9,380 research outputs found

    Multi-Entity Dependence Learning with Rich Context via Conditional Variational Auto-encoder

    Full text link
    Multi-Entity Dependence Learning (MEDL) explores conditional correlations among multiple entities. The availability of rich contextual information requires a nimble learning scheme that tightly integrates with deep neural networks and has the ability to capture correlation structures among exponentially many outcomes. We propose MEDL_CVAE, which encodes a conditional multivariate distribution as a generating process. As a result, the variational lower bound of the joint likelihood can be optimized via a conditional variational auto-encoder and trained end-to-end on GPUs. Our MEDL_CVAE was motivated by two real-world applications in computational sustainability: one studies the spatial correlation among multiple bird species using the eBird data and the other models multi-dimensional landscape composition and human footprint in the Amazon rainforest with satellite images. We show that MEDL_CVAE captures rich dependency structures, scales better than previous methods, and further improves on the joint likelihood taking advantage of very large datasets that are beyond the capacity of previous methods.Comment: The first two authors contribute equall

    Noisy multi-label semi-supervised dimensionality reduction

    Get PDF
    Noisy labeled data represent a rich source of information that often are easily accessible and cheap to obtain, but label noise might also have many negative consequences if not accounted for. How to fully utilize noisy labels has been studied extensively within the framework of standard supervised machine learning over a period of several decades. However, very little research has been conducted on solving the challenge posed by noisy labels in non-standard settings. This includes situations where only a fraction of the samples are labeled (semi-supervised) and each high-dimensional sample is associated with multiple labels. In this work, we present a novel semi-supervised and multi-label dimensionality reduction method that effectively utilizes information from both noisy multi-labels and unlabeled data. With the proposed Noisy multi-label semi-supervised dimensionality reduction (NMLSDR) method, the noisy multi-labels are denoised and unlabeled data are labeled simultaneously via a specially designed label propagation algorithm. NMLSDR then learns a projection matrix for reducing the dimensionality by maximizing the dependence between the enlarged and denoised multi-label space and the features in the projected space. Extensive experiments on synthetic data, benchmark datasets, as well as a real-world case study, demonstrate the effectiveness of the proposed algorithm and show that it outperforms state-of-the-art multi-label feature extraction algorithms.Comment: 38 page

    Supervised Feature Space Reduction for Multi-Label Nearest Neighbors

    Get PDF
    International audienceWith the ability to process many real-world problems, multi-label classification has received a large attention in recent years and the instance-based ML-kNN classifier is today considered as one of the most efficient. But it is sensitive to noisy and redundant features and its performances decrease with increasing data dimensionality. To overcome these problems, dimensionality reduction is an alternative but current methods optimize reduction objectives which ignore the impact on the ML-kNN classification. We here propose ML-ARP, a novel dimensionality reduction algorithm which, using a variable neighborhood search meta-heuristic, learns a linear projection of the feature space which specifically optimizes the ML-kNN classification loss. Numerical comparisons have confirmed that ML-ARP outperforms ML-kNN without data processing and four standard multi-label dimensionality reduction algorithms
    • …
    corecore