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Abstract

Geographical Information Systems (GIS) are very useful system in capturing, storing, ma-

nipulating, analysing, managing, and presenting spatial data. GIS systems can be used for

solving problem and making decision in various applications. Data mining is the automated

process of discovering patterns in data. This thesis outlines the issues and challenges of

GIS data to advance the use of data mining techniques in the context of GIS applications.

This thesis focuses mainly on two domains of applications: first is the digital vector map

copyright protection and second is the digital vector map partitioning. Further more, this

thesis presents an efficient approach for identifying the resilient locations for embedding the

watermark; improving the robustness of the watermarking approach against defined set of

attacks; investigating the impact of clustering approaches on the application of vector map

protection; defining an effective metric for measuring the topological distortion in the water-

marked GIS maps; and developing a spatial clustering approach that takes into consideration

the GIS map properties. The experimental results show the reliability of using data mining

techniques in combination with GIS map properties in advancing the GIS applications with

more focus on spatial data protection and partitioning.
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Chapter 1

Introduction

Geographic information systems (GIS) data offer good promise for many applications such

as: public health, road networks, business management and military applications. GIS map

data is an emerging area of data science research, due to the GIS data characteristics of

high-cost of production, locations accurate values, small-size storage and efficient real-world

representation. The need for protecting the copyright of digital vector maps has become an

emergent topic within the GIS (Geographic Information System) research community that

stemmed from the rapid growth of intelligent tools and devices (Chang, 2012; Longley et al.,

2011). One of the main economic, social and legal aspects of using GIS data is defined

by copyright protection (Wu et al., 2013b). In addition, the growing demand for GIS data

calls for high computation reliability, as the GIS data grow rapidly in volume and require

more complex computation (Wei et al., 2015; McKenney and Schneider, 2007; Shuliang et al.,

2013).

Geographical data have become widely available in digital format due to the advancement

in computer devices, database systems, mapping applications and IT (Information Technol-

ogy) (Burrough et al., 2013; Wang et al., 2007).

Geographical data can be categorized into two types: vector and raster data (Okabe,

2016; Abubahia and Cocea, 2017). Vector data represents geographical information by using

basic geometrical shapes such as points, lines and polygons (Huo et al., 2011a), while raster

data represents information in a matrix of cells or pixels of uniform size (e.g. satellite image

data). Most geographical systems represent data in vector format (Lee and Kwon, 2013;

Bong-Joo et al., 2014).
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1.1 GIS Vector Data Structure

Geographic information systems (GIS) are computer-based systems that facilitate the input,

storage, manipulation and output of geographic location-based data. GIS data models are

classified into two categories: raster and vector data models. In GIS context, satellite images

are the most known example of the raster model. GIS vector data, which is the focus on

this thesis, has three components: spatial data, attribute data and index data. Spatial data

describes the map itself and always takes the form of three basic geometrical entities, which

are:

• Points – point entities are used to define a single location of an object; they are used

to represent real-world objects, such as bus stops, traffic lights and street lights.

• Polylines – line entities define linear objects; they can range from two-point lines to

complex strings that have many vertices; lines are used to represent real-world objects,

such as rivers and roads.

• Polygons – polygon entities define area-based objects; they can range from rectangles

to multi-sided shapes with many vertices; polygons are used to represent real-world

objects, such as lakes, shopping areas, buildings and city boundaries.

All these map entities are formed by many organized vertices; spatial data is actually a

sequence of coordinates of these vertices based on a certain geographical coordinate system.

The most used formats of GIS spatial data are:

1. ESRI (Environmental Systems Research Institute) shape file. The ESRI shape file (ESRI,

1998) has become an industry standard in geospatial data format due to its compati-

bility, to some extent, with recently released GIS software products.

2. CAD (Computer Aided Design) drawing. CAD drawings are used in many disciplines

such as engineering, architecture, surveying, and mapping to define real-world objects in

the context of geographic information systems. DXF (Drawing Interchange File) (Au-

toCAD, 2007) files are a popular format for storing and exchanging vector-based spatial

information.

The attribute data describes the properties of map entities through links to the location

data. Attributes can be, for example, names or matching addresses. The most known example

of GIS attribute data format is the ESRI database file that is associated with the ESRI shape

file and needs to have the same prefix as the shape file (ESRI, 1998).
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Table 1.1: Vector data versus image/raster data

Vector Data Image Data

Use points and lines to represent features Represented as 2-dimensional array of brightness values
for pixels

Resolution is determined by precision of vertices’ coordi-
nates

Resolution is determined by pixel size

Efficiently represents sparse data Efficiently represents dense data
Spatial relations exist Spatial relations do not exist
Efficient storage of sparse data Requires large amounts of storage space
Small redundancy to hide watermark Considerable redundancy to hide watermark
Explicit representation of linear features Deals poorly with linear features

Last but not least, in the GIS context, the index data describes a file structure, such as

total file length, for either spatial or attribute data. The ESRI index file (ESRI, 1998) is the

best known example of index files.

The digital vector map is one type of important digital resources which has been widely

used in navigation, urban planning, and many other areas. Due to high processing cost in

the acquisition of digital map data, it becomes a valuable resource to its owner and has

high price. Nevertheless, as one kind of digital data, a digital map could be easily copied.

Therefore, copyright protection techniques for digital map have received extensive research

attention in recent years.

The distinguishable structure of vector data from image data adds more challenges to

be taken into account in the research field of digital watermarking. Table 1.1 outlines the

major differences between vector data and image data in the context of digital watermarking

applications (Li et al., 2012b; Longley et al., 2005; Niu et al., 2007; Wang et al., 2012a).

1.2 Key Terms and Conceptions

This section introduces the definitions of used terms in this thesis, such as: capacity, fidelity,

robustness and computational time.

• Capacity – refers to the amount of embedded bits within the digital vector map.

• Fidelity – refers to the perceptual similarity between the watermarked data and its

original form.

• Robustness – refers to the resilience of the inserted watermark to any processes (attacks)

aimed at either removing or distorting it.
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• Computational time – refers to the period of time that is required to perform the

embedding process and obtaining the watermarked data.

• Attacks – refer to a set of modifications on the watermarked map in aiming to remove

the watermark.

1.3 Problem Statement

The existing problems and issues in the related areas of research can be summarised as follows:

• There is little research considering the nature of GIS data in digital watermarking

research, and only a few approaches are using data mining techniques in this research.

In other words, GIS data received less attention than images, audio, texts and videos

in the field of watermarking research, as pointed out in several recent review papers.

• There are certain differences between general multimedia watermarking and vector

map data watermarking in many aspects such as the principle for data embedding and

extracting, the criteria of data quality evaluation, the manners of possible attacks.

• The lack of adequate evaluation metrics and the lack of consideration for the trade-off

between fidelity and capacity requirements of the watermark. At present, many authors

obtain the results by following image watermarking evaluation standards, then apply

it to vector map data for testing their algorithm, and then they claim the algorithm

performance is good. Also, the trade-off between capacity and fidelity, which has an

important implication on the watermarking research performance, is not considered in

the research literature.

1.4 Aims and Objectives

The aim of this thesis is to advance the use of data mining techniques in the context of GIS

applications. This thesis focuses mainly on two domains of applications: first is the digital

vector map copyright protection and second is the digital vector map partitioning.

Objectives of this thesis are:

• Identifying the watermark embedding position by using a clustering approach;

• Improving the robustness to attacks/modifications such as: the simplification (removing

some vertices from GIS vector data) and interpolation (adding new vertices to GIS

vector data);
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• Comparing different clustering approaches in identifying the watermark embedding lo-

cations in the map;

• Defining a metric for measuring topological quality of polygon-based vector maps;

• Developing workload balance based spatial clustering approach for partitioning GIS

polygon based maps with massive number of vertices and complex shapes.

1.5 Contributions

In this thesis, the new contributions to knowledge are:

1. The use of k-medoids clustering technique in the process of identifying the locations

for embedding the watermark has an influence on the security of the watermarked map

measured in terms of capacity, fidelity, computational time and robustness.

2. The use of k-medoids clustering technique in combination with the bounding box cen-

ters has a significant implication on the trade-off between the fidelity and the capacity

metrics, and resulted in higher fidelity as capacity increased. In addition to the im-

provement of the trade-off between fidelity and capacity, the use of bounding box cen-

ters adds more robustness to the simplification and interpolation attacks due to their

independence from the number of vertices in a polygon.

3. The use of partitioning clustering techniques in combination with the bounding box

property of GIS vector map for locating the watermark bits into polygons’ vertices

has a significant implication on protecting the GIS vector map copyright, especially in

terms of addressing the vulnerability to simplification and interpolation attacks, while

preserving a good trade-off between fidelity and capacity.

4. The use of partitioning clustering techniques in combination with the vector polygon

based map topology rules leads to defining a metric that allow comparisons between

watermarked maps of different sizes and of different watermark sizes, and, thus, can be

used to assess the quality of watermarked vector maps.

5. The use of evolutionary computation technique in combination with GIS map properties

advances the implementation of partitioning clustering approach in the context of GIS

vector maps.
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1.6 Thesis Structure

This thesis is organized as follows: Chapter 2 covers the background and literature review

in regards to the application domains of GIS vector map watermarking and GIS vector map

partitioning. Chapter 3 introduces the CRISP-DM methodology, and illustrates the way of

applying this methodology in the domains of GIS vector map watermarking and GIS vector

map partitioning. Chapter 4 presents the approach of selecting the embedding positions and

implementing the embedding and extraction strategy. Chapter 5 presents the approach of

using the bounding box properties for protecting the copyright of GIS vector data. Chapter 6

presents the k-means clustering approach in combination with the map bounding box property

for protecting the copyright of GIS vector data. Chapter 7 presents the proposed metric for

evaluating the watermarked vector maps. Chapter 8 presents the proposed spatial clustering

approach for partitioning the GIS vector maps. Chapter 9 concludes the thesis.
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Chapter 2

Literature Review

This Chapter gives an outline of previous research work on GIS map data. This thesis focuses

mainly on two domains of applications: first is the digital vector map copyright protection

and second is the digital vector map partitioning.

2.1 Digital Map Copyright Protection Approaches

Developments in computer technologies and Geographic Information Systems (GIS), i.e.

computer-based systems for managing and displaying locational data related to positions

on Earth’s surface (Longley et al., 2005), increased the amount of digital vector maps that

are available on the world wide web. GIS vector maps are highly accurate, they document

attribute and topological information through the use of geometrical shapes, and are more

compact in size compared with GIS raster maps such as satellite images. While these prop-

erties make GIS vector maps of high quality, their complexity and level of detail also means

that they incur a high production cost1.

GIS vector maps are widely used in environmental, social and economic applications

such as disaster management, navigation, infrastructure and utilities allocation, and business

planning. They are also used in military/security applications. Due to the value of these

vector maps, their protection is necessary not only to prevent attackers gaining economic

advantage (by using them without paying copyright fees), but also to prevent their unethical

use in situations related to national and international security.

To prevent GIS vector maps being illegally modified and exchanged, different copyright

techniques have been used, which fall mainly in two categories: encryption and information

hiding. Encryption is part of a cryptographic system that has the purpose to protect the

1https://www.ordnancesurvey.co.uk/support/understanding-gis/raster-vector.html

21



Chapter 2. Literature Review

content of a message/file. Information hiding is used in several sub-disciplines, of which

the most important are steganography and watermarking. In steganography, the purpose of

information hiding is to keep secret the existence of information, while in watermarking, the

purpose is to make the hidden information imperceptible. The interested reader can find a

more detailed distinction between these fields in (Lopez, 2002). From these approaches, the

watermarking approach is the most popular for marking the copyright of GIS vector maps.

A digital map watermarking system consists of three modules: embedding, evaluation and

extraction, as shown in Figure 2.1. The embedding module involves hiding the watermark

bits inside the original map content and often involves the use of a secret key (which is needed

in the extraction stage). The evaluation module is responsible for judging the quality of the

map watermarking approach through particular evaluation metrics. The extraction module

involves the extraction of the watermark and is important for making assertions about the

data ownership.

Figure 2.1: The General System of Digital Vector Map Watermarking.

GIS maps of raster data format (e.g. image) received more attention than digital GIS

vector maps in watermarking research (Abbas and Jawad, 2013a; Wu et al., 2013c; Zheng

et al., 2009); however, due to the importance of vector maps, the research for watermarking

this type of maps has increased in the last decade. This article surveys and classifies the

GIS vector map watermarking research articles published between 2000 and 2014, towards a

thorough understanding of the-state-of-the-art, addressing significant limitations of previous

review articles, highlighting the key differences between images and GIS vector maps, and

giving recommendations for future research directions the research community should address.

The next section gives an overview and critical appraisal of previous review articles in the

field of vector maps watermarking. Section 2.1.2 explains the methodology used for collecting

the research articles that have been reviewed in this Chapter.

Section 2.1 classifies existing GIS watermarking methods and gives an overview of the

distribution of published articles according to the categories of this classification.
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2.1.1 Previous Reviews

A number of reviews were previously published in the area of digital map watermarking

research. These reviews are discussed in the following 2. Table 2.1 gives a summary of the

review articles, including the number of references used and the period of time they covered.

Table 2.1: Summary table of the previous review articles

Articles No. of used references Period
Lopez (2002) 43 1993-2000
Chang et al. (2003) 26 1996-2002
Niu et al. (2006) 28 1999-2004
Niu et al. (2007) 23 2000-2004
Li et al. (2008a) 23 1996-2006
Zheng et al. (2009) 30 1999-2007
Zheng et al. (2010a) 31 1999-2007
Abbas and Jawad (2013a) 26 1998-2012
Wu et al. (2013c) 27 2001-2012

In 2002, Lopez (2002) presented a review article with 43 references covering work pub-

lished until 2000 to analyze the state-of-the-art of digital watermarking research including

images, vector, text and databases data formats. He highlighted some key differences between

the watermarking research and other research work such as cryptography and steganogra-

phy. He also reported some legal aspects in watermarking research for the United States and

Europe regions.

In 2003, Chang et al. (2003) reviewed digital image watermarking research by utilizing

26 references published until 2002 to highlight possible ways of extending some image water-

marking techniques to the context of 2D/3D vector map watermarking research.

In 2006, Niu et al. (2006), used 28 references published until 2004 to distinguish the

features of vector map data from raster/ image data.

In 2007, Niu et al. (2007) used 23 references published until 2004 to outline some key

features of GIS vector maps, reviewed the state-of-the-art of the vector map watermarking

research and classified this research into three sub-research areas: robust watermarking,

reversible data hiding and fragile watermarking.

In 2008,Li et al. (2008a) used 23 references published until 2006 to summarize the status

and prospects of watermarking research in GIS vector maps in terms of the basic concept,

watermark generation, real-time detection and embedding strategies.

In 2009, Zheng et al. (2009) used 30 references published until 2007 to classify digital

map copyright protection schemes, and to propose some directions for further research. This

review covered only the watermark embedding process.

2A number of review articles were not included in the discussion below because they were not published in
English (Min et al., 2009; Peng, 2010; Sun et al., 2009b; Xu et al., 2007; Xun et al., 2004; Zhu et al., 2010))
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In 2010, Zheng et al. (2010a) used 31 references published until 2007 and discussed some

types of embedding techniques in the context of vector graphics. They highlighted some

merits and drawbacks of a given set of image-based techniques with the purpose of suggesting

some adaptations of these techniques for the vector map watermarking research context.

In 2013, two review articles are found in the literature. In the first one, Abbas and

Jawad (2013a) used 26 references published until 2012 to review a set of digital vector map

watermarking techniques, and to define some possible attacks for removing the embedded

watermark. In the second review, Wu et al. (2013c) used 27 references published until 2012

to classify the map watermarking components into two modules: embedding location selec-

tion module and integrity decision module. Neither of the two reviews covered the entire

watermarking process.

Although all previous review articles paid attention to either differentiating vector map

data from raster image data or adapting some image-based watermarking techniques to the

context of GIS vector maps, nevertheless, they suffer from two major drawbacks: (a) they do

not cover the entire watermarking process and (b) they do not outline their search method,

nor give an indication of their coverage in relation to the total number of published articles.

The watermarking system is composed of three main components: embedding, evaluation

and extraction. A comprehensive overview of the current knowledge of the digital map

watermarking research progress can only be obtained by reviewing all three components of

the process. In addition, without a documented search method used for the selection of

the articles to review, it would not be possible to ensure the coverage and relevance of the

reviewed research.

In this survey, we attempt to address these two major drawbacks of the current surveys

by considering the three components of the watermarking system, and providing details of

the methodology used for selecting the articles included in this review work. This survey

article covers 215 articles published between 2000 and 2014, thus being more comprehensive

than any of the previous surveys on the subject.

2.1.2 Search Methodology

The search for relevant publications was performed using the following electronic libraries and

databases: (i) Springer Digital Library, (ii) IEEE Xplore Digital Library, (iii) ACM digital

library, (iv) Google Scholar, and (v) Elsevier Digital Library.

The search was limited to articles that have been published in English in the period

between 1 January 2000 and 31 December 2014. It was done using a Boolean search containing

the following terms: “GIS watermark” OR “zero watermark” OR “2D map watermark” OR
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Figure 2.2: Publications in Watermarking from 2000 to 2014

“copyright protection” OR “vector data” OR “geospatial watermark” OR “vector data” OR

“graph watermarking”.

Initially, any article containing the search terms was considered as a potential candidate

for including into the database of the GIS map watermarking publications. To supplement

the automated search, a manual search was also done. The manual procedure involved

searching the reference sections of the articles identified by the automated search. Any

relevant references within those articles were followed up. Inclusion criteria for the review

were any theoretical or applied work concerning an integration of the GIS vector data and

watermarking/ copyright protection methods.

A number of articles were identified in the search as title-only articles without access to

the full text (Calagna and Mancini, 2007; Min, 2007; Shi and Yang, 2008; Zhao et al., 2010b;

Kan et al., 2010; Zhu et al., 2011). These were included in the count of published articles,

but were not included in the classifications discussed in Section 2.1.

Through the search methodology described above, 215 articles were identified. Figure 2.2

presents the distribution of these articles by year, indicating a trend of growth in the number

of publications.

Digital map copyright protection schemes are composed of three main modules: em-

bedding, evaluation and extraction. Before describing in detail each of these modules, an

overview of different terms used for different watermarking approaches is given in Table 2.2.

