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Abstract
Determinantal Point Processes (DPPs) are probabilistic models that arise in quantum physics
and random matrix theory and have recently found numerous applications in theoretical com-
puter science and machine learning. DPPs define probability distributions over subsets of a
given ground set, they exhibit interesting properties such as negative correlation, and, unlike
other models of negative correlation such as Markov random fields, have efficient algorithms
for sampling. When applied to kernel methods in machine learning, DPPs favor subsets of the
given data with more diverse features. However, many real-world applications require efficient
algorithms to sample from DPPs with additional constraints on the sampled subset, e.g., parti-
tion or matroid constraints that are important from the viewpoint of ensuring priors, resource
or fairness constraints on the sampled subset. Whether one can efficiently sample from DPPs in
such constrained settings is an important problem that was first raised in a survey of DPPs for
machine learning by Kulesza and Taskar and studied in some recent works.

The main contribution of this paper is the first resolution of the complexity of sampling from
DPPs with constraints. On the one hand, we give exact efficient algorithms for sampling from
constrained DPPs when the description of the constraints is in unary; this includes special cases
of practical importance such as a small number of partition, knapsack or budget constraints. On
the other hand, we prove that when the constraints are specified in binary, this problem is #P-
hard via a reduction from the problem of computing mixed discriminants; implying that it may
be unlikely that there is an FPRAS. Technically, our algorithmic result benefits from viewing the
constrained sampling problem via the lens of polynomials and we obtain our complexity results
by providing an equivalence between computing mixed discriminants and sampling from partition
constrained DPPs. As a consequence, we obtain a few corollaries of independent interest: 1) An
algorithm to count, sample (and, hence, optimize) over the base polytope of regular matroids
when there are additional (succinct) budget constraints and, 2) An algorithm to evaluate and
compute mixed characteristic polynomials, that played a central role in the resolution of the
Kadison-Singer problem, for certain special cases.
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36:2 On the Complexity of Constrained Determinantal Point Processes

1 Introduction

Algorithms for sampling from a discrete set of objects are sought after in various disciplines
of computer science, optimization, mathematics and physics due to their far reaching
applications. For instance, sampling from the Gibbs distribution was one of the original
optimization methods (see, e.g., [17]) and sampling from dependent distributions is often used
in the design of approximation algorithms (see, e.g., [5, 8, 19]). In machine learning, algorithms
for sampling from discrete probability distributions are desired in various summarization,
inference and learning tasks [33, 28, 24]. A particular class of probability distributions that
has received much attention are the Determinantal Point Processes (DPP). In the discrete
setting, a DPP is a distribution over subsets of a finite data set [m] def= {1, 2, . . . ,m}. Here, a
data point i is associated to a feature vector vi ∈ Rd, and an m×m positive semidefinite
(PSD) kernel L gives the dot product of the feature vectors of any two data points as a
measure of their pairwise similarity. Determinants, then, provide a natural measure of the
diversity of a subset of data points, often backed by a physical intuition based on volume
or entropy. A DPP is thus defined with respect to the kernel L such that for all S ⊆ [m]
we have P(S) ∝ det(LS,S), where LS,S is the principal minor of L corresponding to rows
and columns from S.1 The quantity det(LS,S) can be interpreted as the squared volume
of the |S|-dimensional parallelepiped spanned by the vectors {vi : i ∈ S} and, intuitively,
the larger the volume, the more diverse the set of vectors. Hence such distributions tend
to prefer most diverse or informative subsets of data points. Mathematically, the fact that
the probabilities are derived from determinants allows one to deduce elegant and non-trivial
properties of such distributions, such as negative correlation and concentration of measure.
Efficient polynomial time algorithms for sampling from DPPs (see [20, 10]) is what sets them
apart from the other probabilistic models of negative correlation such as Markov random
fields. As a consequence, sampling from DPPs has been successfully applied to a number of
problems, such as document summarization, sensor placement and recommendation systems
[26, 23, 37, 36, 35].

Given the wide applicability of DPPs, a natural question is whether they can be generalized
to incorporate priors, budget or fairness constraints, or other natural combinatorial constraints.
In other words, given an m×m kernel L and a family C ⊆ 2[m] that represents constraints
on the subsets, can we efficiently sample from the DPP distribution supported only on C;
that is, P(S) ∝ det(LS,S) for S ∈ C, and P(S) = 0 otherwise. Here are two important special
cases.

Fairness (or Partition) constraints: Consider the setting where [m] is a collection of data
points and each point is associated with a sensitive attribute such as gender. Then C is
the family of attribute-unbiased subsets of [m] – e.g., those subsets that contain an equal
number of male and female points. Thus, the corresponding C-constrained DPP outputs
a diverse set of points while maintaining fairness with respect to the sensitive attribute;
see [7] for this and other applications of constrained DPPs to eliminating algorithmic
bias.
Budget constraints: In data subset selection or active learning, when there is a cost ci ∈ Z
associated with each data point, it is natural to ask for a diverse training sample S from
a corresponding DPP such that its cost

∑
i∈S ci is bounded from above by C ∈ Z. See

also [34] for a related optimization variant.

1 We treat DPPs via L-ensembles, while commonly they are defined using kernel matrices, for practical
purposes these two definitions are equivalent.
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In their survey, [24] posed the open question of efficiently sampling from DPPs with additional
combinatorial constraints on the support of the distribution. Sampling from constrained DPPs
is algorithmically non-trivial, as many natural heuristics fail. The probability mass on the
constrained family of subsets can be arbitrarily small, hence, ruling out a rejection sampling
approach. For partition constraints, a natural heuristic is to sample from independent
smaller-sized DPPs, each defined over a different part. However, such a product distribution
would select two (potentially very similar) items from two different parts independently,
whereas in a constrained DPP distribution they must be negatively correlated. Unlike DPPs
and the special case of cardinality-constrained k-DPPs (in which C is the family of all subsets
of size k – see Section 1.2), it is not clear that there is a clean expression for the partition
function or the marginals of a constrained DPP. Another approach to approximately sample
from constrained DPPs is via Markov Chain Monte Carlo (MCMC) methods as in the recent
work of [25]. This approach can be shown to be efficient when the underlying Markov chain is
connected and the DPP kernel is close to a diagonal matrix (or nearly-log-linear; see Theorem
4 of [25]). However, the above conditions do not hold for sampling partition-constrained
subsets – even with constant number of parts – from most DPP kernels. Thus, while the
problem of sampling from constrained DPPs has attracted attention, its complexity has
remained open.

The main contribution of our paper is the first resolution of the problem of sampling from
constrained DPPs. Our results give a dichotomy for the complexity of this problem: On the
one hand, we give exact algorithms which are polynomial time when the description of C (in
terms of the costs and budgets) is in unary; this includes special cases of practical importance
such as the fairness, partition or budget constraints mentioned above. On the other hand,
we prove that in general this problem is #P-hard when the constraints of C are specified in
binary. Our algorithmic results go beyond the MCMC methods and include special cases of
practical importance such as (constantly-many) partition or fairness constraints (studied,
e.g., by [7]) and a more general class of budget constraints and linear families defined in the
following section.

