14,304 research outputs found

    From buildings to cities: techniques for the multi-scale analysis of urban form and function

    Get PDF
    The built environment is a significant factor in many urban processes, yet direct measures of built form are seldom used in geographical studies. Representation and analysis of urban form and function could provide new insights and improve the evidence base for research. So far progress has been slow due to limited data availability, computational demands, and a lack of methods to integrate built environment data with aggregate geographical analysis. Spatial data and computational improvements are overcoming some of these problems, but there remains a need for techniques to process and aggregate urban form data. Here we develop a Built Environment Model of urban function and dwelling type classifications for Greater London, based on detailed topographic and address-based data (sourced from Ordnance Survey MasterMap). The multi-scale approach allows the Built Environment Model to be viewed at fine-scales for local planning contexts, and at city-wide scales for aggregate geographical analysis, allowing an improved understanding of urban processes. This flexibility is illustrated in the two examples, that of urban function and residential type analysis, where both local-scale urban clustering and city-wide trends in density and agglomeration are shown. While we demonstrate the multi-scale Built Environment Model to be a viable approach, a number of accuracy issues are identified, including the limitations of 2D data, inaccuracies in commercial function data and problems with temporal attribution. These limitations currently restrict the more advanced applications of the Built Environment Model

    Pilot investigation of remote sensing for intertidal oyster mapping in coastal South Carolina: a methods comparison

    Get PDF
    South Carolina’s oyster reefs are a major component of the coastal landscape. Eastern oysters Crassostrea virginica are an important economic resource to the state and serve many essential functions in the environment, including water filtration, creek bank stabilization and habitat for other plants and animals. Effective conservation and management of oyster reefs is dependent on an understanding of their abundance, distribution, condition, and change over time. In South Carolina, over 95% of the state’s oyster habitat is intertidal. The current intertidal oyster reef database for South Carolina was developed by field assessment over several years. This database was completed in the early 1980s and is in need of an update to assess resource/habitat status and trends across the state. Anthropogenic factors such as coastal development and associated waterway usage (e.g., boat wakes) are suspected of significantly altering the extent and health of the state’s oyster resources. In 2002 the NOAA Coastal Services Center’s (Center) Coastal Remote Sensing Program (CRS) worked with the Marine Resources Division of the South Carolina Department of Natural Resources (SCDNR) to develop methods for mapping intertidal oyster reefs along the South Carolina coast using remote sensing technology. The objective of this project was to provide SCDNR with potential methodologies and approaches for assessing oyster resources in a more efficiently than could be accomplished through field digitizing. The project focused on the utility of high-resolution aerial imagery and on documenting the effectiveness of various analysis techniques for accomplishing the update. (PDF contains 32 pages

    Distribution of Husimi Zeroes in Polygonal Billiards

    Get PDF
    The zeroes of the Husimi function provide a minimal description of individual quantum eigenstates and their distribution is of considerable interest. We provide here a numerical study for pseudo- integrable billiards which suggests that the zeroes tend to diffuse over phase space in a manner reminiscent of chaotic systems but nevertheless contain a subtle signature of pseudo-integrability. We also find that the zeroes depend sensitively on the position and momentum uncertainties with the classical correspondence best when the position and momentum uncertainties are equal. Finally, short range correlations seem to be well described by the Ginibre ensemble of complex matrices.Comment: includes 13 ps figures; Phys. Rev. E (in press

    Hoodsquare: Modeling and Recommending Neighborhoods in Location-based Social Networks

    Full text link
    Information garnered from activity on location-based social networks can be harnessed to characterize urban spaces and organize them into neighborhoods. In this work, we adopt a data-driven approach to the identification and modeling of urban neighborhoods using location-based social networks. We represent geographic points in the city using spatio-temporal information about Foursquare user check-ins and semantic information about places, with the goal of developing features to input into a novel neighborhood detection algorithm. The algorithm first employs a similarity metric that assesses the homogeneity of a geographic area, and then with a simple mechanism of geographic navigation, it detects the boundaries of a city's neighborhoods. The models and algorithms devised are subsequently integrated into a publicly available, map-based tool named Hoodsquare that allows users to explore activities and neighborhoods in cities around the world. Finally, we evaluate Hoodsquare in the context of a recommendation application where user profiles are matched to urban neighborhoods. By comparing with a number of baselines, we demonstrate how Hoodsquare can be used to accurately predict the home neighborhood of Twitter users. We also show that we are able to suggest neighborhoods geographically constrained in size, a desirable property in mobile recommendation scenarios for which geographical precision is key.Comment: ASE/IEEE SocialCom 201