Not all the reviewed articles explicitly stated which of these approaches they used - the table

includes only the publications that explicitly stated their approach.
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Table 2.2: List of the used terms in the watermarking research

Term Definition References

Zero watermarking Aims to utilise some key characters of
the host data in generating the water-
mark data

Abubahia and Cocea (2014), Cao
et al. (2011), Zhang et al. (2009b),
Du and Peng (2008), Li et al. (2008c),
Xun et al. (2012), Wang et al.
(2012b), Li et al. (2008b)

Adaptive watermarking Attempts to shape the watermark ac-
cording to some local characteristics
of the original data

Zhang et al. (2008b), Peng et al.
(2006)

Multiple watermarking Refers to the use of more than one wa-
termark to be embedded in the host
data

Cui et al. (2013), Cao et al. (2010a),
Xun et al. (2004), Bhanuchandar
et al. (2013)

Reversible/Loss-less watermarking Aims to achieve a good balance be-
tween the embedding process and the
quality of the watermarked data, and
aims to restore the original data after
watermark extraction

Niu et al. (2007), Cao et al. (2013a),
Zhao et al. (2010a), Wang and Men
(2013), Abbas and Jawad (2013b),
Wang et al. (2007), Deng and Xiao
(2010), Men et al. (2010b), Fei
et al. (2013), Wu (2012), Wu et al.
(2009b), Peng et al. (2011), Jian-
guo et al. (2013a), Wang and Chiu
(2012), Voigt et al. (2005), Men et al.
(2009), Wang and Men (2012), Geng
et al. (2012), Hu and Geng (2013),
Wu and Wang (2009), Cao et al.
(2013b), Cao et al. (2010b), Voigt
et al. (2004), Neyman et al. (2013b),
Jian-Guo et al. (2014), Jianguo et al.
(2014), Peng et al. (2014a), Cao et al.
(2014)

Classic watermarking Refers to the field of applying water-
marking techniques to the data of im-
age type

Chang et al. (2003)

Additive watermarking The process of adding the watermark
bits directly to the value of the coor-
dinates of vertices

Katzenbeisser and Petitcolas (2000)
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Space-domain approaches

Polar Coordinates Blocks Topological Relations X-Y Coordinates

Figure 2.3: The classification of space-domain approaches

2.1.3 Watermark Embedding Module

The embedding module involves hiding the watermark bits inside the original map content

without affecting the visual quality of the host map. The secret key (see Figure 2.1 in

Chapter 1) should be used to enforce security and to prevent unauthorized parties from

recovering and manipulating the watermark. This module involves both the embedding

domains and the embedding strategies, which are discussed in the following subsections.

According to the embedding domain, a digital watermark can be embedded into two

domains: space and transform domains. In the space domain, the watermark is embedded

directly by modifying the values of vertices coordinates. In the transform domain, the water-

mark data is embedded not by directly modifying the coordinates of the vertices, but their

transform coefficients instead. Space and transform domains are discussed in subsections

2.1.3 and 2.1.3, respectively.

Space-Domain Approaches

Space-domain watermarking approaches are applied to shift map’s vertices within a predefined

tolerance, and to embed the watermark based on different embedding strategies (see the

next subsection). As shown in Figure 2.3, the embedding space could be represented by

polar coordinates, blocks, topological relations or Cartesian coordinates. Table 2.3 shows the

distribution of the published articles according to the different embedding spaces.

As shown in Table 2.3, the most popular approaches are the topological relations (35.5%)

and the Cartesian coordinates (40%); 17.25% of the articles use blocks, while the least popular

approach is the use of polar coordinates or angles (7.25%).

The topological relations embedding approaches refer to the process of inserting the wa-

termark into map topologies instead of vertices’ coordinates values (e.g. distance between

the map vertices) to gain the advantage of preserving GIS data quality against rotation and

translation attacks (Huo et al., 2011b; Xun et al., 2012); details about these and other at-

tacks are given in subsection 2.1.4. Mean/ average distance length is the best known research

example of topological relations embedding space (Abubahia and Cocea, 2014; Huo et al.,

2011b; Xun et al., 2012).
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Table 2.3: Digital Map Watermarking Schemes in the Space Domain

Embedding Space No. of Articles References

X/Y Coordinates 44 Wu and Wang (2009), Peng et al. (2006), Zhao et al. (2010a), Fei
et al. (2013), Wu (2012), Cao et al. (2013b), Abbas and Jawad
(2013b), Wang and Men (2012), Zheng et al. (2010d), Schulz and
Voigt (2004), Yan et al. (2011), Fu et al. (2013), Huan and Yufeng
(2009), Zhou and Bi (2004), Zhao et al. (2008), Yan and Li (2012),
Wang et al. (2009b), Min et al. (2012), Wang et al. (2009c), Lee and
Kwon (2010), Kim and Hong (2009), Zhao et al. (2013a), Voigt and
Busch (2002), Marques et al. (2007), Shujun et al. (2007), Abbas
et al. (2013), Ohbuchi et al. (2002), Che and Deng (2008), Mag-
alhaes and Dahab (2009), Zhang and Li (2009), Pu et al. (2006),
Haowen (2011a), Aybet et al. (2009), Abubahia and Cocea (2014),
Hou et al. (2014), Yue et al. (2014), Wang et al. (2014), Neyman
et al. (2014a), Peng et al. (2014b), Jianguo et al. (2014), Lee et al.
(2014), Peng et al. (2014a), Ren et al. (2014a), Cao et al. (2014)

Topological Relations 39 Wang et al. (2012a), Xun et al. (2012), Wang et al. (2012b), Du
and Peng (2008), Zhang et al. (2008b), Neyman et al. (2013b),
Cao et al. (2013a), Cao et al. (2010b), Wang et al. (2007), Wu
et al. (2009b), Zhou et al. (2006), Wu et al. (2009a), Zhou and
Pan (2006), Wang and Xu (2003), Wang et al. (2009a), Kim et al.
(2011), Huo et al. (2010), Baiyan et al. (2008a), Chuanjian et al.
(2009), Yan and Li (2011), Bazin et al. (2007), Sun et al. (2010a),
Cheng et al. (2010), Zhong et al. (2006), Peng et al. (2010), Bird
et al. (2009), Wang et al. (2010b), Zhang et al. (2009a), Pu et al.
(2009), Lafaye et al. (2012), Jia et al. (2006), Shao et al. (2005),
Horness et al. (2007), Huo et al. (2011b), Huo et al. (2011a), Lee
and Kwon (2013), Jiang et al. (2013), Abubahia and Cocea (2014),
Suk-Hwan et al. (2014)

Blocks 19 Niu et al. (2007), Xun et al. (2012), Wang et al. (2012b), Li et al.
(2008b), Peng et al. (2006), Wang and Men (2013), Wang et al.
(2007), Wang et al. (2009b), Wang et al. (2009c), Ohbuchi et al.
(2002), Zheng and You (2009), Kang et al. (2001b), Zhang et al.
(2007), Kang et al. (2001a), Wu et al. (2010), Kang et al. (2002),
Zheng et al. (2010c), Muttoo and Kumar (2012), Voigt and Busch
(2003)

Polar Coordinates or Angles 8 Mouhamed et al. (2012), Raafat et al. (2013), Zhang et al. (2008a),
Kim (2010a), Kim (2010b),Zhou et al. (2006), Wu et al. (2009a),
Li et al. (2014a)

The Cartesian coordinates embedding approaches use directly the vertices’ coordinates

values for inserting the watermark (Zhao et al., 2013a). Most of these approaches utilize a

specified digit place after the decimal point in the vertex coordinate value for adding the

watermark bits, also defined as additive watermarking (Katzenbeisser and Petitcolas, 2000)

and related to the Least Significant Bit embedding strategy (see the next subsection).

The blocks-based embedding approaches divide the vector map into a number of parts

(blocks) which help in achieving more robustness against noise and simplification attacks

(Niu et al., 2007). These approaches can maintain the fidelity of the watermarked vector

map to some extent, and relatively locate the watermark bits in a certain block (Zheng and

You, 2009).
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The polar coordinates embedding approaches involve the use of another form of vertices’

coordinates values for directly embedding the watermark. These approaches like Cartesian

coordinates-based approaches achieve good robustness to attacks such as translation, rotation

and equal scaling (Mouhamed et al., 2012; Wu et al., 2009a).

The advantages of space-domain schemes are: (a) simplicity ; (b) low computational

complexity; (c) potential for high capacity of the watermark (i.e. the size of the watermark).

The main disadvantage of space-domain schemes is the vulnerability to certain attack, i.e.

low robustness.

Transform-Domain Approaches

Unlike the space domain, in the transform-domain embedding schemes the watermark is not

embedded by modifying the coordinates of the vertices, but their transform coefficients. As

shown in Figure 2.4, the most frequent types of transforms are: wavelet transform (WT),

Fourier transform (FT) and cosine transform (CT). Table 2.4 shows the distribution of the

published articles according to the transform domain.

Table 2.4: Digital Map Watermarking Schemes in the Transform Domain

Transform Type No. of Articles References

Wavelet 18 Li et al. (2012b), Deng and Xiao (2010), Peng et al. (2011), Li and Xu (2003),
Zhu et al. (2008), Ling et al. (2012), Wang (2008), Mustafa (2011), Zhang and
Wang (2011), Sangita and Venkatachalam (2012a), Zhang et al. (2010), Men
et al. (2010a), Sangita and Venkatachalam (2012b), Li and Xu (2004), Im et al.
(2008), Yang and Zhu (2007), Sangita and Venkatachalam (2012c), Jian-Guo
et al. (2014)

Fourier 16 Huang and Gu (2006), Doncel et al. (2007), Kang and Zhang (2009), Sun et al.
(2009a), Kitamura et al. (2001), Solachidis et al. (2000a), Vlachos et al. (2008),
Tao et al. (2009), Solachidis et al. (2000b), Junfeng and Bing (2011), Lucchese
et al. (2010), Huber et al. (2010), He et al. (2009), Giannoula et al. (2002),
Solachidis and Pitas (2004), Neyman et al. (2014b)

Cosine 10 Niu et al. (2007), Voigt et al. (2005), Voigt et al. (2004), Wang et al. (2010a),
Men et al. (2010c), Wu et al. (2013a), Zhang and Gao (2009), Tian et al.
(2004), Liang et al. (2010), Wang et al. (2011)

WT is a kind of transform that analyzes the digital vector map into different bands and

Transform-Domain Approaches

Wavelet Transform Fourier Transform Cosine Transform

Figure 2.4: The classification of transform-domain approaches
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levels. The wavelet-based method is robust against noise, rotation and scaling (Li and Xu,

2003).

FT is a digital transform that offers the possibility of controlling the frequencies of the

host vector map, which helps in selecting the adequate positions for embedding the watermark

bits into the vector map to meet the best compromise between invisibility and robustness.

The main advantage of FT is its invariance property against some geometric attacks like

translation, scaling and rotation (Junfeng and Bing, 2011; Lucchese et al., 2010).

CT is another digital transform that separate the vector map into parts of different

frequency with respect to the vector map visual quality. The basic characteristic of CT is the

high concentration of energy in low frequency coefficients with relative low computational

cost (Men et al., 2010c; Zhang and Gao, 2009).

As shown in Table 2.4, the WT approach is the most popular approach used in 41% of

the articles. CT is the second most popular at 36%, while FT is the least popular with 23%

of articles reporting the use of this approach.

Transform-domain approaches are robust against geometric attacks such as rotation,

translation and scaling; however, they have the disadvantages of being hard to implement

and of having high computational complexity.

Embedding Strategies

There are a variety of strategies that have been used for the embedding process. These

strategies are: significant bits, difference expansion, and quantization modulation. Table 2.5

lists the published articles according to the use of embedding strategies.

Table 2.5: Embedding Strategies

Embedding Strategy No. of Articles References

Least significant bits 9 Niu et al. (2007), Wang et al. (2012a), Wang et al. (2007), Haowen
(2011a), Wang et al. (2009a), Jiang et al. (2013), Neyman et al.
(2014a), Yan et al. (2011), Zhou et al. (2010)

Most significant bits 4 Wu et al. (2009a), Wang et al. (2010b), Lafaye et al. (2007a), Yue
et al. (2014)

Difference Expansion 9 Niu et al. (2007), Wu and Wang (2009), Wang et al. (2007), Li et al.
(2012a), Lafaye et al. (2007b), Hu and Geng (2013), Li et al. (2014a),
Wu et al. (2009b), Neyman et al. (2013b)

Quantization Modulation 8 Peng et al. (2011), Wang et al. (2010b), Huo et al. (2011b), Lafaye
et al. (2007a), Lafaye et al. (2007b), Guo and Peng (2010), He et al.
(2009), Ohbuchi et al. (2003)

The significant bits embedding strategy refers to the process of selecting appropriate digits

within the vertex coordinate value for inserting the watermark bit. This approach represents
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43% of the published articles, and can be used in two different ways: least significant bits

(LSB) (30%) or most significant bits (13%) (MSB).

LSB deals with the digits after the decimal point, and can be a useful hiding strategy

in terms of: simplicity, invisibility, low computational time and allowing a large amount of

watermark bits. LSB, however, is vulnerable to geometric distortion. LSB is mostly used in

space-domain schemes with the exemption of the proposed scheme of (Li et al., 2012b) that

used a LSB strategy in the wavelet transform-domain.

Some existing schemes used the MSB strategy that deals with the digits before the decimal

point to control the modification of vertices’ coordinate according to the precision tolerance.

More precisely, this approach should meet two conditions: small modifications of the coor-

dinates should not change the shape, and two adjacent shapes should not share the same

identifier.

Difference expansion is a method for inserting the watermark into any kind of high corre-

lation data (Wang et al., 2007). Digital vector maps consist of a sequence of the coordinates

of the vertices. Due to the density of the vertices, the positions of two adjacent vertices are

usually very close and the differences between their coordinates are very small. Consequently,

the sequence of vertices’ coordinates can also be considered high correlation data (Li et al.,

2012a). Since higher correlation means lower distortions and higher capacity, the difference

between two adjacent vertices is used as embedding space (Niu et al., 2007).

The quantization modulation strategy is a nonlinear method used to hide the watermark

and scale some map objects to derive the watermarked data (Lafaye et al., 2007a). This

embedding strategy offers a good performance in balancing the trade-off between watermark

fidelity, robustness and capacity (Guo and Peng, 2010). An example of using the quantiza-

tion modulation method is the watermark embedding according to odd-even index of map

coordinates or topological relations (Huo et al., 2011b; Peng et al., 2011; Wang et al., 2010b).

2.1.4 Watermarking Evaluation Module

The evaluation module assesses the quality of the watermarking approach by measuring

several aspects: (a) the quality of the map after the insertion of the watermark (fidelity);

(b) the resistance of the watermarked map to attacks (robustness); (c) the coverage of the

watermark (capacity); (d) the computational complexity of the approach (complexity) and

(e) the security of the watermark locations within the map (security). These aspects are

discussed in the following subsections.
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Fidelity

Fidelity is defined as the relative similarity between the non-watermarked host object and

the one after the watermarking operation (Abbas et al., 2013) and refers to the perceptual

similarity between the watermarked data and its original data (Neyman et al., 2013a). The

fidelity issue is a crucial problem in the digital maps watermarking research, as the water-

marked maps need to preserve their quality.

Several metrics has been proposed in the literature, as shown in Table 2.6. Such met-

rics are: Root Mean Square Error (RMSE), Peak Signal to Noise Ratio (PSNR) (based on

RMSE), Bit Error Rate (BER), Normalized Correlation (NC), Correspondence Ratio (CR)

and Likelihood Ratio (LR), as well as Horizontal and vertical shift (HV shift).

Table 2.6: List of published articles according to the fidelity metrics

Used Metrics No. of Articles References

RMSE 29 Cao et al. (2013a), Wang and Chiu (2012), Wu and Wang (2009), Wu et al.
(2009b), Zhao et al. (2010a), Cao et al. (2013b), Cao et al. (2010b), Wang et al.
(2007), Wang and Men (2012), Geng et al. (2012), Huang et al. (2010), Kim et al.
(2011), Kim and Hong (2009), Mouhamed et al. (2012), Raafat et al. (2013), Kim
(2010a), Kim (2010b), Kang et al. (2001b), Kang et al. (2001a), Kang et al. (2002),
Zhong et al. (2006), Peng et al. (2010), Huo et al. (2011a), Mustafa (2011), Hou
et al. (2014), Neyman et al. (2014b), Neyman et al. (2014a), Li et al. (2014a),
Peng et al. (2014a)

PSNR 12 Lee and Kwon (2010), Kang et al. (2001b), Kang et al. (2001a), Kang et al. (2002),
Huo et al. (2011a), Mustafa (2011), Zhang and Wang (2011), Doncel et al. (2007),
Huo et al. (2011b), Lucchese et al. (2010), Huang et al. (2010), Abubahia and
Cocea (2014)

BER 7 Wang et al. (2009c), Voigt and Busch (2002), Pu et al. (2009), (Huo et al., 2011b),
Wang et al. (2009a), Kitamura et al. (2001), Tao et al. (2009)

NC 5 Cao et al. (2013a), Cao et al. (2013b), Cao et al. (2010b), Raafat et al. (2013),
Zhang and Wang (2011)

CR 4 Kim and Hong (2009), Kim (2010a), Kim (2010b), Kim et al. (2011)
LR 2 Zhou and Pan (2006), Giannoula et al. (2002)
HV shift 1 Neyman et al. (2013a)

The use of RMSE metric represents 48% of the published research, while the PSNR metric

is used in 20% of the published research. 12% of the research approaches use the BER metric,

and 8% use the NC metric. The least popular metrics in the published literature are CR

(7%), LR (3%) and HV shift (2%).

Most of these metrics are borrowed from image watermarking and are based on theories

of signal processing. These are not necessarily the most appropriate metrics for measuring

the quality of the watermarked map, as will be discussed in Chapter 7.
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Robustness

Robustness is the resilience of the inserted watermark to any processes (attacks) aimed at

either removing or distorting it (Abbas et al., 2013; Lin and Li, 2010). Regarding the robust-

ness requirements, watermarking schemes can be categorized into three categories: robust,

fragile and semi-fragile schemes, as shown in Table 2.7.

Table 2.7: List of published articles according to the robustness degrees classification

Robustness Degree No. of Articles References

Robust 15 Xun et al. (2004), Xun et al. (2012), Wang et al. (2012b), Min et al. (2012),
Abbas et al. (2013), Ohbuchi et al. (2002), Kim (2010a), Sangita and Venkat-
achalam (2012c), Wu et al. (2013a), Abubahia and Cocea (2014), Hou et al.
(2014), Wang et al. (2014), Neyman et al. (2014b), Suk-Hwan et al. (2014),
Ren et al. (2014b)

Fragile 9 Niu et al. (2007), Wang and Men (2013), Wang and Men (2012), Zheng
and You (2009), Zheng et al. (2010c), Wang and Zhu (2012), Neyman et al.
(2013b), Yue et al. (2014), Neyman et al. (2014a)

Semi-Fragile 4 Peng et al. (2010), Zhang and Gao (2009), Guo and Peng (2010), Ren et al.
(2014a)

The digital watermark is robust if it withstands a designated manipulation on the vector

map data (Abbas et al., 2013; Wu et al., 2013a; Xun et al., 2012).

Fragile watermarking allows the detection of any tampering with the vector map data (Wang

and Men, 2012, 2013); however, any small change in the watermark would make it unde-

tectable. This approach has a wide range of applications such as authentication and integrity

protection of the vector maps (Zheng et al., 2009; Zheng and You, 2009). Semi-fragile schemes

allow the detection of malicious tampering with the vector map data (Guo and Peng, 2010;

Peng et al., 2010; Zhang and Gao, 2009); in these schemes, the watermark is still detectable

after non-malicious transformations, however, it is not detectable after malicious attacks.

A successful attack refers to the success in removing the embedded watermark while

preserving the validity of the vector map data (Niu et al., 2007). In literature, the attacks

can be classified in two categories: (a) geometric attacks (Du and Peng, 2008; Wang et al.,

2012b; Xun et al., 2012), and (b) signal operation attacks (Wang et al., 2012a; Wang and

Men, 2012)).