Our algorithmic results benefit from viewing the probabilities arising in constrained
DPPs as coefficients of certain multivariate polynomials. This viewpoint also allows us to
extend our result on constrained DPPs to derive important consequences of independent
interest. For instance, using the intimate connection between linear matroids and DPPs, we
arrive at efficient algorithms to sample a basis of regular matroids when there are additional
budget constraints – significantly extending results of [12, 6] for spanning trees. To prove
the hardness result, we present an equivalence between the problem of computing the mixed
discriminant of a tuple of PSD matrices and that of sampling from partition-constrained
DPPs. Mixed discriminants (see Section 4.1 for a definition) generalize the permanent, arise
in the proof of the Kadison-Singer problem ([27], see [18] for a survey on this topic) and are
closely related to mixed volumes (see, e.g., [4]). However, unlike the result for permanent [21]
and volume computation [11], there is evidence that the mixed discriminant problem may
be much harder and may not admit an FPRAS; see [15]. Thus, in light of our equivalence
between mixed discriminants and partition DPPs, it may be unlikely that we can even
approximately sample from partition DPPs (with an arbitrary number of parts) efficiently.
Further, this connection implies that important special cases of the mixed discriminant
problem, for instance computing the higher order coefficients of the mixed-characteristic
polynomial or evaluating the mixed characteristic polynomial of low rank matrices at a given
point, can be solved efficiently, which may be of independent interest.

APPROX/RANDOM’17



36:4 On the Complexity of Constrained Determinantal Point Processes

1.1 Our Framework and Results
The starting point of our work is the observation that if we let µ be the measure on subsets
of [m] corresponding to the kernel matrix L (i.e., µ(S) def= det(LS,S)), then given L, there is
an efficient algorithm to evaluate the polynomial

gµ(x) def=
∑
S⊆[m]

µ(S)xS

where xS denotes
∏
i∈S xi for any setting of its variables. Indeed, consider the Cholesky

decomposition of the kernel L = V V >. Then, the polynomial x 7→ det(V >XV + I) (where
X denotes the diagonal matrix with x on the diagonal) is equal to gµ(x) (see Fact 8) and
hence can be efficiently evaluated using Gaussian elimination for any input x. We say that
such a µ has an efficient evaluation oracle and, as it turns out, this is the only property
we need from DPPs and our results generalize to any measure µ for which we have such an
evaluation oracle. Before we explain our results, we formally introduce the sampling problem
in this general framework.

I Definition 1 (Sampling). Let µ : 2[m] → R≥0 be a function assigning non-negative real
values to subsets of [m] and let C ⊆ 2[m] be any family of subsets of [m]. We denote the
(sampling) problem of selecting a set S ∈ C with probability pS = µ(S)∑

T∈C
µ(T )

by Sample[µ, C].

Building up on the equivalence between sampling and counting [22], we show that if one
is given oracle access to the generating polynomial gµ and if µ is a nonnegative measure,
the problem Sample[µ, C] is essentially equivalent to the following counting problem; see
Theorem 21 in Appendix B.

I Definition 2 (Counting). Let µ : 2[m] → R≥0 be a function assigning non-negative real
values to subsets of [m] and let C ⊆ 2[m] be any family of subsets of [m]. We denote the
(counting) problem of computing the sum

∑
S∈C µ(S) by Count[µ, C].

In particular, a polynomial time algorithm for Count[µ, C] can be translated into a polynomial
time algorithm for Sample[µ, C]. Interestingly, this relation holds no matter what C is; in
particular, no specific assumptions on how the access to C is provided are required.

Towards developing counting algorithms in our framework, we focus on a class of families
C ⊆ 2[m], which we call Budget Constrained Families, where a cost vector c ∈ Zm and a
budget value C ∈ Z are given, and the family consists of all sets S ⊆ [m] of total cost
c(S) def=

∑
i∈S ci at most C. We call the counting and sampling problems for this special case

BCount[µ, c, C] and BSample[µ, c, C] respectively.
Our key result is that the BCount problem (and hence also BSample) is efficiently

solvable whenever the costs are not too large in magnitude.

I Theorem 3 (Counting under Budget Constraints). There is an algorithm, which given a
function µ : 2[m] → R (via oracle access to gµ), a cost vector c ∈ Zm and a cost value C ∈ Z
solves the BCount[µ, c, C] problem in polynomial time with respect to m and ‖c‖1.

The proof of Theorem 3 (see Section 2) benefits from an interplay between probability
measures and polynomials. It reduces the counting problem to computing the coefficients of
a certain univariate polynomial which, in turn, can be evaluated efficiently given access to
the generating polynomial for µ. We can then employ interpolation in order to recover the
required coefficients.



L. E. Celis, A. Deshpande, T. Kathuria, D. Straszak, and N.K. Vishnoi 36:5

It is not hard to see that Theorem 3 also implies the same result for families with a single
equality constraint (c(S) = C) or for any constraint of the form c(S) ∈ K, where K ⊆ Z is
given as input together with c ∈ Zm and C ∈ Z. Furthermore, our framework can be easily
extended to the case of multiple (constant number of) such constraints.

As mentioned earlier, what makes DPPs attractive is that their generating polynomial,
arising from a determinant, is efficiently computable. Using this fact, Theorem 3 and the
equivalence between sampling and counting, we can deduce the following result.

I Corollary 4. There is an algorithm, which given a PSD matrix L ∈ Rm×m, a cost vector
c ∈ Zm and a cost value C ∈ Z samples a set S of cost c(S) ≤ C with probability proportional
to det(LS,S). The running time of the algorithm is polynomial with respect to m and ‖c‖1.

From the above one can derive efficient sampling algorithms for several classes of constraint
families C which have succinct descriptions. Indeed, we establish counting and sampling
algorithms for a general class of linear families of the form

C = {S ⊆ [m] : c1(S) ∈ K1, c2(S) ∈ K2, . . . , cp(S) ∈ Kp} (1)

where c1, c2, . . . , cp ∈ Zm and K1, . . . ,Kp ⊆ Z. We prove the following

I Corollary 5. There is an algorithm, which given a PSD matrix L ∈ Rm×m and a description
of a linear family C as in (1), samples a set S ∈ C with probability proportional to det(LS,S).
The running time of the algorithm is polynomial in m and

∏p
j=1

(
‖cj‖1 + 1

)
.

One particular class of families for which the above yields polynomial time sampling algorithms
are partition families (families of bases of partition matroids) over constantly many parts
(see Corollary 10). An important open problem that remains is to come up with even faster
algorithms.

Another application of Theorem 3, which we present in Section 6, is to combinatorial
sampling and counting problems. More precisely, we note that the indicator measure of bases
of regular matroids has an efficiently computable generating polynomial; hence, we can solve
their corresponding budgeted versions of counting and sampling problems.

One may ask if the dependence on ‖c‖1 in Theorem 3 can be improved. We prove that
the answer to this question is no in a very strong sense. To state our hardness result, we
introduce ECount – a natural variant of the BCount problem – in which the sum is
over subsets of cost equal to a given value C instead of at most C (such a problem is no
harder than BCount). We provide an approximation preserving reduction showing that
ECount[µ, c, C] is at least as hard as computing mixed discriminants of tuples of positive
semidefinite (PSD) matrices when c and C are given in binary, and can be exponentially
large in magnitude. Recall that for a tuple of m×m PSD matrices A1, . . . , Am, their mixed
discriminant is the coefficient of the monomial

∏m
i=1 xi in the polynomial det(

∑m
i=1 xiAi).

I Theorem 6 (Hardness of Counting under Budget Constraints). BCount[µ, c, C] is #P−hard.
Moreover, when µ is a determinantal function, ECount[µ, c, C] is at least as hard to
approximate as mixed discriminants of tuples of PSD matrices.

