
security, as an example it is not possible to revoke a proxy-certificate. Solutions to these
issues was discussed for some time in the MiG team. We seek a model that supports the
anonymity required by MiG, and which does not introduce proxy-certificates, a concept
which is entirely eliminated from the MiG design and which should not be re-introduced in
order to support VOs. At the same time we also need to keep the anonymity between user and
resource and provide the strong-scheduling capabilities found in MiG. Another important
observation from real-world Grids is that many large resources are hard to connect to Grid
since they run on user group quota allocations and often use a fair-share scheduling
mechanism. In order to support access to a resource from Grid by two independent user
groups, complex submission handling or even multiple Grid entry-points must often be
introduced, both of which increase the complexity of managing resources towards Grid and
thus decreases motivation to join a Grid system. We believe it is imperative to support the
natural regulation mechanisms in local sites, and we also believe that local administration of
Grid related options should be kept at a minimum, according to the project name, minimum
intrusion grid. The proposed solution is an entirely different approach to virtual organizations.
In its nature Grid seeks to allow a set of users to share a set of resources, while VOs seek
to control which users of a Grid share which resources, in essence a VO becomes a subset of
a Grid. With this in mind we choose Grids as our basic mechanism and treats a VO as Grid-
whithin-a-Grid, or Virtual Grids, VGrids (figure 3). A VGrid appears to a user almost as an
ordinary Grid, it has users, compute-resources and data-resources. As MiG seeks to hide
much of the Grid complexity to the user, all data-resources a user has access to are presented
in the form of a unified file-system, and VGrid data-resources appear as subdirectories in the
users home-directory. Resources never see the identity of the users due to the anonymity
feature of MiG. It therefore makes no sense for resources to maintain a local list of banned
users as in traditional middleware. If a resource joins a VGrid it grants access to all users
within it.

In fact, today there are no resources in the ordinary MiG Grid any longer, all resources
are located in one or more VGrids.

52

Towards A Robust and Reliable Grid Middleware

VGrids are integrated by design.

The set of allowed users in a VGrid consist of two types, owners and members. All valid
MiG users are allowed to create new VGrids and can then include any other user they know
of as either co-owners of the VGrid or ordinary members of the VGrid. The user who creates
it automatically becomes an owner of the new VGrid. Owners can add and remove other
owners and members, but a VGrid must always have at least a single owner. Besides having
the authorization to manage other owners and members an owner also has the privileges as
regular members, that is to access the resources in the VGrid and the files belonging to the
VGrid.

The authorization structure is hierarchical and as such similar to the structure of VO’s. If
you have owner or member rights of a VGrid you automatically have the same rights on all
sub VGrids. This means that an owner of VGrid V0 is also an owner of V0/V1 and V0/V1/V2
but not the other way round, i.e. some VGrids may have owners that are not even members of
the parent VGrid if this is desired the MiG servers and the client never communicate directly
with the resources, everything goes through the central MiG servers. This means that the
input files needed to execute a job must first be uploaded to the server from where the
resource can retrieve the file before executing the job. After a job has been executed the
outputfiles are uploaded by the resource to the server and the user can download the file or
use it in new job submissions or simply leave the file at the server where it may be safely
stored.

To support file sharing between members of a VGrid, a directory is created on the server
where all members are allowed to read and write. It looks just like any other directory in the
members home directories, but the files within it are readable and writable by all VGrid
members.

One of the observed complications with the VOMS model is the problem of having two
user groups with each their allocation on a large resource that both accesses their allocation
through Grid. In the VGrid model this becomes extremely easy, and both allocation quotas
and fair share scheduling is supported by default and without requiring any administration on
the local resource. Upon creating a VGrid the owners of that VGrid can add resources to it.
As in the original MiG model a resource is simply an ordinary user account that allow
incoming ssh and outgoing https. The administrator of a resource allocation simply creates an
account on the resource, as he would do with a new member of his research team, and
registers that account with the VGrid. From that point the VGrid can use the resource, but
locally at the resource the VGrid use appears simply as the use of an ordinary, untrusted, user.

VGrids have a number of additional advantages and features compared to the VOMS
approach. One is custom optimized job submission When a VGrid is created two web-page
references are automatically generated within the MiG namespace. A public page that can be
accessed by all Internet users where the owners can promote and publish information about
the project, and a private page which is only accessible by members of the VGrid. Within the
private page a custom job submission page may be created, using HTML. This page can be
optimized to the special purpose of the VGrid, often in the form of an application portal to
Grid execution by the VGrid owner using a set of predefined names for the HTML controls in
a HTML form which has the MiG server as target. The MiG server generates a job
description file based on the values of the HTML controls when it receives the form and
submits it to the execution queue of the VGrid on behalf of the user. All usual HTML controls

53

Brian Vinter et al.

are thereby available for the VGrid owners when they create their specialized submit page as
well as Cascading Style Sheets (CSS), a technology often used in conjunction with HTML to
create a set of web pages with a consistent look.

Another special component is the VGrid Monitor and Statistics. A Grid monitor with a
snapshot of the current state of the Grid and a web page with various statistics e.g. the total
number of jobs the Grid has processed are two features that have been a part of most Grid
middlewares for some time. Besides an overall monitor and statistics page for the complete
Grid, the same information is available for the separate VGrids. The default is that the VGrid
monitor and statistics pages are only accessible by members of the VGrid, but the owners can
change this to make the information public available.