The most known geometric attacks are rotation, translation, scaling and cropping – see

Table 2.8. Rotation means turning the vector map around its center by a specific angle (Lee

and Kwon, 2013). Translation means moving the whole map by a specific distance towards

a specific direction (Xun et al., 2012). Scaling refers to altering the size of the map, in both

axes by a specific value (Lee and Kwon, 2013). Cropping refers to the process of cutting some

parts of the map. For vector maps, such attacks are virtually reversible transformations of
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coordinates where almost little or no information would be lost (Niu et al., 2007).

Signal operation attacks can be simplification, interpolation and reordering operations, or

noise addition (Wang et al., 2012a; Wang and Men, 2012) – see Table 2.9. Simplification, also

known as Douglas compression, is the process of removing some vertices. This is often used

to enhance the speed of handling the vector map data (Niu et al., 2007). Interpolation is the

process of adding new vertices into a digital vector map (Niu et al., 2007). The reordering

operation involves changing the order of entities (i.e. points, polylines and polygons) in the

map. This could be implemented by changing the order of points within a polyline/ polygon,

or by changing the order of polylines/ polygons (Niu et al., 2007). Noise addition is used

intentionally by the attacker to destroy the embedded watermark. Noise can also be added

unintentionally by converting the map file into different formats (Abbas and Jawad, 2013a).

The resilience to both geometric and operational attacks is measured by comparing the

extracted watermark with the original watermark by using the metrics that are shown in

Table 2.10. These are different from the fidelity metrics, which compare the watermarked

map with the original map. Thus, although the same metric could be used for both purposes,

the robustness metrics focus on the watermark, while the fidelity ones focus on the map.

Many researchers use the same metrics for measuring both the robustness and the fidelity,

as it can be seen by the overlap between Table 2.10 and Table 2.6, i.e. all metrics from

Table 2.10 are also in Table 2.6 and several articles are in both tables, thus indicating that

the same metric is used for the two different purposes.

From the robustness metrics, the use of the NC metric represents 47% of the published

research. 27% of the published research are approaches that use the BER metric, while the

use of PSNR metric is represented by 13% of the published research. The least popular

metrics in the published literature are CR (8%) and RMSE (5%).

Capacity, Complexity and Security

The watermark capacity refers to the amount of embedded bits within the digital vector

map (Abbas et al., 2013; Cao et al., 2013a), or the total number of vertices that carry

the watermark bits (Abubahia and Cocea, 2014; Jianguo et al., 2012; Men et al., 2010c).

Computational complexity refers to a specific formula for measuring the embedding algorithm

complexity (Ramaswmay and Srinivasarao, 2010). In other words, it stands for measuring the

required time for implementing the watermark embedding approach (Abubahia and Cocea,

2014; Dakroury et al., 2010). The security of a watermarking technique is defined as the

level of unpredictability in identifying the watermark bits positions that are used to perform

the watermark embedding process. A highly secure watermarking process would produce
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an output that does not contain any specific signatures that can be used to identify the

watermark bits positions (Abbas et al., 2013). The secure watermarking approach should

have a secret key for the embedded bits locations in the vector map vertices, to make it more

difficult for an attacker to trace the distribution of the embedded watermark bits (Murti and

Tadimeti, 2011).

Table 2.11 lists the published articles that discussed these aspects in their evaluation.

2.1.5 Watermark Extraction Module

The extraction module is important for data ownership verification. It is a very complicated

task because of two main factors: (a) the wide variety of possible attacks that could take place

before extraction (details on attacks are given in section 2.1.4), and (b) the (un)availability

of the original map. According to the second factor, the watermarking approaches can be

classified into three main categories: blind, semi-blind and non-blind approaches (Lin and Li,

2010). Table 2.12 lists the published articles according to these categories.

Blind/public approaches mean that the original map is not needed in the watermark ex-

traction process, and this category represents 86% of published work. Semi-blind approaches

refer to those approaches that do not use the original map, but use the original watermark in

the watermark extraction process, and represent 3.5% of published work. Non-blind/private

approaches mean that the original host data is needed in the watermark extraction process,

and represent 10.5% of published work.

2.1.6 The Clustering based Map Protection Approaches

In recent years, a considerable amount of research has been carried out to solve the is-

sue of copyright protection in the context of digital vector data (Abbas and Jawad, 2013a;

Bhanuchandar et al., 2013; Wu et al., 2013b). A handful of research articles proposed water-

marking approaches that use data mining tools in the context of digital vector data copyright

protection (Huo et al., 2011b; Jianguo et al., 2013b; Haowen, 2011b; Raafat et al., 2013).

Data mining tools could be very helpful in identifying the location for embedding the water-

mark to ensure the watermark resilience to the potential modifications. These approaches

can be categorized into two main categories: clustering-based approaches (Huo et al., 2011b;

Jianguo et al., 2013b; Haowen, 2011b) and classification-based approaches (Raafat et al.,

2013).

There are few published watermarking methods that used data mining approaches to wa-

termark GIS vector map data. In the following, we review these watermarking approaches and
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outline their advantages and disadvantages in relation to the evaluation metrics mentioned

above.

Jianguo et al. (2013b) proposed an approach that used fuzzy spatial clustering analysis

for embedding a 1-dimensional binary code watermark into a digital vector map. Their eval-

uation indicated that the algorithm outperforms some shifting, cosine transform and Fourier

transform based algorithms in terms of data fidelity. Although this approach maintains the

fidelity of the map data features, it is vulnerable to geometric attacks such as rotation, trans-

lation and scaling, which can easily result in the loss of the embedded watermark. This

approach used optimization rules for selecting the watermark locations based on the coordi-

nates’ values and their associated attributes, which led to high fidelity, but low capacity.

Haowen (2011b) proposed a watermarking approach for embedding a 2-dimensional bi-

nary image watermark with a size of 32× 96, into a vector point data set. The evaluation of

the watermark robustness was measured by the similarity degree between the extracted wa-

termark and the original watermark. In this approach, however, neither the capacity nor the

trade-off between capacity and fidelity metrics were taken into account, which have crucial

implications on the security of the digital map.

Huo et al. (2011b) used a k-means partitioning clustering method for inserting a water-

mark of 80 bits into GIS map data, based on ESRI shapefile format. They used the polygons’

mean centres for locating the watermark bits into the GIS map. Also, they claimed that a

high fidelity metric in terms of Peak Signal-to-Noise Ratio (PSNR) has been achieved by their

scheme. Although the fidelity is relatively high, the capacity of the watermark was relatively

low for the size of the map they used. Therefore, their approach, like the previous one, does

not achieve a good trade-off between fidelity and capacity.

Another approach was presented by Lee and Kwon (2010) for watermarking CAD (computer-

aided design) drawing by using the k-means++ clustering method. CAD drawing shares the

vector structure format with geospatial data. In terms of speed and accuracy, k-means++

method outperforms the standard k-means in the way of selecting the initial centers. How-

ever, in this approach, only a small number of watermark bits can be embedded into the host

data, thus leading to a low capacity.

Also in literature, only one article reported the use of classification-based data min-

ing (Raafat et al., 2013). They proposed a watermarking approach for the authentication of

2D maps based on polar coordinates mapping, and used support vector machine classification

to define optimum locations for embedding the watermark. Their approach only focused on

geometric-based attacks, and did not consider signal-based attacks.

In contrast to the previous work, this thesis focuses more on using data mining ap-

proaches, clustering in specific, to address the issues of: identifying the watermark embedding

36



Chapter 2. Literature Review

2015 2016 2017 2018

5

10

15

20

7

3

18

13

Publication Year

N
o.

of
P

u
b

li
sh

ed
A

rt
ic

le
s

Figure 2.5: Publications in Watermarking from 2015 to 2018

position by using a clustering approach; improving the robustness to GIS vector relevant

attacks/modifications; comparing different clustering approaches in identifying the water-

mark embedding locations in the map; defining a metric for measuring topological quality of

polygon-based vector maps.

2.1.7 Recent Publications on Digital Map Copyright Protection 2015–2018

To up date the survey in this chapter, the articles that have been published in English in the

period between 1 January 2015 and 31 December 2018 were included, as shown in Fig.2.5.

The similar terms were used in Boolean search as illustrated in Section 2.1.2.

Apart from the articles that are published from this thesis, there are no newly articles

that presented clustering based watermarking approach for protecting the digital vector map

copyright.

2.2 The Large Map Clustering/Partition

Geographic information systems (GIS) are computer-based systems that facilitate the input,

storage, manipulation and output of geographic location-based data (Longley et al., 2011).

GIS data models are classified into two categories: raster and vector data models. Table 1.1

outlines the different properties of vector and raster data. In GIS context, satellite images

are the most known example of the raster model. GIS vector data, which is the focus on

this Chapter, has three components: spatial data, attribute data and index data. Spatial
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data describes the map itself and always takes the form of three basic geometrical entities,

which are: points, lines/polylines and polygons. Points are used to define a single location

of an object; they are used to represent real-world objects, such as bus stops, traffic lights

and street lights. Lines/Polylines define linear objects; they can range from two-point lines

to complex strings that have many vertices; lines are used to represent real-world objects,

such as rivers and roads. Polygons define area-based objects; they can range from rectangles

to multi-sided shapes with many vertices; polygons are used to represent real-world objects,

such as lakes, shopping areas, buildings and city boundaries.

All these map entities are formed by many organized vertices; spatial data is actually a

sequence of coordinates of these vertices based on a certain geographical coordinate system.

The most used format of GIS spatial data is the ESRI (Environmental Systems Research

Institute) shape file. The ESRI shape file (ESRI, 1998) has become an industry standard in

geospatial data due to its compatibility, to some extent, with recently released GIS software

products.

The attribute data describes the properties of map entities through links to the location

data. Attributes can be, for example, names or matching addresses. The most known example

of GIS attribute data format is the ESRI database file that is associated with the ESRI shape

file and needs to have the same prefix as the shape file (ESRI, 1998). Last but not least, in

the GIS context, the index data describes a file structure, such as total file length, for either

spatial or attribute data. The ESRI index file (ESRI, 1998) is the best known example of

index files.

Large regional partitioning is the process of dividing a large geographic area consisting

of spatial objects, i.e points, lines or polygons (Joshi et al., 2012). This paper focuses on the

polygon type of map entities. Partitioning a large map into sub-sets of spatial entities is not

an easy task due to the nature of having spatial correlations and uneven distribution.

This problem has been investigated mostly in the redistricting field of GIS applica-

tions (Joshi et al., 2012; Photis, 2012; Bação et al., 2005). Some work has been done in

the research of graph and GIS map clustering (Xu et al., 1998; Ng and Han, 2002; Cao et al.,

2013c; Joshi et al., 2009b; Wang and Eick, 2014; Ericsson and WCDMA, 2011; Wang et al.,

2010c; Barua et al., 2012; Eldawy et al., 2015; Boobalan et al., 2016; Kisore and Koteswara-

iah, 2017; Liu et al., 2018; Gu et al., 2018), and more attention given to the clustering of

polygon-based type of GIS maps (Zhang et al., 2005; Joshi et al., 2009a,c; Ji and Zhang,

2009; Jasim and Asadi, 2012).

The previous approaches focus on attribute data rather than spatial data, and used evo-

lutionary computation techniques for optimizing the polygons’ partitioning based on the

attribute data, such as polygon area or polygon population.
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According to the MapReduce model (Dean and Ghemawat, 2004; Puri et al., 2013; Li

et al., 2014b; Eldawy and Mokbel, 2015; Araujo Neto et al., 2015), the workload balancing

can be only achieved by distributing equal chunks of data records (i.e. number of vertices)

to the MapReduce processors. Here the constraint is that the set of vertices that belong to

the same polygon should not be separated in the mapping task (i.e. the first task of the

MapReduce process).

In contrast to the previous work, this thesis focuses on spatial properties of GIS vector

data, and considers both the nature of spatial data and the workload balancing requirement

to extend the computation reliability for processing GIS complex data. This thesis proposes

an approach to use evolutionary computation in combination with clustering techniques for

developing workload balance based spatial clustering approach for partitioning GIS polygon

based maps with massive number of vertices and complex shapes.
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Table 2.8: List of published articles according to the robustness to a set of geometric attacks

Attack Type No. of Articles References

Rotation 60 Xun et al. (2012), Wang et al. (2012b), Du and Peng (2008), Wang and Chiu
(2012), Wu (2012), Peng et al. (2011), Zhao et al. (2008), Zhao et al. (2013b),
Abbas et al. (2013), Mouhamed et al. (2012), Raafat et al. (2013), Zhang et al.
(2008a), Kim (2010a), Kim (2010b), Wu et al. (2009a), Bazin et al. (2007), Cheng
et al. (2010), Zhong et al. (2006), Peng et al. (2010), Shao et al. (2005), Horness
et al. (2007), Huo et al. (2011c), Wang et al. (2009a), Huo et al. (2011a), Lee and
Kwon (2013), Wang and Xu (2003), Kim et al. (2011), Huo et al. (2010), Ling
et al. (2012), Zhang and Wang (2011), Zhang et al. (2010), Im et al. (2008), Wu
et al. (2013a), Zhang and Gao (2009), Liang et al. (2010), (Wang et al., 2011),
Huang and Gu (2006), Kang and Zhang (2009), Solachidis et al. (2000a), Vlachos
et al. (2008), Solachidis et al. (2000b), He et al. (2009), Giannoula et al. (2002),
Solachidis and Pitas (2004), Sun et al. (2009a), Guo and Peng (2010), Sonnet
et al. (2003), Pan et al. (2013), Zhanchuan et al. (2005), Tie et al. (2007), Ohbuchi
et al. (2003), Abubahia and Cocea (2014), Hou et al. (2014), Wang et al. (2014),
Neyman et al. (2014b), Jian-Guo et al. (2014), Li et al. (2014a), Lee et al. (2014),
Peng et al. (2014a), Ren et al. (2014b)

Scaling 53 Xun et al. (2012), Wang et al. (2012b), Du and Peng (2008), Wang and Chiu
(2012), Wu (2012), Peng et al. (2011), Zhao et al. (2008), Zhao et al. (2013b),
Abbas et al. (2013), Mouhamed et al. (2012), Raafat et al. (2013), Zhang et al.
(2008a), Kim (2010a), Kim (2010b), Cheng et al. (2010), Zhong et al. (2006), Peng
et al. (2010), Horness et al. (2007), Huo et al. (2011c), Wang et al. (2009a), Huo
et al. (2011a), Lee and Kwon (2013), Wang and Xu (2003), Kim et al. (2011), Huo
et al. (2010), Zhang and Wang (2011), Ling et al. (2012), Zhang et al. (2010), Im
et al. (2008), Zhang and Gao (2009), Liang et al. (2010), Wang et al. (2011), Kang
and Zhang (2009), Solachidis et al. (2000a), Vlachos et al. (2008), Solachidis et al.
(2000b), He et al. (2009), Solachidis and Pitas (2004), Sun et al. (2009a), Guo
and Peng (2010), Sonnet et al. (2003), Pan et al. (2013), Zhanchuan et al. (2005),
Tie et al. (2007), Ohbuchi et al. (2003), Abubahia and Cocea (2014), Wang et al.
(2014), Neyman et al. (2014b), Jian-Guo et al. (2014), Li et al. (2014a), Peng et al.
(2014b), Lee et al. (2014), Peng et al. (2014a)

Translation 53 Xun et al. (2012), Wang et al. (2012b), Du and Peng (2008), Wang and Chiu
(2012), Wu (2012), Zhao et al. (2008), Zhao et al. (2013b), Abbas et al. (2013), Pu
et al. (2006), Mouhamed et al. (2012), Raafat et al. (2013), Zhang et al. (2008a),
Kim (2010a), Kim (2010b), Wu et al. (2009a), Bazin et al. (2007), Cheng et al.
(2010), Peng et al. (2010), Shao et al. (2005), Horness et al. (2007), Huo et al.
(2011c), Wang et al. (2009a), Huo et al. (2011a), Lee and Kwon (2013), Wang
and Xu (2003), Kim et al. (2011), Huo et al. (2010), Im et al. (2008), Wu et al.
(2013a), Zhang and Gao (2009), Liang et al. (2010), Wang et al. (2011), Huang
and Gu (2006), Solachidis et al. (2000a), Vlachos et al. (2008), Solachidis et al.
(2000b), He et al. (2009), Solachidis and Pitas (2004), Sun et al. (2009a), Guo
and Peng (2010), Sonnet et al. (2003), Pan et al. (2013), Zhanchuan et al. (2005),
Tie et al. (2007), Ohbuchi et al. (2003), Abubahia and Cocea (2014), Hou et al.
(2014), Wang et al. (2014), Neyman et al. (2014b), Jian-Guo et al. (2014), Li et al.
(2014a), Lee et al. (2014), Peng et al. (2014a)

Cropping 34 Xun et al. (2004), Xun et al. (2012), Jianguo et al. (2013a), Zhao et al. (2008), Min
et al. (2012), Zhao et al. (2013b), Marques et al. (2007), Ohbuchi et al. (2002),
Che and Deng (2008), Zhang and Li (2009), Pu et al. (2006), Kim (2010a), Wu
et al. (2010), Bazin et al. (2007), Wang et al. (2010b), Pu et al. (2009), Lafaye
et al. (2012), Huo et al. (2011c), Huo et al. (2011a), Lee and Kwon (2013), Jiang
et al. (2013), Kim et al. (2011), Huo et al. (2010), Zhang et al. (2010), Sangita and
Venkatachalam (2012b), Lafaye et al. (2007b), Yun et al. (2004), Lele et al. (2013),
Ohbuchi et al. (2003), Abubahia and Cocea (2014), Hou et al. (2014), Jian-Guo
et al. (2014), Jianguo et al. (2014), Lee et al. (2014)
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Table 2.9: List of published articles according to the robustness to a set of operational attacks

Attack Type No. of Articles References

Douglas compression 47 Niu et al. (2007), Shao et al. (2006), Wang et al. (2012a), Cao et al. (2011),
Cao et al. (2013a), Men et al. (2010b), Jianguo et al. (2013a), Men et al.
(2009), Schulz and Voigt (2004), Min et al. (2012), Wang et al. (2009c),
Zhao et al. (2013b), Ohbuchi et al. (2002), Zhang and Li (2009), Zhang
et al. (2008a), Wu et al. (2009a), Voigt and Busch (2003), Chuanjian et al.
(2009), Zhong et al. (2006), Peng et al. (2010), Wang et al. (2010b), Zhang
et al. (2009a), Pu et al. (2009), Lafaye et al. (2012), Shao et al. (2005),
Huo et al. (2011c), Huo et al. (2010), Zhu et al. (2008), Zhang et al. (2010),
Sangita and Venkatachalam (2012b), Sangita and Venkatachalam (2012c),
Wu et al. (2013a), Liang et al. (2010), Huang and Gu (2006), Lafaye et al.
(2007b), Park et al. (2002), Yun et al. (2004), Li et al. (2011), Zhang
(2010), Ohbuchi et al. (2003), Hou et al. (2014), Wang et al. (2014), Li
et al. (2014a), Peng et al. (2014b), Lee et al. (2014), Peng et al. (2014a),
Ren et al. (2014a)