To prove this result we show an equivalence between the counting problem corresponding to
partition-constrained DPPs (with a large, super-constant number of parts) and computing
mixed discriminants. Unlike permanents [21], no efficient approximation scheme is known for
estimating mixed discriminants and there is some evidence [15] that there may be none. To
further understand to what extent gµ is the cause of computational hardness, in Appendix A
(see Theorem 20) we provide another hardness result; it considers a µ that is a 0/1 indicator
function for spanning trees in a graph (with efficiently computable gµ). We prove that

APPROX/RANDOM’17



36:6 On the Complexity of Constrained Determinantal Point Processes

ECount[µ, c, C] is at least as hard to approximate as the number of perfect matchings in
general (non-bipartite) graphs, which is another problem for which existence of an FPRAS is
open.

Finally, this connection between partition-DPPs and mixed discriminants, along with our
results to efficiently solve the counting problem for partition-DPPs with constantly many
parts, gives us other applications of independent interest. 1) The ability to compute the
top few coefficients of the mixed characteristic polynomial that arises in the proof of the
Kadison-Singer problem; see Theorem 15. 2) The ability to compute in polynomial time, the
mixed characteristic polynomial exactly, when the linear matrix subspace spanned by the
input matrices has constant dimension; see Theorem 17 and Corollary 18.

1.2 Other Related Work
For sampling from k-DPPs there are exact polynomial time algorithms (see [20, 10, 24]).
There is also recent work on faster approximate MCMC algorithms for sampling from various
unconstrained discrete point processes (see [31, 1] and the references therein), and algorithms
that are efficient for constrained DPPs under certain restrictions on the kernel and constraints
(see [25] and the references therein). To the best of our knowledge, our result is the first
efficient sampling algorithm that works for all kernels and for any constraint set with small
description complexity. Recently, approximate algorithms for the counting and sampling
were presented in [32]. On the practical side, diverse subset selection and DPPs arise in a
variety of contexts such as structured prediction [30], recommender systems [14] and active
learning [34], where the study of DPPs with additional constraints is of importance.

2 Counting with Budget Constraints

Proof of Theorem 3. Let us first consider the case in which the cost vector c is nonnegative,
i.e., c ∈ Nm. We introduce a new variable z and consider the polynomial

h(z) def= gµ(zc1 , zc2 , . . . , zcm).

Since gµ(x1, . . . , xm) =
∑
S⊆[m] µ(S)

∏
i∈S xi, we have

h(z) =
∑
S⊆[m]

µ(S)
∏
i∈S

zci =
∑
S⊆[m]

µ(S)zc(S) =
∑

0≤d≤‖c‖1

zd
∑

S: c(S)=d

µ(S).

Hence, the coefficient of zd in h(z) is equal to the sum of µ(S) over all sets S such that
c(S) = d. In particular, the output is the sum of coefficients over d ≤ C.

It remains to show how to compute the coefficients of h. Note that we do not have direct
access to gµ. However, we can evaluate gµ(x) at any input x ∈ Rm, which in turn allows us
to compute h(z) for any input z ∈ R. Since h(z) is a polynomial of degree at most ‖c‖1, in
order to recover the coefficients of h, it suffices to evaluate it at ‖c‖1 + 1 inputs and perform
interpolation. When using FFT, the total running time becomes:

(‖c‖1 + 1) · Tµ + Õ(‖c‖1),

where Tµ is the running time of the evaluation oracle for gµ.
In order to deal with the case in which c has negative entries, consider a modified version

of h:

h(z) def= z‖c‖1gµ(zc1 , zc2 , . . . , zcm).

Clearly, h(z) is a polynomial of degree at most 2 · ‖c‖1 whose coefficients encode the desired
output. J
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I Remark. Note that the bit complexity of the output of the proposed algorithm is polynomial
in the input size since it is a result of solving a linear system with all the coefficients being
polynomially bounded.
We also state a simple consequence of the above proof that is often convenient to work with.

I Corollary 7. There is an algorithm that, given a vector c ∈ Zm, a value C ∈ Z and oracle
access to gµ computes the sum

∑
S: c(S)=C µ(S) in time polynomial with respect to m and

‖c‖1.

In the above, note the equality c(S) = C instead of c(S) ≤ C as in BCount.

3 Determinantal Point Processes

A Determinantal Point Process (DPP) is a probability distribution µ over subsets of [m]
defined with respect to a symmetric positive semidefinite matrix L ∈ Rm×m by µ(S) ∝
det(LS,S); i.e.,

µ(S) def= det(LS,S)∑
T⊆[m] det(LT,T ) .

We will often use a different matrix to represent the measure µ; let V ∈ Rm×n be a matrix,
such that L = V V > (the Cholesky decomposition of L). Then, det(LS,S) = det(VSV >S ).

An important open problem related to DPPs is the sampling problem under additional
combinatorial constraints imposed on the ground set [m]. We prove that these problems
are polynomial time solvable for succinct budget constraints, as in Theorem 3. We start
by establishing the fact that generating polynomials for determinantal distributions are
efficiently computable.

I Fact 8. Let L ∈ Rm×m be a PSD matrix with L = V V > for some V ∈ Rm×n. If
µ : 2[m] → R≥0 is defined as µ(S) def= det(LS,S) then det(V >XV + I) =

∑
S⊆[m] x

Sµ(S),
where X is the diagonal matrix of indeterminates X = Diag (x1, . . . , xm) and I is the n× n
identity matrix.

Proof. We start by applying the Sylvester’s determinant identity

det(V >XV + I) = det
((√

XV
)(√

XV
)>

+ I

)
.

It is well known that for a symmetric matrix A ∈ Rm×n the coefficient of tk in the polynomial
det(A+ tI) is equal to

∑
|S|=n−k det(AS,S). Applying this result to A =

(√
XV

)(√
XV

)>
,

we get

det(AS,S) = xS det(VSV >S ) = xS det(LS,S),

which concludes the proof by simply taking t = 1. J

Now we are ready to deduce Corollary 4.

Proof of Corollary 4. A polynomial time counting algorithm follows directly from Theorem 3
and Fact 8. To deduce sampling we apply the result on equivalence between sampling and
counting Theorem 21. In fact when applied to an exact counting algorithm we obtain an
exact sampling procedure. J

APPROX/RANDOM’17
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We move to the general result on sampling for linear families – Corollary 5. One can deduce
it directly from Theorem 3, but this leads to a significantly suboptimal algorithm. Instead
we take a different path and reprove Theorem 3 in a slightly higher generality.

Proof of Corollary 5. We will show how to solve the counting problem – sampling will then
follow from Theorem 21. Also, for simplicity we assume that all the entries in the cost vectors
are nonnegative, this can be extended to the general setting as in the proof of Theorem 3.

Let g be the generating polynomial of the determinantal function µ(S) = det(LS,S),
which is efficiently computable by Fact 8. For notational clarity we will use superscripts
to index constraints. For every constraint “c(j)(S) ∈ Ki” (j = 1, 2, . . . , p) introduce a new
formal variable yj . For every index i ∈ [m] define the monomial:

si =
p∏
j=1

y
c

(j)
i
j .

The above encodes the cost of element i with respect to all cost vectors c(j) for j = 1, 2, . . . , p.
Consider the polynomial h(y1, . . . , yp) = g(s1, s2, . . . , sm). It is not hard to see that the
coefficient of a given monomial

∏p
j=1 y

dj

j in h is simply the sum of µ(S) over all sets S
satisfying c(1)(S) = d1, c

(2)(S) = d2, . . . , c
(p)(S) = dp. Hence the solution to our counting

problem is simply the sum of certain coefficients of h. It remains to show how to recover all
the coefficients efficiently.

