164 research outputs found

    Geometric lattice structure of covering and its application to attribute reduction through matroids

    Full text link
    The reduction of covering decision systems is an important problem in data mining, and covering-based rough sets serve as an efficient technique to process the problem. Geometric lattices have been widely used in many fields, especially greedy algorithm design which plays an important role in the reduction problems. Therefore, it is meaningful to combine coverings with geometric lattices to solve the optimization problems. In this paper, we obtain geometric lattices from coverings through matroids and then apply them to the issue of attribute reduction. First, a geometric lattice structure of a covering is constructed through transversal matroids. Then its atoms are studied and used to describe the lattice. Second, considering that all the closed sets of a finite matroid form a geometric lattice, we propose a dependence space through matroids and study the attribute reduction issues of the space, which realizes the application of geometric lattices to attribute reduction. Furthermore, a special type of information system is taken as an example to illustrate the application. In a word, this work points out an interesting view, namely, geometric lattice to study the attribute reduction issues of information systems

    Rough matroids based on coverings

    Full text link
    The introduction of covering-based rough sets has made a substantial contribution to the classical rough sets. However, many vital problems in rough sets, including attribution reduction, are NP-hard and therefore the algorithms for solving them are usually greedy. Matroid, as a generalization of linear independence in vector spaces, it has a variety of applications in many fields such as algorithm design and combinatorial optimization. An excellent introduction to the topic of rough matroids is due to Zhu and Wang. On the basis of their work, we study the rough matroids based on coverings in this paper. First, we investigate some properties of the definable sets with respect to a covering. Specifically, it is interesting that the set of all definable sets with respect to a covering, equipped with the binary relation of inclusion ⊆\subseteq, constructs a lattice. Second, we propose the rough matroids based on coverings, which are a generalization of the rough matroids based on relations. Finally, some properties of rough matroids based on coverings are explored. Moreover, an equivalent formulation of rough matroids based on coverings is presented. These interesting and important results exhibit many potential connections between rough sets and matroids.Comment: 15page

    Parametric matroid of rough set

    Full text link
    Rough set is mainly concerned with the approximations of objects through an equivalence relation on a universe. Matroid is a combinatorial generalization of linear independence in vector spaces. In this paper, we define a parametric set family, with any subset of a universe as its parameter, to connect rough sets and matroids. On the one hand, for a universe and an equivalence relation on the universe, a parametric set family is defined through the lower approximation operator. This parametric set family is proved to satisfy the independent set axiom of matroids, therefore it can generate a matroid, called a parametric matroid of the rough set. Three equivalent representations of the parametric set family are obtained. Moreover, the parametric matroid of the rough set is proved to be the direct sum of a partition-circuit matroid and a free matroid. On the other hand, since partition-circuit matroids were well studied through the lower approximation number, we use it to investigate the parametric matroid of the rough set. Several characteristics of the parametric matroid of the rough set, such as independent sets, bases, circuits, the rank function and the closure operator, are expressed by the lower approximation number.Comment: 15 page

    Matroidal structure of generalized rough sets based on symmetric and transitive relations

    Full text link
    Rough sets are efficient for data pre-process in data mining. Lower and upper approximations are two core concepts of rough sets. This paper studies generalized rough sets based on symmetric and transitive relations from the operator-oriented view by matroidal approaches. We firstly construct a matroidal structure of generalized rough sets based on symmetric and transitive relations, and provide an approach to study the matroid induced by a symmetric and transitive relation. Secondly, this paper establishes a close relationship between matroids and generalized rough sets. Approximation quality and roughness of generalized rough sets can be computed by the circuit of matroid theory. At last, a symmetric and transitive relation can be constructed by a matroid with some special properties.Comment: 5 page

    Covering matroid

    Full text link
    In this paper, we propose a new type of matroids, namely covering matroids, and investigate the connections with the second type of covering-based rough sets and some existing special matroids. Firstly, as an extension of partitions, coverings are more natural combinatorial objects and can sometimes be more efficient to deal with problems in the real world. Through extending partitions to coverings, we propose a new type of matroids called covering matroids and prove them to be an extension of partition matroids. Secondly, since some researchers have successfully applied partition matroids to classical rough sets, we study the relationships between covering matroids and covering-based rough sets which are an extension of classical rough sets. Thirdly, in matroid theory, there are many special matroids, such as transversal matroids, partition matroids, 2-circuit matroid and partition-circuit matroids. The relationships among several special matroids and covering matroids are studied.Comment: 15 page

    On the Complexity of Constrained Determinantal Point Processes

    Get PDF
    Determinantal Point Processes (DPPs) are probabilistic models that arise in quantum physics and random matrix theory and have recently found numerous applications in theoretical computer science and machine learning. DPPs define probability distributions over subsets of a given ground set, they exhibit interesting properties such as negative correlation, and, unlike other models of negative correlation such as Markov random fields, have efficient algorithms for sampling. When applied to kernel methods in machine learning, DPPs favor subsets of the given data with more diverse features. However, many real-world applications require efficient algorithms to sample from DPPs with additional constraints on the sampled subset, e.g., partition or matroid constraints that are important from the viewpoint of ensuring priors, resource or fairness constraints on the sampled subset. Whether one can efficiently sample from DPPs in such constrained settings is an important problem that was first raised in a survey of DPPs for machine learning by Kulesza and Taskar and studied in some recent works. The main contribution of this paper is the first resolution of the complexity of sampling from DPPs with constraints. On the one hand, we give exact efficient algorithms for sampling from constrained DPPs when the description of the constraints is in unary; this includes special cases of practical importance such as a small number of partition, knapsack or budget constraints. On the other hand, we prove that when the constraints are specified in binary, this problem is #P-hard via a reduction from the problem of computing mixed discriminants; implying that it may be unlikely that there is an FPRAS. Technically, our algorithmic result benefits from viewing the constrained sampling problem via the lens of polynomials and we obtain our complexity results by providing an equivalence between computing mixed discriminants and sampling from partition constrained DPPs. As a consequence, we obtain a few corollaries of independent interest: 1) An algorithm to count, sample (and, hence, optimize) over the base polytope of regular matroids when there are additional (succinct) budget constraints and, 2) An algorithm to evaluate and compute mixed characteristic polynomials, that played a central role in the resolution of the Kadison-Singer problem, for certain special cases

    Matroidal approaches to rough sets via closure operators

    Get PDF
    AbstractThis paper studies rough sets from the operator-oriented view by matroidal approaches. We firstly investigate some kinds of closure operators and conclude that the Pawlak upper approximation operator is just a topological and matroidal closure operator. Then we characterize the Pawlak upper approximation operator in terms of the closure operator in Pawlak matroids, which are first defined in this paper, and are generalized to fundamental matroids when partitions are generalized to coverings. A new covering-based rough set model is then proposed based on fundamental matroids and properties of this model are studied. Lastly, we refer to the abstract approximation space, whose original definition is modified to get a one-to-one correspondence between closure systems (operators) and concrete models of abstract approximation spaces. We finally examine the relations of four kinds of abstract approximation spaces, which correspond exactly to the relations of closure systems

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group
    • …
    corecore