Noise addition 37 Xun et al. (2004), Wang et al. (2012a), Peng et al. (2006), Wu (2012), Yan
et al. (2011), Yan and Li (2012), Min et al. (2012), Wang et al. (2009c),
Zhao et al. (2013b), Marques et al. (2007), Abbas et al. (2013), Ohbuchi
et al. (2002), Pu et al. (2006), Kim (2010a), Kim (2010b), Zhang et al.
(2007), Yan and Li (2011), Bird et al. (2009), Wang et al. (2010b), Pu et al.
(2009), Lafaye et al. (2012), Horness et al. (2007), Huo et al. (2011a), Kim
et al. (2011), Huo et al. (2010), Zhu et al. (2008), Mustafa (2011), Sangita
and Venkatachalam (2012c), Vlachos et al. (2008), Sun et al. (2009a),
Lafaye et al. (2007b), Yamada et al. (2006), Davydov et al. (2011), Peng
et al. (2014b), Lee et al. (2014), Ren et al. (2014a), Ren et al. (2014b)

Interpolation 31 Niu et al. (2007), Wang et al. (2012a), Peng et al. (2006), Wang and Men
(2013), Wang and Men (2012), Yan and Li (2012), Wang et al. (2009c),
Marques et al. (2007), Ohbuchi et al. (2002), Zhang et al. (2008a), Kim
(2010a), Kim (2010b), Zhang et al. (2007), Cheng et al. (2010), Peng et al.
(2010), Shao et al. (2005), Huo et al. (2011c), Huo et al. (2011a), (Lee and
Kwon, 2013), Kim et al. (2011), Huo et al. (2010), Yang and Zhu (2007),
Sangita and Venkatachalam (2012c), Park et al. (2002), Wang and Zhu
(2012), Ohbuchi et al. (2003), Hou et al. (2014), Wang et al. (2014), Li
et al. (2014a), Peng et al. (2014b), Peng et al. (2014a)

Reordering 13 Shao et al. (2006), Wang and Men (2012), Marques et al. (2007), Ohbuchi
et al. (2002), Shao et al. (2005), Huo et al. (2011c), Huo et al. (2011a),
Solachidis et al. (2000a), Solachidis et al. (2000b), Solachidis and Pitas
(2004), Ohbuchi et al. (2003), Peng et al. (2014b), Peng et al. (2014a)

Table 2.10: List of published articles according to the robustness metrics

Used Metrics No. of Articles References

NC 21 Mouhamed et al. (2012), Zhong et al. (2006), Mustafa (2011), Sangita and Venkat-
achalam (2012c), Xun et al. (2012), Wang et al. (2012b), Abbas et al. (2013),
Zhang and Li (2009), Zhang et al. (2009a), Li and Xu (2003), Zhu et al. (2008),
Sangita and Venkatachalam (2012b), Liang et al. (2010), Wang et al. (2011), Tao
et al. (2009), Sun et al. (2010b), Tao et al. (2009), Raafat et al. (2013), Zhang
and Wang (2011), Neyman et al. (2014b), Peng et al. (2014a)

BER 12 Lee and Kwon (2010), Huo et al. (2011a), Doncel et al. (2007), Wang et al. (2010b),
Huo et al. (2011a), Huo et al. (2010), Huo et al. (2011c), Wang et al. (2009c), Voigt
and Busch (2002), Pu et al. (2009), Wang et al. (2009a), Jianguo et al. (2014)

PSNR 6 Li and Xu (2003), Kang et al. (2001b), Kang et al. (2001a), Kang et al. (2002),
Zhang and Wang (2011), Abubahia and Cocea (2014)

CR 4 Kim and Hong (2009), Kim (2010a), Kim (2010b), Kim et al. (2011)
RMSE 2 Zhong et al. (2006), Hou et al. (2014)
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Table 2.11: List of published articles according to the evaluation metrics

Evaluation Metric No. of Articles References

Security 29 Du and Peng (2008), Li et al. (2008b), Jianguo et al. (2013a), Fei et al. (2013),
Cao et al. (2013b), Fu et al. (2013), Kim and Hong (2009), Aybet et al. (2009),
Kim (2010a), Zhou et al. (2006), Voigt and Busch (2003), Jia et al. (2006), Li
et al. (2012a), Sonnet et al. (2003), Sun et al. (2010b), Wang and Zhu (2012),
Li et al. (2009), Ramaswmay and Srinivasarao (2010), Dakroury et al. (2010),
Peng et al. (2012), Murti and Tadimeti (2011), Matheus (2005), Zheng et al.
(2011), Zheng et al. (2010b), Bisher et al. (2007), Dollner (2005), Sangita
and Venkatachalam (2013), Lee et al. (2014), Suk-Hwan et al. (2014)

Capacity 29 Niu et al. (2007), Du and Peng (2008), Cao et al. (2013a), Wang and Chiu
(2012), Wu and Wang (2009), Zhao et al. (2010a), Fei et al. (2013), Wang
et al. (2007), Wu et al. (2009b), Peng et al. (2011), Geng et al. (2012),
Voigt et al. (2004), Schulz and Voigt (2004), Ohbuchi et al. (2002), Men
et al. (2010c), Kitamura et al. (2001), Sonnet et al. (2003), Pan et al. (2013),
Yamada et al. (2006), Jianguo et al. (2012), Li et al. (2009), Ohbuchi et al.
(2003), Hu and Geng (2013), Neyman et al. (2013b), Abubahia and Cocea
(2014), Hou et al. (2014), Wang et al. (2014), Peng et al. (2014a), Cao et al.
(2014)

Complexity/Time 10 Li et al. (2008b), Geng et al. (2012), Marques et al. (2007), Magalhaes and
Dahab (2009), Bazin et al. (2007), Lucchese et al. (2010), Ramaswmay and
Srinivasarao (2010), Dakroury et al. (2010), Abubahia and Cocea (2014),
Wang et al. (2014)
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Table 2.12: List of published articles according to the classification of extraction methods

Detection Type No. of Articles References

Blind 98 Wang et al. (2012a), Xun et al. (2012), Wang et al. (2012b), Du and Peng (2008),
Li et al. (2008b), Cao et al. (2013a), Wang and Chiu (2012), Zhao et al. (2010a),
Wu (2012), Cao et al. (2013b), Cao et al. (2010b), Abbas and Jawad (2013b),
Wang et al. (2007), Wu et al. (2009b), Wang and Men (2012), Zheng and You
(2009), Zheng et al. (2010d), Schulz and Voigt (2004), Yan et al. (2011), Zhou
and Bi (2004), Zhao et al. (2008), Yan and Li (2012), Wang et al. (2009c), Lee
and Kwon (2010), Kim and Hong (2009), Zhao et al. (2013b), Voigt and Busch
(2002), Shujun et al. (2007), Abbas et al. (2013), Zhang and Li (2009), Pu
et al. (2006), Aybet et al. (2009), Mouhamed et al. (2012), Raafat et al. (2013),
Zhang et al. (2008a), Kim (2010a), Kim (2010b), Zhou et al. (2006), Wu et al.
(2009a), Kang et al. (2001b), Kang et al. (2001a), Wu et al. (2010), Kang et al.
(2002), Zhou and Pan (2006), Wang et al. (2009a), Kim et al. (2011), Huo
et al. (2010), Baiyan et al. (2008b), Chuanjian et al. (2009), Yan and Li (2011),
Bazin et al. (2007), Cheng et al. (2010), Zhong et al. (2006), Peng et al. (2010),
Bird et al. (2009), Wang et al. (2010b), Pu et al. (2009), Lafaye et al. (2012),
Jia et al. (2006), Shao et al. (2005), Horness et al. (2007), Huo et al. (2011c),
Huo et al. (2011a), Jiang et al. (2013), Li and Xu (2003), Ling et al. (2012),
Mustafa (2011), Zhang et al. (2010), Im et al. (2008), Zhang and Gao (2009),
Liang et al. (2010), Wang et al. (2011), Kang and Zhang (2009), Solachidis
et al. (2000a), Vlachos et al. (2008), Solachidis et al. (2000b), Junfeng and
Bing (2011), Lucchese et al. (2010), He et al. (2009), Giannoula et al. (2002),
Solachidis and Pitas (2004), Sun et al. (2009a), Tao et al. (2009), Huber et al.
(2010), Lafaye et al. (2007b), Sonnet et al. (2003), Zuo et al. (2010), Yamada
et al. (2006), Li et al. (2010), Pan et al. (2013), Park et al. (2002), Abubahia
and Cocea (2014), Hou et al. (2014), Yue et al. (2014), Wang et al. (2014),
Neyman et al. (2014a), Peng et al. (2014b), Suk-Hwan et al. (2014)

Non-blind 12 Marques et al. (2007), Ohbuchi et al. (2002), Zhang et al. (2007), Zheng et al.
(2010c), Zhang et al. (2009a), Zhu et al. (2008), Zhang and Wang (2011), San-
gita and Venkatachalam (2012b), Sangita and Venkatachalam (2012c), Huang
and Gu (2006), Doncel et al. (2007), Kitamura et al. (2001)

Semi-blind 4 Li et al. (2012b), Magalhaes and Dahab (2009), Haowen (2011a), Neyman et al.
(2014b)

Table 2.13: List of recent published articles according to the publication year

Publication Year No. of Articles References

2015 7 Wang et al. (2015a), Abubahia and Cocea (2015b), Cao et al. (2015), Abubahia
and Cocea (2015a), Zope-Chaudhari et al. (2015), Wang et al. (2015b), Peng
and Yue (2015)

2016 3 Wang et al. (2016b), Chen et al. (2016), Wang et al. (2016a)
2017 18 Peng et al. (2017c), Wang (2017), Abubahia and Cocea (2017), Lan and

Peng (2017), Tulapurkar et al. (2017), Hassan and Mohammed (2017), Zope-
Chaudhari et al. (2017), Liu et al. (2017), Su et al. (2017), Wang et al. (2017),
Lin et al. (2017), Peng et al. (2017a), Peng et al. (2017b), Zhang et al. (2018b),
Yan et al. (2017), Zhang et al. (2018a), Jang et al. (2016), Wang and Zhao
(2018a)

2018 13 Wang and Kankanhalli (2018), Wang and Zhao (2018b), Lin et al. (2018),
Wang et al. (2018), Da et al. (2018), Hou et al. (2018), Gaata (2018), Tula-
purkar et al. (2018), Abubahia and Cocea (2018), Qiu et al. (2018a), Qiu et al.
(2018b), Zhou et al. (2018), Bansal and Upadhyaya (2018)
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Methodology

This Chapter gives an outline of research methodology that were adopted in the study.

It discusses and elaborates how the CRISP-DM methodology could be used to effectively

perform spatial data mining tasks. This Chapter outlines the use of CRISP-DM methodology

in: identifying the watermark embedding position by using a clustering approach; improving

the robustness to GIS vector relevant attacks/modifications; comparing different clustering

approaches in identifying the watermark embedding locations in the map; defining a metric

for measuring topological quality of polygon-based vector maps; and developing workload

balance based spatial clustering approach for partitioning GIS polygon based maps with

massive number of vertices and complex shapes.

3.1 CRISP-DM Methodology

CRISP-DM (Cross-Industry Standard Process for Data Mining) is a data mining process

model that describes commonly used approaches that expert data miners use to tackle prob-

lems - see reference (Shearer, 2000). CRISP-DM provides a structured approach to planning

a data mining project and, as shown in Table 3.1, it is composed of six phases: business un-

derstanding, data understanding, data preparation, modeling, evaluation, and deployment.

3.1.1 Business understanding

The business understanding phase involves several key steps, including determining business

objectives, assessing the situation, determining the data mining goals, and producing the

project plan.
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3.1.2 Data understanding

The data understanding phase involves four main steps, including the collection of initial

data, the description of data, the exploration of data, and the verification of data quality.

3.1.3 Data preparation

There are five steps that might be involved in data preparation, they are: the selection of data,

the cleansing of data, the construction of data, the integration of data, and the formatting

of data.

3.1.4 Modelling

Modelling steps include the selection of the modelling technique, the generation of test design,

the creation of models, and the assessment of models.

3.1.5 Evaluation

In the evaluation phase, the key steps are: the evaluation of results, the process review, and

the determination of next steps.

3.1.6 Deployment

In the deployment phase, the key steps are: plan deployment, plan monitoring and mainte-

nance, the production of the final report, and review of the project.

The following subsections will add more details to the way of implementing the CRISP-

DM methodology in the context of GIS vector data mining. The deployment phase is not

used in this research because the research process is carried out on the iteratively basis. For

all the research objectives, the deployment phase consists of written form of report (i.e. this

PhD thesis and published papers) - see publication list in page 5. To avoid repetition, this is

omitted from the following subsections.

3.2 The Watermark Embedding Locations Identification

3.2.1 Business understanding

One of the main research issues of digital vector map data is defined by copyright protection,

and digital watermarking is a potential solution to this issue. This phase involves the following
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key steps of: determining the business objective; assessing the situation; determining the data

mining goals; and producing a project plan.

Step 1 – Determine the Business Objective: The business objective is to protect the

valuable assets of vector maps from illegal use by solving the issue of vector map copyright

protection. Moreover, increasing the security of the watermarked vector maps by employing

more suitable data mining methods.

Step 2 – Assess the Situation: In recent years, a considerable amount of research has

been carried out to solve the issue of copyright protection in the context of digital vector

map data. However, few research attempts proposed watermarking methods that use data

mining tools in the context of digital vector data copyright protection. These attempts show

promising results for advancing the research of vector map copyright protection.

Step 3 – Determine the Data Mining Goals: The goal is set as using data mining

techniques for identifying the best locations/positions for embedding the watermark. These

embedding positions should balance the trade-off between the fidelity and capacity.

Step 4 – Produce a Project Plan: The project plan involves: the use of k-medoids par-

tition clustering and compare its deployment with a previous watermarking scheme in which

k-means partition clustering is used; using clustering approach to identify the embedding

position that satisfy the trade-off balance; and using MATLAB programming for the water-

mark embedding and extraction processes and measuring the computational time. The kind

of data were used is in the free vector map format of ESRI shapefiles.

3.2.2 Data understanding

This phase involves the following key steps of: collecting the initial data; describing the data;

exploring the data; and verifying the data quality

Step 1 – Collect the Initial Data: The used maps are downloaded from the Map Library

website 1; which contains the maps of administrative boundaries for the African countries.

Step 2 – Describe the Data: The used map data format is shapefile (.shp); which was

developed by ESRI company 2. The shapefile is a popular format used in GIS applications

due to its prominent characteristics. These characteristics can be summarized as:

• It requires less storage space than image data;

• It has considerable speed in drawing and editing shapes;

• It stores spatial features, in the form of coordinates, and their attribute information;

1http://www.mapmakerdata.co.uk/v4/Base%20map%20data.Africa.htm
2http://www.esri.com
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• It supports all types of geometry, i.e points, lines and polygons;

• It is easy to read and write.

Step 3 – Explore the Data: The used maps represent different sizes in terms of number

of polygons. These maps represent the administrative areas map of three countries: Tunisia

(27 polygons), Swaziland (53 polygons) and Burundi (132 polygons).

Step 4 – Verify Data Quality: The used polygon based maps are checked to verify that

the targeted polygons have no missing attributes, and also checked against the following

topology rules: map polygons have no disclosures; map polygons are not overlapped; and

map polygons have no gaps.

3.2.3 Data preparation

This phase involves the following key steps of: selecting Data and constructing Data. The

step of cleaning data is not applicable, here, due to the high quality of data. Moreover, there

is no need for data integration or formatting in the data preparation phase.

Step 1 – Select Data: The selected data are represented by X and Y coordinates of the

polygons’ vertices.

Step 2 – Construct Data: The data is constructed by the calculation of polygons’ centers.

3.2.4 Modeling

This phase involves the following key steps of: selecting the modeling technique; generating

test design; building and assessing the model.

Step 1 – Select the Modeling Technique: Two modeling techniques are involved at this

step. One is the PAM (Partitioning Around Medoids) based clustering method; which is used

for identifying the locations for embedding the watermark bits. Another one is the odd-even

indexing; which is used for inserting the watermark bits into the identified locations.

Step 2 – Generate Test Design: To assess the difference introduced by the k-medoids

partition clustering method, a set of experiments have been carried out in regards to: fidelity,

robustness, computational time, capacity and security metrics. The fidelity metric aims to

measure the perceptual similarity between the watermarked map data and the original map

data. The robustness reflects the watermark’s resistance to a set of attacks or modifications.

The computational time refers to the time period, in seconds, for embedding the watermark

bits into the host map. The capacity refers to the number of watermark bits that is embedded

in the host map. The security refers to the used procedure for keeping the Watermark bits’

position secure and inaccessible by the potential attacker.
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Step 3 – Build the Model: These experiments were carried on the three maps and different

proportions of map size, i.e. 25%, 33% and 50%, to verify the consistency of results. Also,

the odd-even indexing is used for modelling the watermark insertion process.

Step 4 – Assess the Model: The fidelity is measured by using PSNR (Peak Signal to

Noise Ratio), in decibels. The computational time was measured in seconds. The watermark

capacity is expressed by the number of vertices that carry the watermark bits.

3.2.5 Evaluation

This phase involves the following key steps of: evaluating the results; reviewing the process;

and determining next steps.

Step 1 – Evaluate Results: The experimental results show that both k-medoids and

kmeans clustering approaches result in high fidelity, while the k-medoids based clustering

approach achieves a more balanced trade-off between capacity and fidelity, as well as better

computational efficiency due to the k-medoids characteristics.

Step 2 – Review Process: Both clustering and embedding approaches are checked and

reviewed repeatedly; to ensure they are working appropriately.

Step 3 – Determine Next Steps: The next step is to improve the watermark resilience to

a set of GIS map relevant attacks/modifications such as: the simplification (removing some

vertices from GIS vector data) and interpolation (adding new vertices to GIS vector data).

3.3 The Watermark Resilience Improvement

3.3.1 Business understanding

This phase involves the following key steps of: determining the business objective; assessing

the situation; determining the data mining goals; and producing a project plan.

Step 1 – Determine the Business Objective: The business objective is to improve the

watermark resilience to a set of GIS map relevant attacks/modifications such as: simplifica-

tion (removing some vertices from GIS vector data) and interpolation (adding new vertices

to GIS vector data).

Step 2 – Assess the Situation: Although the previous approach, in subsection 3.2.2,

achieved a considerable improvement in terms of the balance between capacity and fidelity,

like the other approaches, it is still vulnerable to simplification and interpolation attacks, and

has not been shown to work on larger maps.

Step 3 – Determine the Data Mining Goals: The data mining goal is to use a particular

property of vector data, called a bounding box, in combination with k-medoids approach in
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Chapter 4, and to addresses the vulnerability to the two aforementioned attacks, while also

preserving a good trade-off between fidelity and capacity.

Step 4 – Produce a Project Plan: The project plan involves: using k-medoids clustering

method in combination with the bounding box centres to strengthen the watermark resilience

against simplification and interpolation attacks, and to preserve the trade-off between fidelity

and capacity. Both watermark embedding and extraction processes are implemented by using

MATLAB version R2013b (8.2.0.701). The free vector maps, in ESRI shapefile format, are

used to assess the proposed approach.

3.3.2 Data understanding

This phase involves the following key steps of: collecting the initial data; describing the data;

exploring the data; and verifying the data quality.

Step 1 – Collect the Initial Data: The used maps are downloaded from the Map Library

website; which contains the maps of administrative boundaries for the African countries, as

illustrated in subsection 3.2.2.

Step 2 – Describe the Data: As discussed in subsection 3.2.2, the used data format is

shapefile (.shp); which was developed by ESRI company. The shapefile is a popular format

used in GIS applications due to its prominent characteristics.

Step 3 – Explore the Data: The used GIS maps are polygon-based maps that repre-

sent administrative boundaries of 3 countries in Africa: Benin (222 polygons), Angola (501

polygons) and Burkina Faso (1046 polygons). These GIS vector maps are freely available, in

ESRI shapefile format.