Note that we can efficiently evaluate the polynomial h at every input (y1, . . . , yp) ∈ Rp.
One can then apply interpolation to recover all coefficients of h. The running time is
polynomial in the total number of monomials in h (this is the number of variables of a linear
system which can be used to find the coefficients), which can be bounded from above by∏p
j=1

(∥∥c(j)
∥∥

1 + 1
)
. J

We derive now one interesting application of Corollary 5 – sampling from partition constrained
DPPs. Let us first define partition families formally.
I Definition 9. Let [m] = P1 ∪ P2 ∪ · · · ∪ Pp be a partition of [m] into disjoint, nonempty
sets and let b1, b2, . . . , bp be integers such that 0 ≤ bi ≤ |Pi|. A family of sets of the form

C = {S ⊆ [m] : |S ∩ Pj | = bj , for every j = 1, 2, . . . , p}

is called a partition family.
We prove the following consequence of Corollary 5, which asserts that polynomial time
counting and sampling is possible for DPPs under partition constraints for constant p.
I Corollary 10. Given a DPP defined by L ∈ Rm×m and a partition family C with a constant
number of parts, there exists a polynomial time sampling algorithm for the distribution

µC(S) def= det(LS,S)∑
T∈C det(LT,T ) for S ∈ C.

Proof. In light of Corollary 5 it suffices to show that every partition family has a succinct
representation as a linear family. We show that it is indeed the case. Consider a partition
family C induced by the partition P1 ∪P2 ∪ . . .∪Pp = [m] and numbers b1, b2, . . . , bp. Define
the following cost vectors: cj = 1Pj

, for j = 1, 2, . . . , p, i.e., the indicator vectors of the sets
P1, P2, . . . , Pp. Moreover define Kj to be {bj} for every j = 1, 2, . . . , p. It is then easy to see
that “cj(S) ∈ Kj” is implementing the constraint |Pj ∩ S| = bj . In other words the family
C is equal to the linear family defined by cost vectors c1, c2, . . . , cp and sets K1,K2, . . . ,Kp.
It remains to observe that ‖cj‖1 = |Pj | ≤ m and hence

∏p
j=1 (‖cj‖+ 1) = O(mp). Since

p = O(1) the algorithm from Corollary 5 runs in polynomial time. J
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4 Hardness Result

In this section we study hardness of BCount[µ, c, C]. Theorem 3 implies that BCount is
polynomial time solvable whenever we measure the complexity with respect to the unary
encoding length of the cost vector c. Here we prove that if c is given in binary, the problem
becomes #P−hard. Moreover, existence of an efficient approximation scheme for a closely
related problem (instead of counting all objects of cost at most C, count objects of cost
exactly C) would imply existence of such schemes for counting perfect matchings in non-
bipartite graphs (see Appendix A) and for computing mixed discriminants. In both cases,
these are notorious open questions and the latter is believed to be unlikely.

4.1 Mixed Discriminants
We relate the BCount problem to the well studied problem of computing mixed discriminants
of PSD matrices and prove Theorem 6. Recall the definition:

I Definition 11. Let A1, A2, . . . , Am ∈ Rd×d be symmetric matrices of dimension d. The
mixed discriminant of a tuple (A1, A2, . . . , Ad) is defined as

D(A1, A2, . . . , Ad)
def= ∂d

∂z1 . . . ∂zd
det(z1A1 + z2A2 + · · ·+ zdAd).

Computing mixed discriminants of PSD matrices is known to be #P-hard, since they can
encode the permanent. However, as opposed to the permanent, there is no FPRAS known
for computing mixed discriminants, and the best polynomial time approximation algorithms
by [4, 16] have an exponentially large approximation ratio.

The main technical component in our proof of Theorem 6 is the following lemma.

I Lemma 12. There is a polynomial time reduction, which given a tuple (A1, . . . , An) of
PSD n×n matrices outputs a PSD matrix L ∈ Rm×m, a cost vector c ∈ Zm and a cost value
C ∈ Z such that

n! ·D(A1, A2, . . . , An) =
∑

S⊆[m], c(S)=C

µ(S),

where µ(S) = det(LS,S), for S ⊆ [m]. Moreover, ‖c‖1 ≤ 2O(n logn).

Before proving Lemma 12 let us first state several important properties of mixed discriminants,
which we will rely on; for proofs of these facts we refer the reader to [3].

I Fact 13 (Properties of Mixed Discriminants). Let A,B,A1, A2, . . . , An be symmetric n× n
matrices.
1. D is symmetric, i.e.,

D(A1, A2, . . . , An) = D(Aσ(1), Aσ(2), . . . , Aσ(n)), for any permutation σ ∈ Sn.

2. D is linear with respect to every coordinate, i.e.,

D(αA+ βB,A2, . . . , An) = αD(A,A2, . . . , An) + βD(B,A2, . . . , An).

3. If A =
∑n
i=1 viv

>
i ∈ Rn×n then we have: det(A) = n! D(v1v

>
1 , . . . , vnv

>
n ).
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Proof of Lemma 12. Consider a tuple (A1, A2, . . . , An) of PSD matrices. The first step is
to decompose them into rank-one summands:

Ai =
r∑
j=1

vi,jv
>
i,j ,

where vi,j ∈ Rn for 1 ≤ i, j ≤ n (some vi,j ’s can be zero if rank(Ai) < n). This step can be
performed using the Cholesky decomposition.

Let M = {(i, j) : 1 ≤ i, j ≤ n} and for every i = 1, 2, . . . , n define Pi = {i}× [n]. We take
m = |M | = n2 and define a family C of n−subsets of M to be

C = {S ⊆ [m] : |S ∩ Pi| = 1 for every i = 1, 2, . . . , n}.

Let V denote an m×n matrix with rows indexed by M , for which the eth row is ve as above
(e ∈ M , i.e., e = (i, j) for some i, j ∈ [n]). We also set L = V V >, hence L is an m ×m
symmetric, PSD matrix. Finally, let µ(S) = det(LS,S). Note that for sets S of cardinality n
we have

µ(S) = det(LS,S) = det(VSV >S ) = det(V >S VS) = det
(∑
e∈S

vev
>
e

)
.

In the calculation below we rely on properties of mixed discriminants listed in Fact 13 and
on the fact that |S| = n for S ∈ C.

D(A1, A2, . . . , An) = D

 n∑
j=1

v1,jv
>
1,j ,

n∑
j=1

v2,jv
>
2,j , . . . ,

n∑
j=1

vn,jv
>
n,j


=

∑
1≤j1,j2,...,jn≤n

D(v1,j1v
>
1,j1

, v2,j2v
>
2,j2

, . . . , vn,jn
v>n,jn

)

=
∑

e1∈P1,e2∈P2,...,en∈Pn

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ven

v>en
)

=
∑

{e1,e2,...,en}∈C

1
n! det(ve1v

>
e1

+ ve2v
>
e2

+ . . .+ ven
v>en

) = 1
n!
∑
S∈C

µ(S).