VGrids also allow for easy information sharing. A WIKI is a special kind of website
where users can easily add and edit pages and content. It is a very simply way for a group of
people to collaborate and together create and maintain information. Perhaps the most known
WIKI is the wikipedia [3] where Internet users together have created an encyclopedia that at
the time of this writing has more than 950.000 articles and more than 900.000 registered users
that maintain the information. This is big-scale collaboration! The fundamental technology
behind a WIKI is HTTP and HTML, technologies as MiG is build upon and compatible with.
It is possible to install a WIKI back-end on the MiG server and let the owners of MiG VGrids
make WIKI functionality available on VGrid pages that can be accessible to the public or to
members only.

11 Conclusions

The purpose of this paper is to motivate the work on a new Grid middleware, the Minimum
intrusion Grid, MiG. MiG is motivated in a set of claimed weaknesses of the existing Grid
middleware distributions, and a desire to develop a model for Grid computing that is truly
minimum intrusion.

The proposed model will provide all the features known in today's Grid systems, and a
few more, while lowering the requirements for a user to simply having an X.509 certificate,
and for a resource to have a certificate and create a Grid-user who can access the resource
through SSH.

While MiG is still in its very initial stage, users can already submit jobs and retrieve their
results, while maintaining complete anonymity from the resource that executes the job.

References

[1] R. L. Graham, Bounds for Certain Multiprocessing Anomalies, Bell Systems Technical
Journal, vol 45, 1563--1581, 1966

[2] Y. Azar, On-Line Load Balancing, Online Algorithms: The State of the Art, Springer-Verlag,
1998, A. Fiat and G. J. Woeginger (ed.), Lecture Notes in Computer Science, vol. 1442

[3] J. Sgall, On-Line Scheduling, Online Algorithms: The State of the Art, Springer-Verlag,
1998, A. Fiat and G. J. Woeginger (ed.), Lecture Notes in Computer Science, vol. 1442

[4] J. Csirik, An On-Line Algorithm for Variable-Sized Bin Packing, Acta Informatica, 26, pp
697--709, 1989.

[5] J. Csirik and G. Woeginger, On-Line Packing and Covering Problems, Online Algorithms:

54

Towards A Robust and Reliable Grid Middleware

The State of the Art, Springer-Verlag, 1998, A. Fiat and G. J. Woeginger (ed.), Lecture Notes
in Computer Science, vol. 1442

[6] L. Epstein and L. M. Favrholdt, On-Line Maximizing the Number of Items Packed in
Variable-Sized Bins, Eighth Annual International Computing and Combinatorics Conference
(to appear), 2002

[7] I. Foster. The Grid: A New Infrastructure for 21st Century Science. Physics Today,
55(2):42-47, 2002.

[8] I. Foster, C. Kesselman. The Globus Project: A Status Report. Proc. IPPS/SPDP '98
Heterogeneous Computing Workshop, pp. 4-18, 1998.

[9] P. Eerola et al. "Building a Production Grid in Scandinavia". IEEE Internet Computing, 2003,
vol.7, issue 4, pp.27-35.

[10] R. Fielding et al, RFC2616 Hypertext Transfer Protocol -- HTTP/1.1,
http://www.rfc.net/rfc2616.html, The Internet Society, 1999 .

[11] T. Ylonen, SSH - Secure login connections over the internet, Proceedings of the 6th Security
Symposium, p 37, 1996.

[12] S. F. Altschul et al., Basic local alignment search tool, J. Mol. Biol. 215:403-10, 1990.
[13] G. Barish and K. Obraczka, World Wide Web Caching: Trends and Techniques, IEEE

Communications Magazine Internet Technology Series, May 2000.
[14] Minimum intrusion Grid - The Simple Model, Henrik H Karlsen and Brian Vinter, in proc. of

ETNGRID 2005 (to appear)
[15] Transparent Remote File Access in the Minimum Intrusion Grid, Rasmus Andersen and Brian

Vinter, in proc. of ETNGRID 2005 (to appear)
[16] The Community Scheduler Framework, http://csf.metascheduler.org, 2005.
[17] The Nordic Data Grid Facility, NDGF, www.ndgf.org, 2003.
[18] Data Clinic, http://www.dataclinic.co.uk/data-backup.htm

55

	Introduction
	Motivation
	Project Goal
	Results
	Publications

	Background
	Grid Technology
	Reasons for Grids
	Virtual Organizations
	Grid Architecture
	Grid Applications
	Grid Middleware
	Grid Middleware Services
	Existing Middleware

	Minimum intrusion Grid
	The Four Rules of MiG
	MiG Design
	Architecture

	Sandboxing
	Virtual Machines
	Virtual Machines in a Grid Computing Context
	Security

	The MiG Remote File Access Library
	Introduction
	Design
	Altering File Access Requests
	Data Transfer
	File Handling
	Caching

	Experiments & Results
	Experiments
	Results
	Performance in a heterogeneous network

	Conclusion

	The MiG Screen Saver Sandbox
	Introduction
	Related Work

	Design
	The MiG Linux Image
	Runtime Environments
	Scheduling

	Implementation
	Sandbox Image, Version 0.x
	Sandbox Image, Version 1.x
	MiG-specific Resource Files
	Uniqueness and Identification
	Screen Saver Interaction

	Experiments & Results
	Conclusion

	The Scientific Bytecode Virtual Machine
	Introduction
	Enabling Limitations

	Architectural Overview
	Security
	Portability
	Performance
	Application Binary Interface
	Instruction Set Architecture
	Libraries
	Final Notes

	Implementation
	Related Work
	Experiments & Results
	Fast Fourier Transform
	Image Processing
	Basic Linear Algebra Subroutines

	Conclusion

	Conclusions
	Future Work

	Publication 1
	Publication 2
	Publication 3
	Publication 4
	Publication 5
	Publication 6
	Publication 7

