10,565 research outputs found

    A modular software architecture for UAVs

    Get PDF
    There have been several attempts to create scalable and hardware independent software architectures for Unmanned Aerial Vehicles (UAV). In this work, we propose an onboard architecture for UAVs where hardware abstraction, data storage and communication between modules are efficiently maintained. All processing and software development is done on the UAV while state and mission status of the UAV is monitored from a ground station. The architecture also allows rapid development of mission-specific third party applications on the vehicle with the help of the core module

    ATMP: An Adaptive Tolerance-based Mixed-criticality Protocol for Multi-core Systems

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted ncomponent of this work in other works.The challenge of mixed-criticality scheduling is to keep tasks of higher criticality running in case of resource shortages caused by faults. Traditionally, mixedcriticality scheduling has focused on methods to handle faults where tasks overrun their optimistic worst-case execution time (WCET) estimate. In this paper we present the Adaptive Tolerance based Mixed-criticality Protocol (ATMP), which generalises the concept of mixed-criticality scheduling to handle also faults of other nature, like failure of cores in a multi-core system. ATMP is an adaptation method triggered by resource shortage at runtime. The first step of ATMP is to re-partition the task to the available cores and the second step is to optimise the utility at each core using the tolerance-based real-time computing model (TRTCM). The evaluation shows that the utility optimisation of ATMP can achieve a smoother degradation of service compared to just abandoning tasks

    Assessing load-sharing within optimistic simulation platforms

    Get PDF
    The advent of multi-core machines has lead to the need for revising the architecture of modern simulation platforms. One recent proposal we made attempted to explore the viability of load-sharing for optimistic simulators run on top of these types of machines. In this article, we provide an extensive experimental study for an assessment of the effects on run-time dynamics by a load-sharing architecture that has been implemented within the ROOT-Sim package, namely an open source simulation platform adhering to the optimistic synchronization paradigm. This experimental study is essentially aimed at evaluating possible sources of overheads when supporting load-sharing. It has been based on differentiated workloads allowing us to generate different execution profiles in terms of, e.g., granularity/locality of the simulation events. © 2012 IEEE

    An approach to rollback recovery of collaborating mobile agents

    Get PDF
    Fault-tolerance is one of the main problems that must be resolved to improve the adoption of the agents' computing paradigm. In this paper, we analyse the execution model of agent platforms and the significance of the faults affecting their constituent components on the reliable execution of agent-based applications, in order to develop a pragmatic framework for agent systems fault-tolerance. The developed framework deploys a communication-pairs independent check pointing strategy to offer a low-cost, application-transparent model for reliable agent- based computing that covers all possible faults that might invalidate reliable agent execution, migration and communication and maintains the exactly-one execution property

    Restart-Based Fault-Tolerance: System Design and Schedulability Analysis

    Full text link
    Embedded systems in safety-critical environments are continuously required to deliver more performance and functionality, while expected to provide verified safety guarantees. Nonetheless, platform-wide software verification (required for safety) is often expensive. Therefore, design methods that enable utilization of components such as real-time operating systems (RTOS), without requiring their correctness to guarantee safety, is necessary. In this paper, we propose a design approach to deploy safe-by-design embedded systems. To attain this goal, we rely on a small core of verified software to handle faults in applications and RTOS and recover from them while ensuring that timing constraints of safety-critical tasks are always satisfied. Faults are detected by monitoring the application timing and fault-recovery is achieved via full platform restart and software reload, enabled by the short restart time of embedded systems. Schedulability analysis is used to ensure that the timing constraints of critical plant control tasks are always satisfied in spite of faults and consequent restarts. We derive schedulability results for four restart-tolerant task models. We use a simulator to evaluate and compare the performance of the considered scheduling models

    Developing a distributed electronic health-record store for India

    Get PDF
    The DIGHT project is addressing the problem of building a scalable and highly available information store for the Electronic Health Records (EHRs) of the over one billion citizens of India
    • 

    corecore