It remains to show that the partition family C can be represented as C = {S ⊆M : c(S) = C}
for some cost vector c ∈ ZM and C ∈ Z, such that ‖c‖1 = 2O(n logn). Indeed, by a reasoning
as in Corollary 10 we can represent C as a linear family with n constraints of the form
c(i)(S) = 1 for i = 1, 2, . . . , n and c(i) ∈ {0, 1}n×n. It is not hard to see that these can be
combined into one constraint c(S) = C with ‖c‖1 = (n2)n+O(1) = 2O(n logn). Now, it remains
to observe that all the steps of the reduction are efficient (since the cost vector is represented
in binary here). J

Proof of Theorem 6. In light of Lemma 12, the problem of computing
∑
S⊆[m],c(S)=C µ(S)

for determinantal functions µ is at least as hard as computing mixed discriminants. The
BCount problem is very similar, with the only difference that it is computing the sum over
all sets of cost c(S) at most C. However, clearly by solving the BCount problem for C and
C − 1 one can compute

∑
S⊆[m],c(S)=C µ(S) by just subtracting the obtained results. J

5 Mixed Discriminants and Mixed Characteristic Polynomials

Mixed Characteristic Polynomials played a crucial role in the proof of the Kadison-Singer
conjecture. Making this proof algorithmic is an outstanding open question that naturally leads
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to the problem of computing the maximum root of these mixed characteristic polynomials. In
this section, we show how Corollary 10 implies a polynomial time algorithm for higher-order
coefficients of such polynomials. We start by defining mixed characteristic polynomials. We
use the following simplified notation for partial derivatives: ∂xif(x) is an abbreviation for
∂
∂xi

f(x).

I Definition 14. Let A1, A2, . . . , Am ∈ Rd×d be symmetric matrices of dimension d. The
mixed characteristic polynomial of A1, A2, . . . , Am is defined as

µ[A1, . . . , Am](x) def=
m∏
i=1

(1− ∂zi
) det

(
xI +

m∑
i=1

ziAi

)∣∣∣∣
z1=···=zm=0

.

Note in particular that while mixed discriminants are defined for a tuple whose length
matches the dimension d of the matrices, for the case of mixed characteristic polynomials
the number m can be arbitrary. In fact, when m = d, the constant term in the mixed
characteristic polynomial is (up to sign) equal to the mixed discriminant of the input tuple.

However, one may wonder whether all of the coefficients in these polynomials are hard
to compute. The following result shows that higher-degree coefficients are computable
in polynomial time. Roughly, the proof relies on the observation that the higher-degree
coefficients in the mixed characteristic polynomial are sums of mixed discriminants that
only have constantly many distinct matrices. As we demonstrate, computing such mixed
discriminants reduces to counting for DPPs under partition constraints with a constant
number of parts, which allows us to apply Corollary 10. The formal statement of the theorem
follows 2.

I Theorem 15. Given a set of m symmetric, PSD matrices A1, . . . , Am ∈ Rd×d, one can
compute the coefficient of xd−k in µ[A1, . . . , Am](x), in poly(mk) time.

An important component in the proof of Theorem 15 is a reduction from counting for
partition constrained DPPs to mixed discriminants. In fact we use it as a subroutine for
computing higher-order coefficients of the mixed characteristic polynomial. In Section 4 we
provided a reduction in the opposite direction, thus establishing an equivalence between
mixed discriminants and counting for partition constrained DPPs.

I Lemma 16. Given a set of m vectors v1, . . . , vm ∈ Rr and a partition of [m] = P1∪· · ·∪Pp
into disjoint, non-empty sets, consider a partition family C = {S ⊆ [m] : |S ∩ Pj | =
bj for every j = 1, 2, . . . , p} such that

∑p
j=1 bj = r. Let (A1, . . . , Ar) be an r-tuple of PSD

r × r matrices such that (A1, A2, . . . , Ar) = (
b1 times︷ ︸︸ ︷
B1, . . . , B1,

b2 times︷ ︸︸ ︷
B2, . . . , B2, . . . ,

bp times︷ ︸︸ ︷
Bp, . . . , Bp) where

Bi =
∑
e∈Pi

vev
>
e for every partition Pi, the following equality holds:

p∏
i=1

bi! ·D(A1, A2, . . . , Ar) =
∑
S∈C

det(VSV >S ),

where V ∈ Rm×r denotes the matrix formed by arranging the vectors v1, . . . , vm row-wise.

Proof. Consider the quantities Bi and (A1, A2, . . . , Ar) as defined in the theorem. By
applying linearity multiple times to all coordinates of D(A1, A2, . . . , Ar) we find that:

D(A1, A2, . . . , Ar) = α
∑
S∈B

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ver

v>er
),

2 Independent of our work which first appeared in [9], a recent preprint [2] devise a different algorithm to
obtain a similar result
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where S is {e1, e2, . . . , er} in the summation above and α is
∏p
i=1 bi!. This is because

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ver

v>er
) = 0 whenever e1, e2, . . . , er are not pairwise distinct. We use

Fact 13 again to obtain that

D(ve1v
>
e1
, ve2v

>
e2
, . . . , ver

v>er
) = 1

r! det(ve1v
>
e1

+ ve2v
>
e2

+ . . .+ ver
v>er

) = det(VSV >S ).

This concludes the proof. Furthermore, it is evident that the r-tuple (A1, A2, . . . , Ar) is
efficiently computable given the partition family C and matrix V . J

Proof of Theorem 15. First note that without loss of generality we can assume that d ≤ m,
as otherwise – if d > m we can add (d−m) zero-matrices which does not change the result
but places us in the d ≤ m case. The starting point of our proof is an observation made in
[27] which provides us with another expression for the mixed characteristic polynomial in
terms of mixed discriminants:

µ[A1, . . . , Am](x) =
d∑
k=0

xd−k(−1)k
∑

S∈([m]
k )
D((Ai)i∈S) (2)

where we denote D(A1, . . . , Ak) = 1
(d−k)!D(A1, . . . , Ak, I, . . . , I) with the identity matrix I

repeated d− k times. Therefore, our task reduces to computing O(mk) mixed discriminants
of the form D(A1, . . . , Ak, I, . . . , I). Below we show that such a quantity is computable in
poly(dk) time which concludes the proof.

Consider the Cholesky decomposition of Ai for i = 1, 2, . . . , k + 1 (we set Ak+1 = I for
convenience)

Ai =
d∑
j=1

ui,ju
>
i,j .

Let M = {(i, j) : 1 ≤ i ≤ k + 1, 1 ≤ j ≤ d} be the ground set of a partition family of size
m

def= (k + 1)d. Define an m× d matrix U by placing ui,j ’s as rows of U .
Further, consider a partitionM = P1∪· · ·∪Pk+1 with Pi = {i}× [d] for all i = 1, . . . , k+1

and let b1 = . . . = bk = 1 and bk+1 = d− k. This gives rise to a partition family

C = {T ∈M : |T ∩ Pi| = bi for all i = 1, . . . , k + 1}.

We claim that
k+1∏
i=1

bi!
∑
T∈C

det(UTU>T ) = D(A1, . . . , Ak, I . . . , I). (3)

This follows from Lemma 16 by considering this partition family C and matrix U as defined
here. Equation (3) combined with the counting result for DPPs under partition constraints
(Corollary 10) conclude the proof. J

The second observation is more general in its nature and tries to answer the question
whether computing mixed characteristic polynomials is strictly harder than computing mixed
discriminants. In fact, as noted above, the coefficients of mixed characteristic polynomials are
expressed as sums of (an exponential number of) mixed discriminants. We show that these
exponential sums can be computed by evaluating a single mixed discriminant of matrices of
size at most d+n. Moreover, our reduction is approximation-preserving, hence demonstrating
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that approximating mixed discriminants are computationally equally hard as approximating
the coefficients of the mixed characteristic polynomials. We remark that our reduction can
be thought of as a generalization of a result for approximating the number of k-matchings in
a bipartite graph ([13]).