Step 4 – Verify Data Quality: The used polygon based maps are checked to verify that

the targeted polygons have no missing attributes, and also checked against the following

topology rules: map polygons have no disclosures; map polygons are not overlapped; and

map polygons have no gaps.

3.3.3 Data preparation

This phase involves the following key steps of: selecting data and constructing data. The

step of cleaning data is not applicable, here, due to the high quality of data. Moreover, there

is no need for data integration or formatting in the data preparation phase.

Step 1 – Select Data: The selected data are represented by X and Y coordinates of the

polygons’ bounding boxes.

Step 2 – Construct Data: The data is constructed by the calculation of polygons’ bounding

box centres.
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3.3.4 Modeling

This phase involves the following key steps of: selecting the modelling technique; generating

test design; building and assessing the model.

Step 1 – Select the Modeling Technique: Two modelling techniques are involved at this

step. One is the k-medoids in combination with the bounding box property; which is used

for identifying the locations for embedding the watermark bits, and adding more robustness

to the watermark. Another one is the odd-even indexing; which is used for inserting the

watermark bits into the identified locations.

Step 2 – Generate Test Design: To assess the difference introduced by the k-medoids

method in combination with bounding boxes property, a set of experiments have been carried

out in regards to: fidelity and capacity. The fidelity metric aims to measure the impercepti-

bility of the watermark and reflects its degree of invisibility. Capacity refers to the number

of vertices that carry the watermark bits.

Step 3 – Build the Model: These experiments were carried on the three maps and different

proportions of map size, i.e. 25%, 33% and 50%, to verify the consistency of results. Also,

the odd-even indexing is used for modelling the watermark insertion process.

Step 4 – Assess the Model: The fidelity is measured by using PSNR (Peak Signal to

Noise Ratio), in decibels. The watermark capacity is expressed by the number of vertices

that carry the watermark bits.

3.3.5 Evaluation

This phase involves the following key steps of: evaluating the results; reviewing the process;

and determining next steps.

Step 1 – Evaluate Results: The experimental results show that both k-medoids and

kmeans clustering approaches result in high fidelity, while the k-medoids based clustering

approach achieves a more balanced trade-off between capacity and fidelity, as well as better

computational efficiency due to the k-medoids characteristics.

Step 2 – Review Process: Both k-medoids based clustering in combination with the

polygon bounding box centres and odd-even based embedding approaches are checked and

reviewed repeatedly; to ensure they are working appropriately.

Step 3 – Determine Next Steps: The next step is to compare k-medoids and k-means

clustering approaches in combination with the bounding box property to investigate their

influences against the use of the bounding box property for protecting the copyright of GIS

vector maps.
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3.4 Map Properties and Clustering Approaches Comparison

3.4.1 Business Understanding

This phase involves the following key steps of: determining the business objective; assessing

the situation; determining the data mining goals; and producing a project plan.

Step 1 – Determine the Business Objective: The business objective is to investigate

the role of the bounding box property in addressing the vulnerability to simplification and

interpolation attacks, and to investigate if the trade-off between fidelity and capacity is

preserved.

Step 2 – Assess the Situation: In previous work we showed that using k-medoids cluster-

ing in combination with the bounding box property of vector maps in the embedding process

leads to increased robustness against simplification (removing vertices from vector data) and

interpolation (adding new vertices to the data) attacks.

Step 3 – Determine the Data Mining Goals: The data mining goal is to use k-means

clustering approaches in combination with the use of polygon bounding box centres; to im-

prove the watermark resilience to the defined set of GIS map relevant attacks/modifications.

Step 4 – Produce a Project Plan: The project plan involve: using k-means clustering

method in combination with the bounding box centres to strengthen the watermark resilience

against simplification and interpolation attacks, and to preserve the trade-off between fidelity

and capacity. Both watermark embedding and extraction processes are implemented by using

MATLAB version R2013b (8.2.0.701). The free vector maps, in ESRI shapefile format, are

used to assess the proposed approach.

3.4.2 Data Understanding

This phase involves the following key steps of: collecting the initial data; describing the data;

exploring the data; and verifying the data quality.

Step 1 – Collect the Initial Data: The used maps are downloaded from the Map Library

website; which contains the maps of administrative boundaries for the African countries, as

illustrated in subsection 3.2.2.

Step 2 – Describe the Data: As discussed in subsection 3.2.2, the used data format is

shapefile (.shp); which was developed by ESRI company. The shapefile is a popular format

used in GIS applications due to its prominent characteristics.

Step 3 – Explore the Data: The used GIS maps are polygon-based maps that repre-

sent administrative boundaries of 3 countries in Africa: Benin (222 polygons), Angola (501
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polygons) and Burkina Faso (1046 polygons). These GIS vector maps are freely available, in

ESRI shapefile format.

Step 4 – Verify Data Quality: The used polygon based maps are checked to verify that

the targeted polygons have no missing attributes, and also checked against the following

topology rules: map polygons have no disclosures; map polygons are not overlapped; and

map polygons have no gaps.

3.4.3 Data preparation

This phase involves the following key steps of: selecting data and constructing data. The

step of cleaning data is not applicable, here, due to the high quality of data. Moreover, there

is no need for data integration or formatting in the data preparation phase.

Step 1 – Select Data: The selected data are represented by X and Y coordinates of the

polygons’ bounding boxes.

Step 2 – Construct Data: The data is constructed by the calculation of polygons’ bounding

box centres.

3.4.4 Modeling

This phase involves the following key steps of: selecting the modelling technique; generating

test design; building and assessing the model.

Step 1 – Select the Modeling Technique: Two modelling techniques are involved at

this step. One is the k-means in combination with the bounding box property; which is used

for identifying the locations for embedding the watermark bits, and adding more robustness

to the watermark. Another one is the odd-even indexing; which is used for inserting the

watermark bits into the identified locations.

Step 2 – Generate Test Design: To assess the difference introduced by the k-means

method in combination with bounding boxes property, a set of experiments have been carried

out in regards to: fidelity and capacity. The fidelity metric aims to measure the impercepti-

bility of the watermark and reflects its degree of invisibility. Capacity refers to the number

of vertices that carry the watermark bits.

Step 3 – Build the Model: These experiments were carried on the three maps and different

proportions of map size, i.e. 25%, 33% and 50%, to verify the consistency of results. Also,

the odd-even indexing is used for modelling the watermark insertion process.

Step 4 – Assess the Model: The fidelity is measured by using PSNR (Peak Signal to

Noise Ratio), in decibels. The watermark capacity is expressed by the number of vertices

that carry the watermark bits.
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3.4.5 Evaluation

This phase involves the following key steps of: evaluating the results; reviewing the process;

and determining next steps.

Step 1 – Evaluate Results: The experimental results show that the advantages of using

the bounding box property are maintained even with k-means clustering approach, and argue

that they would hold regardless of the method used for identifying the watermark embedding

locations in the map.

Step 2 – Review Process: Both k-means based clustering in combination with the polygon

bounding box centres and odd-even based embedding approaches are checked and reviewed

repeatedly; to ensure they are working appropriately.

Step 3 – Determine Next Steps: The next step is to quantify fidelity measure that

consider the nature of GIS vector maps.

3.5 Topological Quality Measurement

3.5.1 Business Understanding

This phase involves the following key steps of: determining the business objective; assessing

the situation; determining the data mining goals; and producing a project plan.

Step 1 – Determine the Business Objective: The business objective is to define a

metric that allows comparisons between watermarked maps of different sizes and of different

watermark sizes, and, thus, can be used to assess the quality of watermarked vector maps.

Step 2 – Assess the Situation: Unlike image watermarking field of research, measuring

the loss of precision only with error metrics, without checking the topology preservation, is

not a good way to evaluate watermarked vector map quality.

Step 3 – Determine the Data Mining Goals: The data mining goal is to use k-means

clustering approach in combination with polygon bounding box centres, odd-even indexing

and map topology rules; to define a metric that can be used to assess the quality of water-

marked vector maps.

Step 4 – Produce a Project Plan: The project plan involves using k-means clustering

approach in combination with polygon bounding box centres, odd-even indexing and map

topology rules to define and test the proposed metric in evaluating the topological quality of

watermarked vector maps. Both watermark embedding and metric testing are implemented

by using MATLAB version R2014b (8.4.0.150421) on a 64-bits Windows-PC. The free vector

maps, in ESRI shapefile format, are used to assess the proposed metric.
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3.5.2 Data Understanding

This phase involves the following key steps of: collecting the initial data; describing the data;

exploring the data; and verifying the data quality.

Step 1 – Collect the Initial Data: The used maps are downloaded from the Map Library

website; which contains the maps of administrative boundaries for the African countries, as

illustrated in subsection 3.2.2.

Step 2 – Describe the Data: As discussed in subsection 3.2.2, the used data format is

shapefile (.shp); which was developed by ESRI company. The shapefile is a popular format

used in GIS applications due to its prominent characteristics.

Step 3 – Explore the Data: Four categories of datasets (of two maps each) combining

high and low numbers of polygons and vertices are used, respectively:

• Dataset 1 includes maps with small number of polygons and small number of vertices.

The used GIS maps under this category are: Morocco (47 polygons and 7523 vertices)

and Swaziland (53 polygons and 7678 vertices)

• Dataset 2 includes maps with small number of polygons and large number of vertices.

The used GIS maps under this category are: Congo-Brazzaville (46 polygons and 12511

vertices) and Guinea (56 polygons and 21304 vertices)

• Dataset 3 includes maps with large number of polygons and small number of vertices.

The used GIS maps under this category are: Egypt (129 polygons and 5992 vertices)

and Chad (347 polygons and 19542 vertices)

• Dataset 4 includes maps with large number of polygons and large number of vertices.

The used GIS maps under this category are: Ghana (138 polygons and 243329 vertices)

and Burkina Faso (351 polygons and 113996 vertices)

Step 4 – Verify Data Quality: The used polygon based maps are checked to verify that

the targeted polygons have no missing attributes, and also checked against the following

topology rules: map polygons have no disclosures; map polygons are not overlapped; and

map polygons have no gaps.

3.5.3 Data preparation

This phase involves the following key steps of: selecting data and constructing data. The

step of cleaning data is not applicable, here, due to the high quality of data. Moreover, there

is no need for data integration or formatting in the data preparation phase.
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Step 1 – Select Data: The selected data are represented by X and Y coordinates of the

polygons’ bounding boxes.

Step 2 – Construct Data: The data is constructed by the calculation of polygons’ bounding

box centres.

3.5.4 Modeling

This phase involves the following key steps of: selecting the modelling technique; generating

test design; building and assessing the model.

Step 1 – Select the Modeling Technique: The used modelling techniques involve the use

of k-means clustering approach in combination with polygon bounding box centres, odd-even

indexing and map topology rules to define and test the proposed metric in evaluating the

topological quality of watermarked vector maps.

Step 2 – Generate Test Design: To assess the proposed metric, a set of experiments

have been carried out in regards to the map topology rules of: disclosures, gaps and overlaps.

Disclosure occurs when the coordinates of the first and the last vertex, within same polygon,

are different. The gap occurs when having voids within a polygon or between neighboring

polygons. The overlap means that the interior of polygons must not overlap, and they can

only share edges or vertices.

Step 3 – Build the Model: These experiments were carried on the three maps and different

proportions of map size, i.e. 25%, 33% and 50%, to verify the consistency of results. Also,

the odd-even indexing is used for modelling the watermark insertion process.

Step 4 – Assess the Model: The topological quality, of watermarked vector maps, is

measured by averaging the three metrics that counts the numbers of disclosures, gaps and

overlaps.

3.5.5 Evaluation

This phase involves the following key steps of: evaluating the results; reviewing the process;

and determining next steps.

Step 1 – Evaluate Results: The experimental results indicate that the metrics allow

comparisons between watermarked maps of different sizes and of different watermark sizes,

and, thus, can be used to asses the quality of watermarked vector maps.

Step 2 – Review Process: The proposed metric is checked and reviewed repeatedly; to

ensure the metric efficiency in assessing the topological distortions in the context of water-

marked vector maps.
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Step 3 – Determine Next Steps: The next step is to exploit the characteristics of evolu-

tionary computation approaches for developing a clustering approach that consider the nature

of GIS vector maps’ properties.

3.6 Workload Balanced GIS Map Clustering

3.6.1 Business Understanding

This phase involves the following key steps of: determining the business objective; assessing

the situation; determining the data mining goals; and producing a project plan.

Step 1 – Determine the Business Objective: The business objective is to increase the

computation performance for processing GIS polygon based maps with massive number of

vertices and complex shapes.

Step 2 – Assess the Situation: The current approaches focus more on attribute data

rather than spatial data. They use evolutionary computation techniques for optimizing the

polygons’ partitioning based on the attribute data; e.g polygon area or polygon population.

Step 3 – Determine the Data Mining Goals: The business objective is to develop work-

load balanced spatial clustering approaches, by using evolutionary computation method that

considers the nature of spatial data to increase the computation performance for processing

GIS polygon based maps with massive number of vertices and complex shapes.

Step 4 – Produce a Project Plan: The project plan involve using polygons’ bounding box

centres in combination with evolutionary computation approach to increase the computation

performance for processing GIS polygon based maps.

3.6.2 Data Understanding

This phase involves the following key steps of: collecting the initial data; describing the data;

exploring the data; and verifying the data quality.

Step 1 – Collect the Initial Data: The used maps are downloaded from the Map Library

website; which contains the maps of administrative boundaries for the African countries, as

illustrated in subsection 3.2.2.

Step 2 – Describe the Data: As discussed in subsection 3.2.2, the used data format is

shapefile (.shp); which was developed by ESRI company. The shapefile is a popular format

used in GIS applications due to its prominent characteristics.

Step 3 – Explore the Data: Four categories of datasets (of two maps each) combining

high and low numbers of polygons and vertices are used, respectively:
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• Dataset 1 includes maps with small number of polygons and small number of vertices.

The used GIS maps under this category are: Djibouti (11 polygons and 676 vertices)

and Somalia (88 polygons and 3175 vertices)

• Dataset 2 includes maps with small number of polygons and large number of vertices.

The used GIS maps under this category are: Guinea (56 polygons and 21304 vertices)

and Zimbabwe (81 polygons and 32382 vertices)

• Dataset 3 includes maps with large number of polygons and small number of vertices.

The used GIS maps under this category are: Liberia (305 polygons and 10521 vertices)

and Chad (347 polygons and 19542 vertices)

• Dataset 4 includes maps with large number of polygons and large number of vertices.

The used GIS maps under this category are: Burkina Faso (351 polygons and 113996

vertices) and Ethiopia (575 polygons and 261880 vertices)

Step 4 – Verify Data Quality: The used polygon based maps are checked to verify that

the targeted polygons have no missing attributes, and also checked against the following

topology rules: map polygons have no disclosures; map polygons are not overlapped; and

map polygons have no gaps.

3.6.3 Data preparation

This phase involves the following key steps of: selecting data and constructing data. The

step of cleaning data is not applicable, here, due to the high quality of data. Moreover, there

is no need for data integration or formatting in the data preparation phase.

Step 1 – Select Data: The selected data are represented by X and Y coordinates of the

polygons’ bounding boxes.

Step 2 – Construct Data: The data is constructed by the calculation of polygons’ bounding

box centres.

3.6.4 Modeling

This phase involves the following key steps of: selecting the modelling technique; generating

test design; building and assessing the model.

Step 1 – Select the Modeling Technique: The modelling technique involves using poly-

gons’ bounding box centres in combination with evolutionary computation approach to define

and test the proposed clustering approach for partitioning the GIS vector maps.
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Step 2 – Generate Test Design: To assess the proposed clustering approach, a set of

experiments have been carried out in regards to: different number of partitions and different

evolutionary computation operators.

Step 3 – Build the Model: These experiments were carried on the eight maps and different

number of partitions and different evolutionary computation operators.

Step 4 – Assess the Model: The fitness function is identified by calculating the standard

deviation value. The standard deviation is calculated at level of the set of map partitions,

where each set contain number of polygons. The smallest value of the standard deviation

indicate the better balance between the partitions according to the total number of vertices.

3.6.5 Evaluation

This phase involves the following key steps of: evaluating the results; reviewing the process;

and determining next steps.

Step 1 – Evaluate Results: The experimental results show the capability of the proposed

clustering approach in addressing the issue of workload balancing in the context of GIS vector

map data.

Step 2 – Review Process: The proposed clustering approach is checked and reviewed

repeatedly; to ensure the reliability of the proposed approach in partitioning different sizes

and shapes of vector maps.

Step 3 – Determine Next Steps: The next step is experiment more on addressing the

issue of time complexity. Also, more investigation will be undertaken on the possibility of

using different vertices weights for implementing various partitioning aspects in the context

of GIS vector maps.
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The Watermark Embedding

Locations Identification

In recent years, the compelling need for protecting the copyright of digital vector maps

has become an emergent topic within the GIS (Geographic Information System) research

community that stemmed from the rapid growth of intelligent tools and devices (Chang,

2012; Longley et al., 2011). One of the main economic, social and legal aspects of using

GIS data is defined by copyright protection (Wu et al., 2013b). This has been enforced and

administrated internationally by UN-WIPO (United Nations - World Intellectual Property

Organization), by considering the digital maps as software products (Fenwick and Locks,

2010).

Unlike other physical data, digital data has its own features of being intangible and

dynamic, which make it easy to be copied, modified or distributed through different media

such as CDs, DVDs, USBs or via internet servers (Bainbridge, 2014).

In the digital context, the copyright offers an exclusive right to secure and protect the

livelihood of original work producers. This helps prevent illegal digital copies being dis-

tributed on internet web sites and used instead of the original productions. In case of copy-

right dispute, digital watermarking can be used for claiming ownership. Digital watermarking

has been proposed, in recent years, as an effective solution to combat this threat of piracy.

In watermarking research, digital multimedia data such as images, text, audio and videos

received more attention by researchers and scholars than digital vector map data (Bhanuchan-

dar et al., 2013). The spatial structure and topological relations within the vector map type

of data are features that make it different from other multimedia data. The key difference

between vector data and image data, as illustrated in Table 4.1, is the small redundancy

available to hide the watermark due to the precision intolerance of vertices’ coordinates. In
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addition, digital vector data has great economic significance due to the value of its accu-

rate content (Jian-Guo et al., 2014). Digital maps are developed for complex data, which

makes them suitable to be used in many applications where accuracy is important, such as

navigation, strategic planning, military services and decision making (Chang, 2012).

Table 4.1: Vector data versus image/raster data

Aspect Vector Data Image Data

Feature Representation Points/Lines/Polygons Array of pixels

Resolution Determination Precise coordinates Pixel size

Efficiency Sparse data Dense data

Spatial Relations Exist Do not exist

Storage Requirement Small space Large space

Redundancy Size Small Large

In recent years, a considerable amount of research has been carried out to solve the is-

sue of copyright protection in the context of digital vector data, e.g., (Abbas and Jawad,

2013a; Bhanuchandar et al., 2013; Wu et al., 2013b). A handful of research papers pro-

posed watermarking methods that use data mining tools in the context of digital vector data

copyright protection (Huo et al., 2011b; Jianguo et al., 2013b; Haowen, 2011b; Raafat et al.,

2013). These methods can be categorized into two main categories: clustering-based methods

(Huo et al., 2011b; Jianguo et al., 2013b; Haowen, 2011b) and classification-based methods

(Raafat et al., 2013). In the literature, clustering-based methods are more prevalent than

classification-based methods; consequently, we focus on clustering methods.