    Partition clustering for GIS map data protection

    Get PDF

    V-Proportion: a method based on the Voronoi diagram to study spatial relations in neuronal mosaics of the retina

    Get PDF
    The visual system plays a predominant role in the human perception. Although all components of the eye are important to perceive visual information, the retina is a fundamental part of the visual system. In this work we study the spatial relations between neuronal mosaics in the retina. These relations have shown its importance to investigate possible constraints or connectivities between different spatially colocalized populations of neurons, and to explain how visual information spreads along the layers before being sent to the brain. We introduce the V-Proportion, a method based on the Voronoi diagram to study possible spatial interactions between two neuronal mosaics. Results in simulations as well as in real data demonstrate the effectiveness of this method to detect spatial relations between neurons in different layers

    Impact of the spatial context on human communication activity

    Full text link
    Technology development produces terabytes of data generated by hu- man activity in space and time. This enormous amount of data often called big data becomes crucial for delivering new insights to decision makers. It contains behavioral information on different types of human activity influenced by many external factors such as geographic infor- mation and weather forecast. Early recognition and prediction of those human behaviors are of great importance in many societal applications like health-care, risk management and urban planning, etc. In this pa- per, we investigate relevant geographical areas based on their categories of human activities (i.e., working and shopping) which identified from ge- ographic information (i.e., Openstreetmap). We use spectral clustering followed by k-means clustering algorithm based on TF/IDF cosine simi- larity metric. We evaluate the quality of those observed clusters with the use of silhouette coefficients which are estimated based on the similari- ties of the mobile communication activity temporal patterns. The area clusters are further used to explain typical or exceptional communication activities. We demonstrate the study using a real dataset containing 1 million Call Detailed Records. This type of analysis and its application are important for analyzing the dependency of human behaviors from the external factors and hidden relationships and unknown correlations and other useful information that can support decision-making.Comment: 12 pages, 11 figure

    Enhanced free space detection in multiple lanes based on single CNN with scene identification

    Full text link
    Many systems for autonomous vehicles' navigation rely on lane detection. Traditional algorithms usually estimate only the position of the lanes on the road, but an autonomous control system may also need to know if a lane marking can be crossed or not, and what portion of space inside the lane is free from obstacles, to make safer control decisions. On the other hand, free space detection algorithms only detect navigable areas, without information about lanes. State-of-the-art algorithms use CNNs for both tasks, with significant consumption of computing resources. We propose a novel approach that estimates the free space inside each lane, with a single CNN. Additionally, adding only a small requirement concerning GPU RAM, we infer the road type, that will be useful for path planning. To achieve this result, we train a multi-task CNN. Then, we further elaborate the output of the network, to extract polygons that can be effectively used in navigation control. Finally, we provide a computationally efficient implementation, based on ROS, that can be executed in real time. Our code and trained models are available online.Comment: Will appear in the 2019 IEEE Intelligent Vehicles Symposium (IV 2019

    Galaxy clustering and projected density profiles as traced by satellites in photometric surveys: Methodology and luminosity dependence

    Full text link
    We develop a new method which measures the projected density distribution w_p(r_p)n of photometric galaxies surrounding a set of spectroscopically-identified galaxies, and simultaneously the projected correlation function w_p(r_p) between the two populations. In this method we are able to divide the photometric galaxies into subsamples in luminosity intervals when redshift information is unavailable, enabling us to measure w_p(r_p)n and w_p(r_p) as a function of not only the luminosity of the spectroscopic galaxy, but also that of the photometric galaxy. Extensive tests show that our method can measure w_p(r_p) in a statistically unbiased way. The accuracy of the measurement depends on the validity of the assumption in the method that the foreground/background galaxies are randomly distributed and thus uncorrelated with those galaxies of interest. Therefore, our method can be applied to the cases where foreground/background galaxies are distributed in large volumes, which is usually valid in real observations. We applied our method to data from SDSS including a sample of 10^5 LRGs at z~0.4 and a sample of about half a million galaxies at z~0.1, both of which are cross-correlated with a deep photometric sample drawn from the SDSS. On large scales, the relative bias factor of galaxies measured from w_p(r_p) at z~0.4 depends on luminosity in a manner similar to what is found at z~0.1, which are usually probed by autocorrelations of spectroscopic samples. On scales smaller than a few Mpc and at both z~0.4 and z~0.1, the photometric galaxies of different luminosities exhibit similar density profiles around spectroscopic galaxies at fixed luminosity and redshift. This provides clear support for the assumption commonly-adopted in HOD models that satellite galaxies of different luminosities are distributed in a similar way, following the dark matter distribution within their host halos.Comment: 38 pages, 12 figures, published in Ap
    • …
    corecore