I Theorem 17. Given a tuple of m symmetric, positive semi-definite matrices A1, . . . , Am ∈
Rd×d with d ≤ m and k ∈ {1, . . . , d}, there exist a tuple of m + d − k symmetric, positive
semi-definite matrices B1, . . . , Bm+d−k ∈ R(m+d−k)×(m+d−k) such that the coefficient of xd−k
in the mixed characteristic polynomial µ[A1, . . . , Am](x),

∑
S∈([m]

k )
D((Ai)i∈S) = 1

(m− k)!(d− k)!D(B1, . . . , Bm+d−k)

Proof. We first show how to construct the m + d − k matrices B1, . . . , Bm+d−k from
A1, . . . , Am. The matrices B1, . . . , Bm+d−k that we consider are 2-by-2 block diagonal
matrices that we construct by taking appropriate direct sums. Recall that the direct sum of
two matrices A and B of size d1 × d1 and d2 × d2 is a matrix of size (d1 + d2)× (d1 + d2)
defined as

G =
[

A 0d1×d2

0d2×d1 B

]
where 0m×n is an m-times-n matrix consisting of all zeros. We define the first m matrices to
be direct sums of the Ai matrices with the identity matrix of order m− k, i.e., Im−k and the
remaining d− k matrices to all be equal to the direct sum of the identity matrix of order d,
i.e., Id with the square zero matrix of order m− k, i.e., 0m−k. Formally,

Bi =
{
Ai ⊕ Im−k for i ∈ {1, . . . , k},
Id ⊕ 0m−k otherwise

We now proceed to prove the claim of the theorem from the definition of the mixed discriminant
in Definition 14. For any subset S ⊆ [m], denote ∂S =

∏
i∈S ∂zi

.

D(B1, . . . , Bm+d−k)
= ∂z1 . . . ∂zm+d−k

det(z1B1 + . . .+ zm+d−kBm+d−k)

= ∂z1 . . . ∂zm+d−k
det


m∑
i=1

ziAi +
d−k∑
i=1

zm+iId 0d×(m−k)

0(m−k)×d
m∑
i=1

ziIm−k


= ∂z1 . . . ∂zm+d−k

(z1 + . . .+ zm)m−k det
(

m∑
i=1

ziAi +
d−k∑
i=1

zm+iId

)

=
∑
S⊆[m]
|S|=m−k

[
∂S(z1 + . . .+ zm)m−k

] [
∂S

c
d−k∏
i=1

∂zm+i det
(

m∑
i=1

ziAi +
d−k∑
i=1

zm+iId

)]

=
∑
S⊆[m]
|S|=m−k

(m− k)!∂S
c
d−k∏
i=1

∂zm+i det(
∑
i∈Sc

ziAi + (zm+1 + . . . zm+d−k)Id)
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= (m− k)!
∑
S⊆[m]
|S|=k

D((Ai)i∈S ,
d−k times︷ ︸︸ ︷
I, . . . , I )

= (m− k)!(d− k)!
∑
S⊆[m]
|S|=k

D((Ai)i∈S)

The fourth to last equality follows simply from chain rule. Since we have an equality in the
expression, the reduction is clearly approximation preserving and we are done. J

The above theorem in particular allows us to compute in polynomial time, the mixed
characteristic polynomial exactly, when the linear matrix subspace spanned by the input
matrices has constant dimension. This follows by combining Theorem 17 with Theorem 5.1
in [15].

I Corollary 18. Suppose A1, A2, . . . , Am ∈ Rd×d span a linear space of dimension k, then
there exists a deterministic algorithm to compute µ[A1, . . . , Am](x) in poly(mk) time.

Proof. In the proof of Theorem 17, the mixed discriminants computed are not of A1, . . . , Am
but rather are of modified matrices. However, it is easy to see that for all tuples on which
mixed discriminant is called, the dimension of the linear space spanned by them is at most
k + 1. It is proved in [15] that such mixed discriminants can be computed in O(m2k+2)
time. J

6 Budget-Constrained Sampling and Counting for Regular Matroids

Consider the following problem: given an undirected graph G with weights c ∈ Rm on its
edges, sample a uniformly random spanning tree of cost at most C in G. This generalizes
the problem of sampling uniformly random spanning trees [29] and sampling a random
spanning tree of minimum cost [12]. Below we study the generalized version of this problem
by considering regular matroids, indeed spanning trees arise as bases of the graphic matroid,
which is known to be regular. We prove that the counting and sampling problem in this
setting can be solved efficiently whenever c is polynomially bounded.

I Theorem 19 (Counting and Sampling Bases of Matroids). LetM be a regular matroid on
a ground set [m] with a set of bases B. There exists a counting algorithm which, given a
cost vector c ∈ Zm and a value C ∈ Z, outputs the cardinality of the set {S ∈ B : c(S) ≤ C}
and a sampling algorithm which, given a cost vector c ∈ Zm and a value C ∈ Z, outputs
a random element in the set {S ∈ B : c(S) ≤ C}. The running time of both algorithms is
polynomial in m and ‖c‖1.

Proof of Theorem 19. LetM⊆ 2[m] be a regular matroid and B ⊆ 2[m] be its set of bases.
We prove that the generating polynomial

∑
S∈B x

S is efficiently computable. We use the
characterization of regular matroids as those which can be linearly represented by a totally
unimodular matrix. In other words, there exists a totally unimodular matrix A ∈ Zm×d such
that if we denote by Ae ∈ Zd the eth row of A it holds that:

S ∈M ⇔ {Ae : e ∈ S} is linearly independent. (4)

Let r ≤ d be the rank of the matroid M, i.e., the cardinality of any set in B. We claim
that without loss of generality one can assume that d = r. Indeed, we prove that there is
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a submatrix A′ ∈ Zm×r of A, such that (4) still holds with A replaced by A′. To this end
suppose that d > r. It is easy to see that the rank of A is r, otherwise, by (4) there would
be a set S of cardinality at least r + 1 with S ∈M. Hence there is a column in A which is
a linear combination of the remaining columns, we can freely remove this column from A,
while (4) will be still true. By doing so, we finally obtain a matrix A′ with exactly r rows,
which satisfies (4).

By the fact that A has r columns we have:

S ∈ B ⇔ AS is nonsingular, (5)

where by AS we mean the |S|×r submatrix of A corresponding to rows from S. In particular,
for a set S ⊆ [m] of cardinality r we have:

S ∈ B ⇔ det(AS) 6= 0 ⇔ det(A>SAS) = 1, (6)

where the last equivalence follows from A being totally unimodular. Let us now consider the
polynomial

g(x1, x2, . . . , xm) = det
(

m∑
e=1

xeAeA
>
e

)
.

By the Cauchy-Binet theorem we obtain:

g(x1, x2, . . . , xm) =
∑
|S|=r

det
(∑
e∈S

xeAeA
>
e

)
= xS det(A>SAS).

In other words, g is equal to gµ – the generating polynomial of the function µ : 2[m] → R
given by

µ(S) =
{

1 if S ∈ B
0 otherwise.