In particular, we advocate that the clustering method used has an influence on the secu-

rity of the watermarked vector map, where security is measured through specific evaluation

metrics, which are outlined in Section 4.1. More specifically, we propose the use of a k-

medoids partition clustering approach; there are several implementations of this approach,

of which the PAM (Partitioning Around Medoids) method is the most popular (Han et al.,

2009, 2012). This clustering method is useful in identifying the location for embedding the

watermark. In addition, the use of clustering techniques can also ensure a good distribution

of the embedding locations across the vector map. In this Chapter, we investigate whether

the use of PAM leads to a more secure watermarked map in comparison with a k-means

partition clustering method.

The rest of this Chapter is organized as described in the following. In section 4.1, a

detailed overview of relevant previous work is presented. Section 4.2 describes the geospatial
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Figure 4.1: The General System of Digital Vector Map Watermarking.

data format and the platform that has been utilized for the experimental evaluation of the

approach proposed in this Chapter. Section 4.3 presents the full explanation of the proposed

approach including: selecting the embedding positions and implementing the embedding and

extraction strategy. Section 4.4 describes the experiments and discusses the findings. Section

4.5 concludes this Chapter.

4.1 Related Work

In GIS vector map data, a sequence of vertices’ coordinates is used to represent geographical

locations of the digital map object, which can take one of three types of geometry shapes:

point, polyline and polygon(Abbas and Jawad, 2013a).

A digital vector map watermarking system, as shown in Fig. 4.1, consists of two substantial

stages: embedding and extraction. The embedding stage refers to the process of inserting

copyright information, which is called a watermark, into the host data.

In the former stage, one or more secret keys are used for adding more security to the

embedded locations in the digital map, as well as keeping these locations unknown to potential

attackers. The stage of watermark extraction aims to obtain the watermark from the host

data by using the aforementioned secret key(s). The purpose of extraction is to obtain the

watermark so that the original map can be retrieved.

In the literature, digital map watermarking algorithms are classified into two main types:

spatial domain and transform domain. Spatial domain algorithms are concerned with em-

bedding the watermark directly into different spaces, such as Cartesian coordinates, polar

coordinates, blocks and topology relations. Transform domain algorithms deal with inserting

the watermark into a transformed form of data. The most frequently used data transfor-

mations in the watermarking context are wavelet transform, Fourier transform and cosine

transform (Abbas and Jawad, 2013a).
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(a) Map 1 (27 polygons) (b) Map 2 (53 polygons)

(c) Map 3 (132 polygons)

Figure 4.2: The maps used in the experiments.

The security of a watermarked map is evaluated by looking at four aspects: capacity,

fidelity, computational time and robustness (Abbas and Jawad, 2013a).

Capacity refers to the number of bits that can be embedded in the host data (Cox et al.,

2007; Niu et al., 2006). In addition to the number of embedded bits in the host data, these

bits should be spread across the whole map in order to provide more robustness to cropping

attacks, which refer to cutting parts of the host map (Zhao et al., 2013a). The use of clustering

methods in the process of watermarking ensure a good spread by identifying locations for

embedding throughout the map.

Fidelity refers to the fact that the watermark embedding process should not affect the

quality of the host data and that the watermark should not be noticeable to the human

eye (Nin and Ricciardi, 2013).

There is a trade-off between capacity and fidelity: inserting many watermark bits, i.e.,

increased capacity, leads to a loss of fidelity or quality of the host map (Abbas and Jawad,

2013a). Consequently, there is a need to balance the capacity of the map with its fidelity to
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achieve good security without loss of quality.

Computation time/complexity refers to the period of time that is required to perform the

embedding process and obtaining the watermarked data (Barni and Bartolini, 2004).

Robustness refers to the ability of the watermaked map to withstand any kind of mod-

ifications, called attacks, to the host data (Cox et al., 2007). Examples of these attacks

are geometric modifications processes such as rotation, translation and scaling (Huo et al.,

2011b).

In this Chapter we argue that the partition clustering method used in the process of

identifying the location for embedding the watermark has an influence on the security of the

watermarked map measured in terms of capacity, fidelity, computational time and robustness.

To investigate this, we propose a k-medoids approach and compare it with the approach of

Huo et al. (Huo et al., 2011b) as a best representative of partition clustering-based watermark

embedding approaches, because it takes into consideration both the trade-off between capacity

and fidelity, and the robustness to geometric attacks.

4.2 Materials

This section describes the data format used and the platform that has been utilized for

implementing the proposed approach in this Chapter.

A particular data format is used, which is called shapefile (.shp) and was developed

by ESRI1, a major company supplying Geographic Information System (GIS) software and

geodatabase management applications which are widely used in over 200 countries. The

shapefile is a popular format used in GIS applications due to its prominent characteristics.

These characteristics can be summarized as (ESRI, 1998):

1. It requires less storage space than image data;

2. It has considerable speed in drawing and editing shapes;

3. It stores spatial features, in the form of coordinates, and their attribute information;

4. It supports all types of geometry, i.e points, lines and polygons;

5. It is easy to read and write.

Three maps covering three countries in Africa were used for the research presented in

this Chapter, which are illustrated in Fig. 4.2; these maps are freely available from the Map

1http://www.esri.com/
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Library website2. As shown in Fig. 4.2, we used the administrative areas map of three

countries: Tunisia (27 polygons), Swaziland (53 polygons) and Burundi (132 polygons).

For the watermark embedding and extraction processes, and for measuring the computa-

tional time, MATLAB version R2013b (8.2.0.701) and license No. 484067 was used with the

personal computer of Windows 7 (32-bits) and RAM of 2GB. For more information regarding

MATLAB, see the Mathworks website3.

4.3 The Proposed Approach

The proposed approach aims to assess the influence of k-medoids in comparison with k-means

partition clustering on the trade-off between the capacity and fidelity metrics, as well as on

the computational complexity and robustness metrics. For this purpose, we use the approach

of Huo et al. (Huo et al., 2011b) and vary the two aspects highlighted in Fig. 4.3.

The GIS map watermarking approach, as illustrated in Fig. 4.3, consists of determining

the embedding positions (first four steps) and embedding the watermark into the host map

by applying odd-even indexing method (last three steps). These steps are explained in sub-

sections 4.3.1 and 4.3.2, respectively. Regarding the watermark extraction, the last part of

the watermarking process illustrated in Fig. 4.1, it is explained in sub-section 4.3.3.

4.3.1 The Watermark Embedding Positions

Embedding positions refer to a set of map locations to be modified by inserting the watermark

bits. In the work of Huo et al. (2011b), the process of selecting the embedding positions

includes the following steps: calculation of polygons’ centers, selecting random centers to be

used as initial cluster centers for k-means clustering and selecting the centers of polygons to

be used for embedding. The last step is accomplished for each cluster, by choosing the closest

point to the center of the cluster. Finally, the mean distance length is calculated, to be used

in the watermark embedding method.

The approach uses k-medoids instead of k-means and is presented in detail below.

• The calculation of polygons’ centers: Polygons’ centres are calculated in both axes

(Elhami et al., 2001), as shown in Equations (4.1) and (4.2), by summing all vertices

coordinates for each polygon and then dividing by the number of vertices minus one;

the subtraction of one is due to the last vertex coordinates being the same as for the

first vertex, according to the polygon shapefile format (ESRI, 1998).

2http://www.mapmakerdata.co.uk.s3-website-eu-west-1.amazonaws.com/library/stacks/Africa/

index.htm
3http://www.mathworks.co.uk/
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(a) Huo et.al Scheme (Huo et al.,
2011b)

(b) The Proposed Approach

Figure 4.3: The Compared Embedding Framework.

xc =

n−1∑
i=1

xi
n− 1

(4.1)

yc =

n−1∑
i=1

yi
n− 1

(4.2)

where: xc and yc are the coordinates of polygon’s center in both x and y axes respec-

tively; n is the number of all vertices within the same polygon; i is the order of the

vertex in the polygon.

• Clustering of polygons’ centers. In contrast to the scheme of Huo et al. (2011b), the

proposed approach uses a k-medoids based partition clustering method called PAM

(Partitioning Around Medoids). PAM method works firstly by arbitrarily assigning

initial representative objects, called seeds. Subsequently, it replaces the seeds by other
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Algorithm 1 k-medoids (PAM) method for partitioning based on medoid.

Input:
k: the number of clusters,
D: a data set containing n objects.
Output: A set of k clusters.
Method:

– arbitrarily choose k objects in D as the initial representative objects or seeds;

– repeat

– assign each remaining object to the cluster with the nearest representative object in
terms of Euclidean distance;

– randomly select a non-representative object, Orandom;

– compute the total cost, S, of swapping representative object, Oj , with Orandom;

– if S < 0 then swap Oj with Orandom to form the new set of k representative objects;

– until no change;

representative objects iteratively. This process continues until the resulting medoids,

i.e. clusters’ representative objects, can not be improved or changed (Han et al., 2012,

2009). Polygons’ centers are clustered into k-clusters and the resulting medoids are kept

as a secret key (key1). The k-medoids mechanism (Han et al., 2012) is summarized in

Algorithm 1. Unlike k-means, the centers of clusters are actual polygon centers, not

artificial points which did not exist in the initial data set of polygon centers (Han et al.,

2012).

The k-medoids method outperforms the k-means method by its robustness to outliers,

i.e. objects that are far from the majority of the data within the same cluster. Both k-

means and k-medoids need the number of clusters to be specified by the user (Han et al.,

2012; Kolatch, 2001), which has an advantage of controlling the number of watermark

embedding locations, which have a good influence on increasing the capacity.

Another specific advantage of applying k-medoids method in the context of watermark-

ing GIS vector data, is that clusters’ centers are actual data points from the map data

sets. In contrast, the clusters’ centers in the k-means method are artificial points, which

introduces an element of approximation that is not present in the k-medoids algorithm.

• Calculating the mean distance length. The mean-distance length is the average of
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distances from the polygon’s center to each of its surrounding vertices within the same

polygon (Huo et al., 2011b; Xun et al., 2012). The values of mean-distance lengths

are kept as another secret key (key2) and used as targeted positions for watermark

embedding. Equation (4.3) demonstrates the way of calculating the mean-distance

length of polygons that are selected by using the k-medoids partition clustering method.

Lc =
1

n− 1

n−1∑
v=1

√
(xc − xv)2 + (yc − yv)2 (4.3)

where: Lc is the mean distance length; n is the number of vertices in a polygon; v is

the vertex order; xc and yc are the center coordinates in x and y axes, respectively; xv

and yv are the vertex coordinates in x and y axes, respectively.

4.3.2 The Watermark Embedding Method

The watermark is structured on the basis of the zero watermark concept (Huo et al., 2011b).

Zero watermarking aims to utilize some key characteristics of the host map data in order to

generate a more robust watermark. In this case, the characteristic of the host map data that

is used is the mean-distance length of polygons. The watermark is constructed by adding or

subtracting a bit value of 1 from the mean-distance length of polygons.

The watermark is embedded by applying an odd-even indexing condition (Huo et al.,

2011b; Baiyan et al., 2008a), as outlined in Equation (4.4). The index of each mean-distance

value is used in this approach, instead of using an additional random sequence proposed

by (Huo et al., 2011b), to simplify the implementation and also to have more consistent

positions for embedding the watermark.

This indexing plays a vital role in combination with the clustering process by:

1. Maintaining the security of the watermark position by storing the index values as a key

instead of utilizing a random sequence that is not relevant to the used data;

2. Ensuring that all selected polygons are used as watermark carriers to attain a maximum

value of capacity;

3. The ability to increase the watermark capacity while preserving the map fidelity, whereas

the use of random sequence and indexing condition in (Huo et al., 2011b) will limit that

choice of control.

Wi =

{
T + 1, if OES(I) = odd

T − 1, if OES(I) = even
(4.4)
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where: Wi is the ith bit value of the watermark; OES stands for Odd-Even Status; I is the

order index of the mean-distance length value in the matrix; T is the value of the 4th digit

of the mean-distance length value, after the decimal point (Huo et al., 2011b).

As shown in Equation (4.4), the watermark is embedded by comparing the OES (Odd-

Even Status) of both I and T variables. The conditions are set based on two scenarios as

following:

• If the OES of I is odd, 1 will be subtracted from the value of T .

• In contrast, if the OES of I is even, 1 will be added to the value of T .

After applying the OES to change the values of the mean-distance length Lc, the new

values will be represented by L∗
c . This new mean-distance length values are stored as an

additional secret key (key3), to secure the positions in which the watermark is embedded.

Following, the change rate αc is calculated as depicted in Equation (4.5):

αc =
L∗
c

Lc
(4.5)

The change rate αc is used to change all vertices of polygons that belong to each cluster’s

center on the basis of embedding condition, as given in equations 4.6 and 4.7:

v∗x = αcvx + xc(1− αc) (4.6)

v∗y = αcvy + yc(1− αc) (4.7)

where: v∗x and v∗y are the new vertices’ coordinates after embedding the watermark according

to the aforementioned condition, in Equation (4.4).

4.3.3 The Watermark Extraction Method

The watermark extracting process is flexible and quite similar to the embedding process. It

is performed by using the keys stored during the embedding process. Firstly, we calculate

the center of each polygon, then dividing all centers into k number of clusters by using the

k-medoids partition clustering algorithm. In the next stage, the mean-distance length is

computed for the watermarked map in the same way as given in the watermark embedding

process.
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Table 4.2: The compared results of C (Capacity) and F (Fidelity) between the proposed
approach and the approach of Huo et al. (2011b).

Proportions The Proposed Approach Huo et al. (2011b)
of map size Map 1 Map 2 Map 3 Map 1 Map 2 Map 3

C F C F C F C F C F C F
25% 1318 INF 1881 INF 5451 INF 743 INF 1186 INF 2855 INF
33% 1870 INF 2478 INF 9604 INF 613 INF 1377 INF 6353 INF
50% 3315 INF 3806 INF 16417 INF 2288 INF 1912 INF 9123 INF

4.4 Experimental Results and Discussion

To assess the difference introduced by the k-medoids partition clustering method, we carried

out a set of experiments regarding fidelity, robustness and capacity, which are described in

the following sub-sections, i.e. 4.4.1, 4.4.2, 4.4.3 and 4.4.4 respectively. These experiments

are carried on the three maps that are shown in Fig. 4.2.

To enable this comparison, we simulated the scheme of Huo et al. (2011b), as given in

their paper and implemented the proposed approach as described previously. This enabled

us to compare the two schemes and assess the improvement that could be achieved regarding

map data protection.

Table 4.2 shows the experimental results of the implementation in terms of capacity and

fidelity, which will be discussed in the following subsections in more detail; the compared

results according to computation time, are given in Table 4.3, while robustness is discussed

separately. We used different proportions of map size, i.e. 25%, 33% and 50%, to verify the

consistency of results.

(a) Original Map (b) Watermarked Map using Kmeans,
50%

(c) Watermarked Map using Kme-
doids, 50%

Figure 4.4: Comparison between the original map (a) with the watermarked maps using
k-means (b) and k-medoids (c).
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Table 4.3: The compared computational time results of the proposed approach and the
scheme of Huo et al. (2011b).

Proportions of The Proposed Approach (seconds) Huo et al. (2011b) (seconds)
map size Map 1 Map 2 Map 3 Map 1 Map 2 Map 3
25% 0.055854 0.077921 0.134387 0.123270 0.183788 0.300455
33% 0.064616 0.082182 0.143285 0.129038 0.188778 0.303841
50% 0.065580 0.086568 0.143847 0.148653 0.202478 0.319511

4.4.1 The Watermark Capacity Evaluation

Capacity refers to the number of watermark bits that is embedded in the host map. In

this Chapter, the watermark capacity is expressed by the number of vertices that carry the

watermark bits. Table 4.2 compares the effectiveness of the proposed approach against the

approach of Huo et al. (2011b), in relation to the map size proportions of 25%, 33% and 50%,

respectively.

These percentages represent the amount of watermarked polygons within the original

map, and has a vital implication on adding more resilience to cropping attacks. Cropping

refers to the process of cutting some parts in the host map (Zhao et al., 2013a). It is required

that each cluster should contain more than one polygon’s center, therefore it does not make

sense to work with more than 50% of the map data. To illustrate the relation between the

map size proportions and the number of clusters, Map 1, Map 2 and Map 3 are used. Thus,

for Map 1, 25%, 33% and 50% corresponds to 7, 9 and 13 clusters, respectively, and for Map

2, 25%, 33% and 50% corresponds to 14, 18 and 27, respectively, while for Map 3, 25%, 33%

and 50% corresponds to 33, 44 and 66 clusters, respectively.

Table 4.2 shows that the proposed approach results in a higher capacity compared with

the approach of Huo et al. (2011b). Moreover, this is done without negatively affecting the

fidelity. When using a quarter of the polygons, the capacity achievement of our approach

was more than 58% higher than the compared approach, whereas using a third and half of

the polygons, the capacity was raised by more than 50%.

As shown in Table 4.2, the proposed approach outperforms the compared approach due to

the indexing mechanism of k-medoids partition clustering. This mechanism selects the centers

of polygons in relation to surrounding vertices which result in embedding the watermark in

more vertices.

4.4.2 The Map Fidelity Evaluation

The fidelity metric aims to measure the perceptual similarity between the watermarked map

data and the original map data. It reflects the degree of invisibility the embedded watermark
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could have. The phrase of degree of invisibility is used to express the fidelity; which refers

to the noticeable contrast between the original map and the watermarked map. Huo et al.

(2011b) measured this invisibility by using PSNR (Peak Signal to Noise Ratio), in decibels.

There is no specific range for PSNR values but a higher PSNR would normally indicate

that the data is of higher quality (Huynh-Thu and Ghanbari, 2008). The typical values are

considered to be between 30 and 50 dB, in the context of digital images (Hamzaoui and

Saupe, 2006).

We used the same metric and Table 4.2 shows that although both the proposed ap-

proach and the compared approach give the same fidelity results, the proposed approach (k-

medoids-based) outperforms the k-means-based approach in balancing the trade-off between

the watermarked map fidelity and the watermark capacity. This is achieved by increasing the

capacity without decreasing the fidelity of GIS map data. According to this, the fidelity value

of infinity, as shown in Table 4.2, is definitely considered as ideal outcome for the required

invisibility.

Fig. 4.4 compares the original map in Fig. 4.4(a) with the watermarked maps using the

clustering methods of k-means in Fig. 4.4(b) and k-medoids in Fig. 4.4(c), respectively. The

figure illustrates that in both approaches, the watermarked maps are not different from the

original one to the human eye.

4.4.3 The Computation Time Evaluation

Computational time refers to the time period, in seconds, for embedding the watermark bits

into the host map. Table 4.3 compares the proposed approach versus the scheme of Huo et al.

(2011b), in terms of the time required to create the watermarked map. This table shows that

our approach uses half the time in comparison to the approach of Huo et al. (2011b), making

it more computationally efficient.

4.4.4 The Watermark Robustness Evaluation

Robustness reflects the watermark’s resistance to a set of attacks or modifications. This

Chapter focuses on geometric attacks such as rotation, translation and scaling because they

are more relevant to the geometric nature of polygons in the digital maps context.