Therefore, since gµ is efficiently computable, by Theorem 3 the BCount[µ, c, C] is efficiently
solvable. This fact, together with Theorem 21 imply that sampling also can be made
efficient. J
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A Hardness for Spanning Trees

We show that BCount is at least as hard as counting perfect matchings in a non-bipartite
graph. The proof relies on a combinatorial reduction from counting perfect matchings in a
graph to counting budget constrained spanning trees.

I Theorem 20. There is a polynomial time reduction which given a graph G = (V,E) with
n vertices and m edges outputs a graph G′ with n vertices and O(m+n2) edges, a cost vector
c ∈ Nm with ‖c‖1 ≤ 2O(m logm) and a value C ∈ N, such that:

PM(G) = α · STC(G′)

where PM(G) denotes the number of perfect matchings in G, STC(G′) denotes the number
of spanning trees of total cost C in G′ and α = n2

2 (2n)−n/2.

Proof. Let G = (V,E) be an undirected graph, let n = |V | and m = |E|. We construct a
new graph G′ and a cost vector c, such that counting perfect matchings in G is equivalent to
counting spanning trees of specified cost C in G′ .

The graph G′ = (V,E′) is obtained by adding a complete graph to G, i.e.,
(
n
2
)
edges, one

between every pair of vertices. We call the set of new edges F , hence E′ = E ∪ F . Note that
E′ is a multiset. To all edges e ∈ F we assign cost ce = 0, while for the original edges the
costs are positive and defined below.

Let b = m′ + 1, where m′ = |E′| is the number of edges in G′. We define the cost of an
edge e = ij ∈ E to be:

ce = bi + bj .

Note that from the choice of b and c it follows that given a cost c(S) of some set S ⊆ E, we
can exactly compute how many times a given vertex appears as an endpoint of an edge in S.
Indeed, if we have:

c(S) =
n∑
i=1

δib
i

APPROX/RANDOM’17
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such that 0 ≤ δi ≤ b− 1 (the b−ary representation of c(S)), then the degree of vertex i in S
is δi. This follows from the fact that b is chosen to avoid carry overs when computing c(S)
in the b−ary numerical system. Therefore, it is now a natural choice to define C def=

∑n
i=1 b

i.

We claim that every perfect matching in G corresponds to exactly α = n2

2 (2n)−n/2 different
spanning trees of cost C in G′.

To prove this claim, fix any spanning tree S of cost c(S) = C. Note first that we have
c(S ∩E) = c(S) because all of the edges e /∈ E have cost 0. Moreover, the set M def= S ∩E is
a perfect matching in G, because c(M) = C implies that the degree of every vertex in M
is one. It remains to show that every perfect matching M in G corresponds to exactly α
spanning trees of cost C in G.

Fix any perfect matching M0 in G. We need to calculate how many ways are there to
add n

2 − 1 edges from E′ to obtain a spanning tree of G′. By contracting the matching M0
to n

2 vertices and considering edges in E′ only, we obtain a complete graph on n
2 vertices

with 4 parallel edges going between every pair of vertices. The answer is the number of
spanning trees of the obtained graph. Cayley’s formula easily implies that this number is
4 n

2−1 (n
2
)n

2−2 which equals α−1. J

B Equivalence Between Counting and Sampling

In this section we state and prove a theorem that implies that the Count[µ, C] and
Sample[µ, C] problems are essentially equivalent. We prove that, for a given type of con-
straints C, a polynomial time algorithm for counting can be transformed into a polynomial
time algorithm for sampling and vice versa. This section follows the convention that
µ : 2[m] → R≥0 is any function that assigns nonnegative values to subsets of [m] and C ⊆ 2[m]

is any family of subsets of [m].

I Theorem 21 (Equivalence Between Approximate Counting and Approximate Sampling).
Consider any function µ : 2[m] → R≥0 and a family C of subsets of [m]. Let µC : C → [0, 1]
be a distribution over S ∈ C such that µC(S) ∝ µ(S). We assume evaluation oracle access to
the generating polynomial gµ of µ, and define the following two problems:

Approximate C-sampling: given a precision parameter ε > 0, provide a sample S from a
distribution ρ : C → [0, 1] such that ‖µC − ρ‖1 < ε.
Approximate C-counting: given a precision parameter ε > 0, output a number X ∈ R
such that X(1 + ε)−1 ≤

∑
S∈C µ(S) ≤ X(1 + ε).

The time complexities of the above problems differ by at most a multiplicative factor of
poly(m, ε−1).

I Remark. Note that the above theorem establishes equivalence between approximate variants
of Count[µ, C] and Sample[µ, C]. This is convenient for applications, because the exact
counting variants of these problems are often #P−hard. Still, for some of them, efficient
approximation schemes are likely to exist. Further, we mention that the implication from
exact counting to exact sampling holds, hence the sampling algorithms that we obtain in
this paper are exact.

Theorem 21 follows from a self-reducibility property [22] of the counting problem. Before we
present the proof of Theorem 21, we introduce some terminology and state assumptions for
the remaining part of this section. The function µ : 2[m] → R≥0 is given as an evaluation
oracle for gµ(x) =

∑
S⊆[m] µ(S)xS . In particular, we measure complexity with respect to the

number of calls to such an oracle. An algorithm which, for a fixed family C ⊆ 2[m] and every
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function µ, given access to gµ computes
∑
S∈C µ(S) is called a C-counting oracle. Similarly,

we define a C-sampling oracle to be an algorithm which, given access to gµ, provides samples
from the distribution

µC(S) def= µ(S)∑
T∈C µ(T ) for S ∈ C.

B.1 Counting Implies Sampling
We now show how counting implies sampling. It proceeds by inductively conditioning
on certain elements not being in the sample. For this idea to work one has to implement
conditioning using the C−sampling oracle and access to the generating polynomial only. Below
we state the implication from counting to sampling in the exact variant. The approximate
variant also holds, with an analogous proof.
I Lemma 22 (Counting Implies Sampling). Let C denote a family of subsets of [m]. Suppose
access to a C-counting oracle is given. Then, there exists a C-sampling oracle which, for any
function µ : 2[m] → R≥0, makes poly(m) calls to the counting oracle and to gµ and outputs
a sample from the distribution µC.
Proof. Let S be the random variable corresponding to the sample our algorithm outputs;
our goal is to have S ∼ µC. The sampling algorithm proceeds as follows: It sequentially
considers each element e ∈ [m] and tries to decide (at random) whether to include e ∈ S or
not. To do so, it first computes the probability P(e ∈ S) conditioned on all decisions thus far.
It then flips a biased coin with this probability, and includes e in S according to its outcome.
More formally, the sampling algorithm can be described as follows:
1. Input: V ∈ Rm×r, a number k ≤ r.
2. Initialize: Y = ∅, N = ∅.
3. For e = 1, 2, . . . ,m :

a. Compute the probability p = P(e ∈ S : Y ⊆ S, N ∩ S = ∅) under the distribution
S ∼ µC .

b. Toss a biased coin with success probability p. In case of success add e to the set Y ,
otherwise add e to N .