Using the mean-distance length values of the selected polygons as watermark carriers

has a good implication on the effectiveness of the proposed watermarking approach due to

the robustness of mean-distance values to both rotation and translation attacks, and having

a way of estimating the scaling factor in the case of scaling attack. These characteristics
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of using the mean-distance values make the described watermarked approach robust to the

geometric attacks (Huo et al., 2011b; Xun et al., 2012).

More specifically, attacks like rotation and translation have no effect on the embedded

watermark because they affect equally all vertices’ coordinate values, which, in turn, means

that the distances between these vertices are not affected. Consequently, since the mean-

distance length is used to construct the watermark, such attacks do not affect it.

In the case of a scaling attack, the scaling factor could be computed by dividing the mean-

distance values of the modified/attacked map by the mean-distance values of the original map.

Consequently, it is easy to retrieve the modified map to its original form before scaling was

applied.

4.4.5 The Watermark Position Security Evaluation

In the described watermarking approach, securing the positions of the embedded watermark

is achieved by the use of a set of secret keys. The first key is the values of clusters’ centers, the

second is the values of mean-distance lengths of the selected polygons by using the technique

of OES, and the third key is the indexes of the of mean-distance values. These keys are

stored for two main purposes: to be used in the extraction process, and for security purposes

because they are kept secret from the attackers.

4.5 Summary

In this Chapter we investigated the influence of the partition clustering method used in the

watermarking process on the security of the watermarked map. We worked with the scheme

proposed by Huo et al. (2011b) by replacing (a) their k-means clustering step with a k-

medoids clustering approach, and (b) changing the indexing condition. While in k-medoids

partition clustering the centers of clusters are data points from the data sets, in k-means

partition clustering, the centers of clusters are artificial points. Consequently, k-means comes

with an element of approximation that is not present in the k-medoids approach.

To evaluate the influence the partition clustering method had on the security of the

watermarked map, we looked at four aspects: capacity, fidelity, computational time and

robustness. The experimental results show that both k-medoids and k-means approaches

result in high fidelity, while the k-medoids-based approach achieves a more balanced trade-off

between capacity and fidelity, as well as better computational efficiency due to the k-medoids

characteristics. In terms of robustness, the results are similar, although an argument could
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be put forward that this is improved indirectly in the k-medoids approach because of the

higher capacity.

For measuring fidelity, PSNR was used to be consistent with the approach of Huo et al.

(2011b). This metric is used widely in image watermarking and has also been utilized for

vector map data (Huang et al., 2010; Niu et al., 2006; Cox et al., 2007). The map is converted

to an image format to meet the applicability of PSNR. In Chapter 7, we propose a different

metric that would be more suitable for this type of data.
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Chapter 5

The Watermark Robustness

Improvement

Research in the area of Geographic Information Systems (GIS) has been growing in recent

years, and digital GIS data is now widely available on numerous Internet websites. Conse-

quently, this valuable GIS data is liable to be illegally copied, modified or distributed due

to its digital nature. This stands for a compelling need of copyright protection to combat

illegal use of GIS data. A popular solution for the protection of GIS data is using digital

watermarking systems that enable the identification of unauthorized use of GIS data.

GIS data can be divided into two main models1: raster data model and vector data model.

The raster model stores the geographic information into a form of grid cells, and each cell

represents the natural corresponding value on the ground. On the other hand, the vector

data model stores the geographic information into geometrical entities which have properties

such as length, a starting point and an ending point (Kennedy, 2013). GIS vector data

is defined by a sequence of coordinates, and includes shapes such as points, polylines and

polygons (Abbas and Jawad, 2013a). This chapter focuses on the vector format of GIS data.

Data mining in general and clustering in particular, have been recently used for analysing

GIS data for a variety of applications such as government and public services; business and

service planning; logistics and transportation; and environmental studies (Choi et al., 2014;

Croitoru et al., 2013; Miller and Han, 2009). There are, however, only a limited number of

approaches using clustering methods in the watermarking field (Abubahia and Cocea, 2014).

In addition, although many watermarking methods have been proposed for digital mul-

timedia data (e.g. images, audio, texts and videos) copyright protection, e.g. (Mohammed

et al., 2014; Peng et al., 2014a; Urvoy et al., 2014), digital vector data received less attention,

1http://www.ordnancesurvey.co.uk/support/understanding-gis/raster-vector.html
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as pointed out in several recent review papers (Abbas and Jawad, 2013a; Bhanuchandar et al.,

2013; Wu et al., 2013b).

The previous work in chapter 4 is based on the use of k-medoids clustering for watermark-

ing ESRI (Environmental Systems Research Institute) shapefiles of polygon type (Abubahia

and Cocea, 2014); which is discussed in more detail in Section 5.1.

This chapter proposes an improvement to the previous chapter, by using the bounding

box property of vector map data, to achieve: (a) robustness to simplification (i.e. deletion

of some vertices) (Jianguo et al., 2013b) and interpolation (i.e. adding new vertices) (Wang

and Men, 2013) attacks, and (b) preservation of the balance between the map fidelity (the

imperceptibility of the inserted watermark) and capacity (distribution of the watermark bits

within the data) for GIS vector map copyright protection. These terms are discussed in more

detail in Section 5.1.

The rest of this chapter is organized as in the following. In Section 5.1, the GIS map

watermarking process is briefly explained and a detailed overview of relevant previous work

is presented. Section 5.2 describes the GIS vector data format and the platform used for the

experimental evaluation of the proposed approach. Section 5.3 presents in detail the proposed

approach, while Section 5.4 discusses the experimental results. Section 5.5 concludes this

chapter.

5.1 Research Background

A digital GIS watermarking system consists of three main stages: embedding, attack/modification

and extraction (Fig. 5.1). The embedding stage aims to insert a watermark (e.g. digital bi-

nary sequence) into the GIS vector map points, by using a specific computing approach; the

embedding space is normally the Cartesian coordinates (Jianguo et al., 2013b; Niu et al.,

2006). The attack or modification stage is the process of distorting the digital map content.

The extraction stage refers to obtaining the watermark from the host GIS data in order to

retrieve the original map. There are three key requirements for reliable GIS watermarking

system: fidelity, capacity and robustness (Abbas and Jawad, 2013a; Bhanuchandar et al.,

2013).

The fidelity requirement refers to the quality of the watermarked GIS data, in the sense

that the watermark embedding process should not affect the quality of the host data and that

the watermark should not be noticeable to the human eye (Nin and Ricciardi, 2013). The

fidelity also indicates the similarity between the original data and the watermarked data.

In the case of GIS raster data (image), which offers an extended range (color-scale) for a

pixel, this can be solved easily by maintaining the pixel value within a specific range. In

76



Chapter 5. The Watermark Robustness Improvement

Figure 5.1: Digital GIS Map Watermarking System

contrast, the fidelity requirement stands as a crucial issue in GIS vector data context due

to their Cartesian coordinates values sensitivity, which if changed will affect the map shape,

and, consequently, will have a negative impact on the usability of GIS map.

The capacity requirement refers to the number of watermark bits that can be embedded in

the host map data. The more watermark bits are embedded, the more secure the watermark

becomes. Moreover, it is important not only to have high capacity, but also to have the

watermark distributed across the entire map (Chapter 4), (Abubahia and Cocea, 2014). This

could also leads to a loss of fidelity: the more watermark bits are embedded, the more the

host vector map is changed, thus, leading to a loss of map quality. Consequently, the fidelity

and capacity requirements need to be balanced to achieve both map quality and watermark

quality, in order to ensure the effectiveness of the watermarking method. We refer to this

relation between fidelity and capacity as a trade-off, given that an increase in one leads to a

decrease in the other, and vice versa.

The robustness requirement refers to the ability of the watermarked data to withstand

malicious modifications to the host GIS map, called attacks. There are many types of at-

tacks (Sangita and Venkatachalam, 2012a), of which geometric modifications are particularly

important for GIS vector data; such modification processes are rotation, translation and scal-

ing. Rotation means turning the vector map around its center by a specific angle (Lee and

Kwon, 2013). Translation means moving the whole map by a specific distance towards a

specific direction (Xun et al., 2012). Scaling refers to altering the size of the map, in both

axes by a specific value (Lee and Kwon, 2013). Other relevant types of attacks are interpola-

tion (Wang and Men, 2013) and simplification (Jianguo et al., 2013b) attacks. Simplification

attacks refer to the process of removing vertices from the map (Jianguo et al., 2013b), while
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Figure 5.2: The GIS maps used in the experiments.

interpolation attacks refer to the process of adding new vertices in the map (Wang and Men,

2013).

This chapter built on the previous work in chapter 4 to address the vulnerability to

simplification and interpolation attacks and to show that the proposed approach is feasible

for larger maps. Thus, we argue that using a particular property of vector data called a

bounding box in combination with the proposed k-medoids approach in chapter 4, addresses

the vulnerability to the two mentioned attacks, while also preserving a good trade-off between

fidelity and capacity.

5.2 GIS Vector Data

This section describes the GIS vector data that has been used for testing the proposed

approach. As shown in Fig. (5.2a), (5.2b) and (5.2c), the used GIS maps are polygon-based

maps that represent administrative boundaries of 3 countries in Africa: Benin, Angola and

Burkina Faso. These GIS vector maps are freely available, in ESRI shapefile format, from

the Natural Earth website.2

ESRI Shapefiles (.shp) are produced by ESRI 3, and considered as a popular format for

geographic information system applications (Longley et al., 2011). It has several prominent

features: small storage space, easy reading and writing, fast shape editing, storing both spatial

and attribute information, and supporting point, polyline and polygon geometry types (ESRI,

1998).

Despite the use of ESRI shapefiles in GIS vector data watermarking research (Li et al.,

2012b; Huo et al., 2011b), the advantage of the shape bounding box feature in the shapefile

2http://www.mapmakerdata.co.uk.s3-website-eu-west-1.amazonaws.com/library/stacks/Africa/

index.htm
3http://www.esri.com/
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Figure 5.3: The Header of Polygon-based Shapefile (ESRI, 1998)

header has not yet been exploited in this context. As shown in Fig. 5.3, the bounding box

properties we are interested in are the minimum and maximum coordinates’ values in both

horizontal and vertical axes.

For the watermark embedding and extraction processes, we implemented the proposed ap-

proach in MATLAB version R2013b (8.2.0.701). For more information regarding MATLAB,

see the Mathworks website4.

The following section presents our approach based on k-medoids clustering and using the

bounding box information in the ESRI shapefile. This chapter compare the results of this

approach with the previous chapter, which used k-medoids clustering with mean polygon

centers, to establish the role of the bounding box property in addressing the vulnerability to

simplification and interpolation attacks, and to investigate if the trade-off between fidelity

and capacity is preserved.

5.3 The Proposed GIS-Map Copyright Protection Approach

This section presents the proposed approach following the three stages outlined earlier in

Fig. 5.1: embedding (Section 5.3.1), attack (Section 5.3.2) and extraction (Section 5.3.3).

5.3.1 Embedding Stage

The embedding approach, as illustrated in Fig. 5.4, consists of several steps. First, the

locations for inserting the watermark are identified by computing the polygon’s centers using

the bounding box information for each polygon, and then applying k-medoids to cluster the

4http://www.mathworks.co.uk/
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Original GIS Map -
ESRI Shapefile (.shp)

Calculating polygons bounding centres

Selecting random centres based
on the total number of poly-

gons: 25%, 33% and 50%

Selecting centres-based
K-medoids clustering

Calculating mean distance length

Watermark insertion based
only on odd–even status

Watermarked GIS Map
- ESRI Shapefile (.shp)

Figure 5.4: The Proposed Embedding-based Cluster Analysis Framework.

computed centers. The number of clusters establishes in how many polygons the watermark

will be inserted. We experimented with three different proportions of numbers of polygons

in the vector map, i.e. 25%, 33% and 50%. After identifying the locations for watermark

insertion, the mean distance length is calculated for the selected polygons and the watermark

is inserted into the means distance length by utilizing an odd-even indexing rule.

Embedding Location Identification The approaches given by the previous chapter

and Huo et al. (2011b) calculate polygons’ centers by summing up all vertices coordinates,

in both axes, for each polygon and dividing the sum by the number of vertices minus one;

the minus one is due to the the last vertex coordinates being the same as for the first vertex,

according to the polygon shapefile format (ESRI, 1998).

In this approach we exploit polygons’ bounding boxes property for calculating polygons’

centers. Bounding boxes refer to the stored values that represent the extent of the geometry

shape in the shape file (ESRI, 1998). Polygons’ bounding box centers are calculated in both

axes, as shown in Equation(5.1) and Equation(5.2), respectively.
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xc =
xmin + xmax

2
(5.1)

yc =
ymin + ymax

2
(5.2)

where: xc and yc are the coordinates of polygon’s center in both x and y axes respectively;

xmin is the minimum vertex coordinate in x-axis; xmax is the maximum vertex coordinate

in x-axis; ymin is the minimum vertex coordinate in y-axis; ymax is the maximum vertex

coordinate in y-axis. xmin, xmax, ymin and ymax are each of 8-byte length (ESRI, 1998).

Algorithm 2 k-medoids method for GIS vector data clustering

Input:
k: the number of clusters,
Dn

c : a data set containing number of polygons’ centers.
Output: k clusters.
Method:

• select k polygons’ centers in Dn
c as the initial representative polygons’ centers; arbi-

trarily

• repeat

• each remaining polygon’s center is assigned to the cluster with the nearest represen-
tative polygon’s center, measured by Euclidean distance;

• choose, randomly, a non-representative polygon’s center, Crandom
p ;

• calculate the total cost, T , of swapped representative polygon’s center, Cj
p, with

Crandom
p ;

• if T < 0 then swap Cj
p with Crandom

p to form the new set of k representative polygons’
centers;

• continue until no change;

The key characteristics of the k-medoids partitioning clustering method are robustness to

outliers and the fact that the medoids (representative objects) of clusters are represented by

actual points in the dataset (Han et al., 2012, 2009), unlike other methods, such as k-means,

where the representative objects of clusters are artificial points which are not present in the

dateset (Huo et al., 2011b). Therefore, the k-medoids approach can efficiently manage most

forms of GIS Vector data.

We use a k-medoids based clustering method called PAM (Partitioning Around Medoids),
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Figure 5.5: Distances from bounding box center to the vertices of polygon

as shown in Algorithm 2, to cluster the bounding box centers in order to determine the

best positions for embedding the watermark. The PAM method assigns seeds, i.e initial

representative objects, for the given polygons’ centers. These seeds are replaced by other

representative objects, called medoids, through a number of iterations until the resulting

medoids can not be improved or changed. Polygons’ centers are clustered into k-clusters and

the resulting medoids are kept as a secret key (key1). The polygons corresponding to the

medoids resulted from clustering are then used for watermark insertion.

Watermark Insertion The concept of zero watermarking (Wang et al., 2012b) is utilized

in the proposed watermark embedding process. Zero watermarking aims to exploit some of

the host GIS data characteristics in order to generate a more robust watermark. In this case,

the topological characteristic of the host GIS data that is used, is the mean-distance length

of polygons. This is calculated for the polygons identified through the clustering process.

The watermark is constructed by adding or subtracting a bit value of 1 from the mean-

distance length of polygons. The mean-distance length of each polygon is defined by the aver-

age value of distance lengths from that polygon’s vertices to its center (Huo et al., 2011b; Xun

et al., 2012), where the center is calculated as described in Equation(5.1) and Equation(5.2).

This is illustrated in Fig. 5.5, while Equation(5.3) demonstrates the way of calculating the

mean-distance length of selected polygons.

Lc =
1

n− 1

n−1∑
v=1

√
(xc − xv)2 + (yc − yv)2 (5.3)

where: Lc is the mean distance length; n is the number of vertices in a polygon; xc and yc

are the center coordinates in x and y axes, respectively; xv and yv are the vertex coordinates

in x and y axes, respectively.

The values of mean-distance lengths are stored as a secret key (key2) and they represent

the selective positions for embedding the watermark. These are based on the polygons whose
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bounding box centers were selected as final medoids by the k-medoids clustering method.

The watermark is embedded by applying odd-even indexing (Huo et al., 2011b; Baiyan et al.,

2008a), as outlined in Equation (5.4).

Wi =

T − 1, if OES(I) = odd

T + 1, if OES(I) = even
(5.4)

where: Wi is the ith bit value of the watermark; OES stands for Odd-Even Status; I is the

order index of the mean-distance length value in the matrix; T is the value of the 4th digit

of the mean-distance length value, after the decimal point (Huo et al., 2011b).

The index of each mean-distance value is used in this approach, instead of using an

additional random sequence proposed by Huo et al. (2011b), to get more consistent positions

for embedding the watermark. This consistency sums up both: (a) the indexing as a vital

role in the clustering process, and (b) maintaining the security of the watermark position by

storing the index values as a key instead of utilizing a random sequence that is not relevant

to the used data. This also offers the ability to control the watermark capacity in order to

preserve the map fidelity, whereas the use of a random sequence (Huo et al., 2011b) will limit

that choice of control.

As shown in Equation (5.4), the watermark is embedded by comparing the OES (Odd-

Even Status) of the I and T variables. The conditions are set based on two scenarios as in

the following:

• If the OES of I is odd, 1 will be subtracted from the value of T

• In contrast, if the OES of I is even, 1 will be added to the value of T .

After applying the OES to change the values of Lc, the new values of mean-distance

length will be represented by L∗
c . The indexes of new mean-distance length values are stored

as another secret key (key3), to secure the positions in which the watermark is embedded.

The change rate αc is calculated as depicted in Equation (5.5):

αc =
L∗
c

Lc
(5.5)

The change rate αc is used to change all vertices of polygons identified through clustering

on the basis of the embedding condition, as given in equations 5.6 and 5.7:

v∗x = αcvx + xc(1− αc) (5.6)

v∗y = αcvy + yc(1− αc) (5.7)
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where: v∗x and v∗y are the new vertices’ coordinates after embedding the watermark according

to the aforementioned condition in Equation (5.4).

5.3.2 Attack Stage

Robustness reflects the watermark’s resistance to a set of attacks or modifications. This

chapter addresses geometric attacks such as rotation, translation and scaling due to their

relevance to the geometrical properties of polygons in the GIS vector maps context. Also other

relevant attacks such as simplification, interpolation and tracing the positions of watermark

bits are taken into account.

1. Rotation Attack: rotation means turning the vector map around its center by a specific

angle (Lee and Kwon, 2013). Rotation is of crucial importance because it changes

spatial locations of the vector map points. In the proposed approach, this problem

is tackled by using the mean distance length which is known for its resilience to the

rotation process (Abubahia and Cocea, 2014; Huo et al., 2011b).

2. Translation Attack: translation means moving the whole map by a specific distance to-

wards a specific direction (Xun et al., 2012). Translation also has the property of chang-

ing the positions of vector map points, but has no effect on the mean distance length

because the distances between the vector map points will remain unchanged (Abubahia

and Cocea, 2014; Huo et al., 2011b).

3. Scaling Attack: the scaling attack refers to altering the size of the map, in both axes

by a specific value (Lee and Kwon, 2013). Although the scaling attack could change

the distances between the vector map points, the scaling factor could be computed by

dividing the mean-distance values of the scaled map by the mean-distance values of the

original map (Abubahia and Cocea, 2014; Huo et al., 2011b). Consequently, the scaled

map can be easily retrieved to its original form after it undergoes the scaling attack.