4. Output: S = Y.

It is clear that the above algorithm correctly samples from µC. It remains to show that
P(e ∈ S : Y ⊆ S,N ∩ S = ∅) can be computed efficiently. This follows from Lemma 23
below. J

I Lemma 23. Let Y and N be disjoint subsets of [m] and consider any e ∈ [m]. Suppose S
is distributed according to µC. If we are given access to a C-counting oracle and to gµ, then
P(e ∈ S : Y ⊆ S, N ∩ S = ∅) can be computed in poly(m) time.
Proof. Assume e ∈ [m]\(Y ∪N); otherwise the probability is clearly 0 or 1. Let Y ′ = Y ∪{e},
then

P(e ∈ S : Y ⊆ S, N ∩ S = ∅) =
∑
S∈C,Y ′⊆S,N∩S=∅ µ(S)∑
S∈C,Y⊆S,N∩S=∅ µ(S) .

We now show how to compute such sums: Introduce a new variable y, and for every e ∈ [m]
define:

we
def=


yxe for e ∈ Y,
0 for e ∈ N,
xe otherwise.

APPROX/RANDOM’17
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We interpret the expression gµ(w1, w2, . . . , wm) as a generating polynomial for a certain
function µ′(y) : 2[m] → R; i.e.,

gµ′(x) def= gµ(w1, w2, . . . , wm) =
∑

S∩N=∅

y|S∩Y |xSµ(S).

Define a polynomial

h(y) def=
∑

S∈C,S∩N=∅

y|S∩Y |µ(S).

It follows that h(y) is a polynomial of degree at most |Y |. In fact, the sum we are interested
in is simply the coefficient of y|Y | in h(y). The last thing to note is that we can compute h(y)
exactly by evaluating it for |Y |+ 1 different values of y and then performing interpolation.
Hence, we just need to query the C-counting oracle (|Y |+ 1) times giving it µ′ as input (for
various choices of y).3 J

B.2 Sampling Implies Counting
We show the implication from sampling to counting in Theorem 21. Similarly as for the
opposite direction we assume for simplicity that the sampling algorithm is exact, i.e., we
prove the following lemma. The approximate variant holds with an analogous proof.

I Lemma 24 (Sampling Implies Counting). Let C denote a family of subsets of [m]. Suppose
we have access to a C-sampling oracle. Then, there exists a C-counting oracle which for any
input function µ : 2[m] → R (given as an evaluation oracle for gµ) and for any precision
parameter ε > 0 makes poly(m, 1/ε) calls to the sampling oracle, and approximates the sum:∑

S∈C
µ(S)

within a multiplicative factor of (1 + ε). The algorithm has failure probability exponentially
small in m.

Let us first state the algorithm which we use to solve the counting problem. Later in a
sequence of lemmas we explain how to implement it in polynomial time and reason about its
correctness. In the description, S denotes a random variable distributed according to µC .

1. Initialize U def= [m], X def= 1.
2. Repeat

a. Estimate the probability P(S = U : S ⊆ U), if it is larger than (1− 1
m ), terminate the

loop.
b. Find an element e ∈ U so that P(e /∈ S : S ⊆ U) ≥ 1

m2 .
c. Approximate pe

def= P(e /∈ S : S ⊆ U) up to a multiplicative factor ε
m .

d. Update X def= X · ρe, where ρe is the estimate for pe.
e. Remove e from U , i.e., set U def= U \ {e}.

3. Return X · µ(U).

3 The provided argument does not generalize directly to the case when the counting oracle is only
approximate (because of the interpolation step). However, as we need to compute the top coefficient of a
polynomial h(y) only, we can alternatively do it by evaluating h(y) and dividing by yd (for d = deg(h))
at a very large input y ∈ R.
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I Lemma 25. Given U ⊆ [m] and e ∈ U , assuming access to a C-sampling oracle, we can
approximate the quantity

pe = P(e /∈ S : S ⊆ U)

where S is distributed according to µC, up to an additive error δ > 0 in time poly(m)
δ2 . The

probability of failure can be made 1
mc for any c > 0.

Proof. We sample a set S ∈ C from the distribution P(S) ∝ µ(S) conditioned on S ⊆ U .
This can be done using the sampling oracle, however instead of sampling with respect to µ
one has to sample with respect to a modified function µ′ which is defined as µ′(S) = µ(S)
for S ⊆ U and µ′(S) = 0 otherwise. Note that the generating polynomial for µ′ can be easily
obtained from gµ by just plugging in zeros at positions outside of U . Given a sample S from
µ′ we define

X =
{

1 if e /∈ S,
0 otherwise.

Repeat the above independently N times, to obtain X1, X2, . . . , XN and finally compute the
estimator:

Z = X1 +X2 + · · ·+XN

N
.

By Chebyshev’s inequality, we have:

P(|Z − pe| ≥ δ) ≤
1

Nδ2 .

Thus, by taking N = poly(m)
δ2 samples, with probability ≥ 1 − 1

poly(m) we can obtain an
additive error of at most δ. J

I Lemma 26. If U ⊆ [m] is such that P(S = U : S ⊆ U) ≤ (1 − 1
m ) then there exists an

element e ∈ U such that P(e /∈ S : S ⊆ U) ≥ 1
m2 , where S is distributed according to µC.

Proof. Let T be the random variable S conditioned on S ⊆ U . Denote qe = P(e ∈ S : S ⊆ U),
we obtain∑

e∈U
qe = E(|T|) ≤

(
1− 1

m

)
|U |+ 1

m
(|U | − 1) = |U | − 1

m
.

The inequality in the above expression follows from the fact that the worst case upper bound
would be achieved when the probability of |T| = |U | is exactly 1− 1

m and with the remaining
probability, |T| = |U | − 1. Hence

∑
e∈U (1− qe) ≥ 1

m , which implies that (1− qe) ≥ 1
m2 for

some e ∈ U . J

We are now ready to prove Lemma 24.

Proof of Lemma 24. We have to show that the algorithm given above can be implemented
in polynomial time and it gives a correct answer.

Step 2(a) can be easily implemented by taking poly(m) samples conditioned on S ⊆ U
(as in the proof of Lemma 25). This gives us an approximation of qU = P(S = U : S ⊆ U)
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up to an additive error of at most m−2 with high probability. If the estimate is less than
(1− 1

2m ) then with high probability qU ≤ (1− 1
m ) otherwise, with high probability we have

µ(U) ≤
∑

S∈C,S⊆U

µ(S) ≤
(

1 + 4
m

)
µ(U) (7)

and the algorithm terminates.
When performing step 2(b) we have a high probability guarantee for the assumption of

Lemma 26 to be satisfied. Hence, we can assume that (by using Lemma 26 and Lemma 25)
we can find an element e ∈ U with pe = P(e /∈ S : S ⊆ U) ≥ 1

2m2 . Again using Lemma 25 we
can perform step 2(c) and obtain a multiplicative (1 + ε

m )-approximation ρe to pe.
Denote the set U at which the algorithm terminated by U ′ and the elements chosen at

various stages of the algorithm by e1, e2, ..., el with l = m−|U ′|. The output of the algorithm
is:

X
def= ρe1ρe2 · · · · · pel

µ(U ′).

While the exact value of the sum is

Z
def= pe1pe2 · · · · · pel

·
∑

S∈C,S⊆U ′
µ(S).

Recall that for every i = 1, 2, . . . , l with high probability it holds that:(
1 + ε

m

)−1
≤ pei

ρei

≤
(

1 + ε

m

)
.

This, together with (7) implies that with high probability:(
1 + ε

m

)−l
≤ X

Z
≤
(

1 + ε

m

)l
·
(

1 + 4
m

)
,

which finally gives (1 + 2ε)−1 ≤ X
Z ≤ (1 + 2ε) with high probability, as claimed. Note that

the algorithm requires poly(m, 1
ε ) samples from the oracle in total. J
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