4. Simplification Attack: the simplification attack refers to the process of removing ver-

tices from the map (Jianguo et al., 2013b). If the polygons’ centers are calculated

as the average of the vertices, removing some vertices, will change that average. The

bounding box centers, however, are not affected by the number of vertices in a polygon;

consequently, the proposed approach has more robustness to the simplification attack.

5. Interpolation Attack: the interpolation attack refers to the process of adding new ver-

tices to map’s borders (Wang and Men, 2013). Similary to the simplification attack,

when the centers of polygons are calculated by averaging the vertices, adding more
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vertices will change that average. As the bounding box is independent of the number

of vertices in a polygon, out approach will lead to more robustness to interpolation

attacks.

6. Tracing watermark bits positions: the positions of the embedded watermark are secured

by using a set of three different keys, which are kept secret from the attackers, and

stored for the use in the extraction stage. These keys are: (a) the values of computed

clusters’ centers, (b) the values of mean-distance lengths and (c) the indexes of the new

mean-distance values.

5.3.3 Extraction Stage

In the literature, the extraction stage is classified into three categories: blind, semi-blind and

non-blind approaches (Abbas and Jawad, 2013a). In the blind approach the original map is

not needed in the watermark extraction stage. Semi-blind extraction refers to the case in

which the original watermark is used instead of the original map in the watermark extrac-

tion stage. Non-blind extraction means that the original map is needed in the watermark

extraction stage.

The proposed approach is blind extraction and characterized by flexibility, which means

that both the watermark embedding and the watermark extraction processes are quite similar.

The keys stored in the embedding process are used in the process of extraction. Firstly, the

bounding box center of each polygon is recalculated, and then the polygons’ centers are

divided into k-clusters by using the k-medoids method, in order to compare with the stored

key1 (Section 5.3.1). The assumption here is that the attacker will not change the bounding

box information, which identifies the boundaries of the whole map, as well as each polygon

in the map, because such a change will destroy the map’s quality and usability. In the next

step, the mean-distance length for the watermarked map is calculated in the same way as in

the embedding process. By comparing the computed mean-distance to the stored key2 and

key3 (Section 5.3.1), it becomes easy to extract the watermark bits (1 or -1), and restore

the original map even when the watermarked GIS vector map has undergone the attacks

mentioned in Section 5.3.2.

5.4 Experimental Results and Discussion

A set of experiments was implemented to assess the balance between fidelity and capacity

achieved by the proposed approach. These experiments are carried out on GIS vector maps
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Table 5.1: The results of bounding box approach versus mean polygon centers using k-medoids

k-medoids with
bounding box centers

k-medoids with mean
polygon centers (in

Chapter 4)

Map (proportion Capacity Fidelity Capacity Fidelity
of data used) (No. of vertices) (PSNR) (No. of vertices) (PSNR)

Benin Map (25%) 1428 42.3485 1321 41.1902

Benin Map (33%) 2187 41.9815 1730 40.8308

Benin Map (50%) 3226 39.2617 2661 38.6129

Angola Map (25%) 4334 46.5627 4118 44.6826

Angola Map (33%) 6379 44.2873 5823 43.3034

Angola Map (50%) 10062 43.6553 9936 41.9183

Burkina Faso Map (25%) 15630 41.1364 15350 40.6581

Burkina Faso Map (33%) 21572 41.6359 19044 40.5387

Burkina Faso Map (50%) 31680 36.8983 31277 36.4201

of 222, 501 and 1046 polygons, as shown in Fig. (5.2a), (5.2b) and (5.2c). The capacity and

fidelity results are displayed in Table 5.1.

The fidelity metric aims to measure the imperceptibility of the watermark and reflects its

degree of invisibility. This metric is significant because it has two crucial effects in the context

of GIS vector data: one on the map shape, and another, consequently, on the usability of

the GIS vector map. Fidelity is measured by using PSNR (Peak Signal to Noise Ratio),

in decibels (Huo et al., 2011b); there is no specific range for PSNR values but a higher

PSNR would normally indicate that the data is of higher quality (Huynh-Thu and Ghanbari,

2008). Typical values are considered to be between 30 and 50 dB, in the context of digital

images (Hamzaoui and Saupe, 2006). In order to use this metric, we stored the watermarked

GIS vector maps in JPEG image format (jpg) for the measurement purpose.

Capacity refers to the number of vertices that carry the watermark bits. The importance

of the watermark capacity is specified by its vital implication on increasing the watermark

robustness to cropping attacks. Cropping is the process of cutting some parts of the water-

marked GIS vector map (Zhao et al., 2013a). Consequently, it is important not only to have

high capacity, but also to have the watermark distributed across the entire map (Abubahia

and Cocea, 2014), to avoid having areas of the map with no watermark, which can be then

cut off and used without being able to identify ownership. In our approach, the distribution

across the map is achieved through the clustering process.

Table 5.1 compares the results of the proposed approach described in this chapter, using

the bounding box centers, with the results of the previous work in chapter 4, using polygons’
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mean centers, to investigate how the performance of the two approaches compare in terms of

the trade-off between fidelity and capacity.

There are two considerable differences between the proposed approach and the previous

one in chapter 4. The first difference is in the way of calculating the polygons’ centers,

i.e. using the bounding box as explained in Section 5.3.1 versus using the mean of vertices

coordinates in the previous approach in chapter 4. Consequently, the given results can be

attributed to the use of the bounding box properties. The second difference is the use of

GIS vector maps that contain large numbers of polygons in contrary to chapter 4, which was

tested only on small number of polygons (27, 53 and 132 polygons). This should indicate if

the approach is suitable for maps with large number of polygons.

As shown in Table 5.1, the trade-off between fidelity and capacity is balanced by increasing

the watermark capacity (number of vertices) while keeping higher watermark invisibility

(PSNR). Three different proportions of map size, i.e. 25%, 33% and 50%, were used to

observe the effect of increased capacity and its effect on fidelity. These proportions represent

approximately a quarter, a third and (exactly) half of the number of polygons in the used

maps.

The relation between the map size proportions and the number of clusters is illustrated

in the following for each of the three maps used in the experiments. Thus, for the map of

Benin, 25%, 33% and 50% corresponds to 56, 74 and 111 clusters, respectively; for the map

of Angola, 25%, 33% and 50% corresponds to 126, 167 and 251 clusters, respectively; and

for the map of South Africa, 25%, 33% and 50% corresponds to 262, 349 and 523 clusters,

respectively. This shows that the proposed approach is valid for GIS maps that contain large

numbers of polygons.

When looking at the results for the 25% sizes of the three maps in Table 5.1, we notice

that the capacity values for the approach proposed in this chapter (bounding box-based k-

medoids), i.e. 1428, 4334 and 15630, are higher than those from the previous approach in

chapter 4, i.e. 1321, 4118 and 15350. At the same time, it is noticeable that the fidelity

values are also higher than the approach of in chapter 4, despite the increase in capacity.

The same can be observed for the 33% and 50% sizes on all three maps.

As pointed out in the previous section, one key characteristic of using the bounding box

centers is that it does not depend on the number of vertices in a polygon, which has an

advantages of more robustness to the interpolation and simplification attacks. Therefore, the

approach proposed in this chapter improves the previous approach in chapter 4 by achieving

robustness to simplification and interpolation attacks, while also increasing the fidelity and

capacity metrics, and, at the same time, preserving the balance between the two metrics.
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5.5 Summary

The influence of using the bounding box properties for protecting the copyright of GIS vector

data was investigated in this chapter. We introduced the use of bounding box centers in the

context of watermarking research, and compared the approach in this chapter with previous

work in chapter 4.

To assess the effectiveness of the proposed approach, we looked at two important aspects:

fidelity and capacity. The experimental results show that the use of the bounding box centers

has a significant implication on the trade-off between the fidelity and the capacity metrics,

and resulted in higher fidelity as capacity increased.

In addition to the improvement of the trade-off between fidelity and capacity, the use of

bounding box centers adds more robustness to the simplification and interpolation attacks

due to their independence from the number of vertices in a polygon. By using vector maps

with large numbers of polygons, the approach has been shown to be feasible for large maps.

For measuring fidelity, PSNR was used to be consistent with the previous work in this

area, including the previous work in chapter 4, which is an improved work of the approach

by Huo et al. (2011b). This metric, however, is used in image watermarking and is not

necessarily the best metric for GIS vector data (Niu et al., 2006), as it does not exploit the

properties of vector data. As there is no current alternative for measuring fidelity, in future

work, we will investigate different metrics that would be more suitable for vector map data.
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Clustering Approaches Comparison

Advancements in Geographical Information Systems (GIS) technology, including capabilities

of mapping, monitoring, modeling, management and measurement (Burrough et al., 2015;

Longley et al., 2011), led to an increased employment of GIS maps in many applications

such as government and public services (Kingston, 2007), business and service planning (An-

gelaccio et al., 2012), logistics and transportation (Camelli et al., 2012), and environmental

studies (Busch, 2012).

The production of a GIS map involves a time-consuming process of analysis and the use of

well-trained specialists, accurate hardware and licensed software tools. Therefore, given the

high cost of producing GIS maps, the producers of these maps are interested in preserving

their copyright.

Moreover, these maps are liable to be illegally copied, modified or distributed due to their

digital nature. Consequently, there is a compelling need for copyright protection to combat

illegal use of GIS maps (Ciptasari and Sakurai, 2013; Wang et al., 2007).

GIS data can be represented in the form of two main models (Bonham-Carter, 2014):

raster and vector data. The raster model (image) stores the geographic information into a

form of grid cells, where each cell represents the natural corresponding value on the ground

(e.g. color scale). The vector data model stores the geographic information into geometrical

entities which have properties such as length, a starting point and an ending point (Kennedy,

2013). GIS vector data is defined by a sequence of coordinates, and includes shapes such as

points, polylines and polygons (Abbas and Jawad, 2013a). In this Chapter the focus is on

the vector format of GIS data.

In response to the copyright protection issue, many digital watermarking methods have

been proposed in literature, e.g. (Abubahia and Cocea, 2015a; Peng et al., 2014a; Urvoy et al.,

2014). Nevertheless, GIS data received less attention than images, audio, texts and videos
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in the field of watermarking research, as pointed out in several recent review papers (Abbas

and Jawad, 2013a; Bhanuchandar et al., 2013; Wu et al., 2013b).

In addition, although the use of partition clustering methods for GIS map applications

has seen an increase in recent years (e.g. (Choi et al., 2014; Croitoru et al., 2013; Han et al.,

2009)), little research in GIS map watermarking takes advantage of data mining methods in

general, and clustering in particular. Two partitioning clustering methods have been used in

this area: k-means (Huo et al., 2011b) and k-medoids (Abubahia and Cocea, 2014, 2015a).

In the context of GIS map watermarking, partition clustering methods use the distance

between map vertices to divide the map vertices into a set of clusters with the purpose of

identifying locations for embedding the watermark, and provides the advantage of ensuring

the distribution of the watermark across the entire map.

In previous work (Abubahia and Cocea, 2015a) we showed that the use of a particular

property of vector maps, called a bounding box, leads to an increased resistance of the

watermarked map to malicious modification called attacks, and in particular, to interpolation

(i.e. adding vertices to the map) (Huo et al., 2011b) and simplification (i.e. deleting vertices

from the map) (Jianguo et al., 2013b) attacks. Moreover, we argued that the proposed

approach maintains a good trade-off between capacity (the number of inserted watermark

bits) and fidelity (the quality of the map after watermark insertion). This trade-off is very

important for vector map data, as its value stems from its accurate locations properties;

therefore, it is important that the watermark does not affect the precision of the locations

(i.e. it has good fidelity), while at the same time it provides enough watermark bits to ensure

the map’s copyright protection (i.e. it has good capacity).

In this Chapter we argue that using the bounding box property of vector maps maintains

the resistance to interpolation and simplification attacks even when a different clustering

approach is used for identifying locations for embedding the watermark. To assess this claim,

we compare the original k-means approach of Huo et al. (Huo et al., 2011b) with a modified

k-means approach using the bounding box property.

The two approaches are also compared in terms of the trade-off between fidelity and ca-

pacity, to assess the influence of using the bounding box property on this trade-off. Moreover,

we argue that the advantages of using the bounding box property would hold regardless of

the methods used for identifying the watermark embedding locations in the map.

The rest of this Chapter is organized as described in the following. In Section 6.1, GIS

watermarking research terminology and requirements are briefly explained, while Section 6.2

gives a detailed overview of relevant previous work. Section 6.3 presents the k-means approach

with the use of the bounding box property and Section 6.4 presents the comparison results of

the two clustering approaches, i.e. the modified k-means approach using the bounding box
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Figure 6.1: Digital GIS Map Watermarking System

property and the k-means approach of Huo et al. (Huo et al., 2011b). Section 6.5 concludes

this Chapter.

6.1 Research Background

A GIS map watermarking system includes two main stages: embedding and extraction

(Fig. 6.1). The embedding stage aims to insert a watermark (e.g. digital binary sequence)

into the GIS vector map points, by using a specific computing approach; the embedding space

is often the Cartesian coordinates (Jianguo et al., 2013b), (Niu et al., 2006). The extraction

stage refers to obtaining the watermark from the host GIS data in order to retrieve the orig-

inal map. There are three key requirements for a reliable GIS watermarking system: fidelity,

capacity and robustness (Abbas and Jawad, 2013a), (Bhanuchandar et al., 2013).

The fidelity requirement refers to the similarity degree between the watermarked map

and the original map in the sense that the watermark insertion process should not noticeably

affect the shape and quality of the host map Nin and Ricciardi (2013).

The capacity requirement refers to the amount of inserted watermark bits into the host

GIS map. In addition, the watermark bits should be well-distributed over the whole digi-

tal map for securing the watermark. The more watermark bits are inserted, the more the

host map is changed, which may lead to a decrease in fidelity (Abubahia and Cocea, 2014).

Therefore, fidelity and capacity need to be balanced to achieve good security with minimal

loss of quality.

The robustness requirement refers to the resilience of the watermark against a potential

set of modifications, referred to as attacks, to the host GIS map. Resistance to these attacks is

important because they could seriously change the map shape in terms of vertices’ coordinates

values, and, as a consequence, making the process of watermark extraction more difficult; this,
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in turn, would jeopardise the identification of the rightful owner of the data. There are several

attacks that are relevant for vector map data:

1. rotation attacks, which mean using a specific angle to turn the GIS map around its

center (Lee and Kwon, 2013);

2. translation attacks, which involve moving the whole map by a specific distance towards

a specific direction (Xun et al., 2012);

3. scaling attacks, which refer to the use of a specific value, in both axes, to alter the size

of the GIS map (Lee and Kwon, 2013);

4. simplification attacks, which involve the removal of some vertices from the GIS vector

map (Jianguo et al., 2013b);

5. interpolation attacks, which consist of adding new vertices into the GIS vector map (Wang

and Men, 2013).

Despite the use of ESRI shapefiles in GIS vector data watermarking research, e.g. (Abubahia

and Cocea, 2014; Huo et al., 2011b; Wang et al., 2014), the advantage of the shape bounding

box feature in the shapefile header has not been exploited in the watermarking context apart

from the previous approach in Chapter 5. As shown in Fig. 6.2, the bounding box properties

we are interested in are the minimum and maximum coordinates’ values in both horizontal

and vertical axes.

6.2 Related Work

There are few published approaches that used partition clustering methods for protecting the

copyright of GIS vector maps. In this section, these approaches are reviewed in relation to the

trade-off between fidelity and capacity, and in relation to their vulnerability to interpolation

and simplification attacks.

Huo et al. (Huo et al., 2011b) presented an approach that used k-means partition cluster-

ing for inserting a watermark into a GIS vector map composed of a small number of polygons,

based on ESRI shapefile format, according to the polygons’ mean centers (i.e. the mean of

vertices’ coordinates values in the polygon). Although their fidelity achievement is consid-

erably high, the capacity of the watermark was relatively low for the size of the GIS map

they used. Therefore, this approach, does not achieve a good trade-off between fidelity and

capacity; in addition, this approach is vulnerable to simplification and interpolation attacks.
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Position Field Value Type

Byte 0 File Code 9994 Integer

Byte 4 Unused 0 Integer

Byte 8 Unused 0 Integer

Byte 12 Unused 0 Integer

Byte 16 Unused 0 Integer

Byte 20 Unused 0 Integer

Byte 24 File Length File Length Integer

Byte 28 Version 1000 Integer

Byte 32 Shape Type Shape Type Integer

Byte 36 Bounding Box Xmin Double

Byte 44 Bounding Box Ymin Double

Byte 52 Bounding Box Xmax Double

Byte 60 Bounding Box Ymax Double

Byte 68 Bounding Box Zmin Double

Byte 76 Bounding Box Zmax Double

Byte 84 Bounding Box Mmin Double

Byte 92 Bounding Box Mmax Double

Figure 6.2: The Header of Polygon-based Shapefile, (ESRI, 1998)
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To improve the approach of Huo et al. (Huo et al., 2011b), we presented an approach

in Chapter 4 that used k-medoids-based partition clustering for inserting watermark bits

into a set of GIS vector maps composed of a small number of polygons, and we used mean

polygons’ centers for identifying the optimum position to insert watermark bits into the GIS

maps. Although this approach improved the trade-off between fidelity and capacity, it did

not address the vulnerability to simplification and interpolation attacks. Moreover, both

approaches did not consider the case of larger maps.

To improve the robustness of the previous approach in Chapter 4, we extended it in

Chapter 5 by using k-medoids-based clustering and polygon bounding box information in

ESRI shapefiles, for inserting watermark bits into a set of GIS vector maps composed of

larger numbers of polygons. In this approach, the polygons bounding boxes centers are used

to identify the optimum locations in the GIS map for inserting the watermark bits. This

approach achieved: (1) robustness to both simplification and interpolation attacks, (2) a

considerable increase in the trade-off between fidelity and capacity and (3) reliability of the

approach for GIS vector maps composed of larger number of polygons.

Regardless of the partition method used, It is argued in this Chapter that the use of

bounding box property of GIS vector map for locating the watermark bits into polygons’

vertices has a significant implication on protecting the GIS vector map copyright, especially

in terms of addressing the vulnerability to simplification and interpolation attacks, while

preserving a good trade-off between fidelity and capacity. To asses this, we compare a k-

means clustering approach based on the bounding box centers of polygons with the k-means

approach of Huo et al. (Huo et al., 2011b).

6.3 K-means Clustering with Bounding Boxes Approach

This section presents the proposed approach based on k-means partition clustering using the

bounding box information in the ESRI shapefile. We compare the results of this approach

with the work of Huo et al. (Huo et al., 2011b), which used the mean centers of polygons. The

purpose is to establish the role of the bounding box property in addressing the vulnerability

to simplification and interpolation attacks, and to investigate if the trade-off between fidelity

and capacity is preserved.

6.3.1 Embedding Locations Identification

The embedding stage involves the identification of locations for embedding the watermark

and the insertion of the watermark bits in the identified locations.
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The location identification involves three consecutive steps: computing the bounding box

centers for each polygon, applying k-means clustering to the polygons’ computed centers, and

calculating mean distance values (the locations for inserting the watermark bits). Each of

these steps is described in the following.

Step 1 : Computing Bounding Box Centers

Each polygon in the GIS vector map has a defined bounding box, which identifies the bound-

aries of each polygon in the map; the coordinates for the bounding box are available in

the shapefile (ESRI, 1998), as illustrated in Fig. 6.2. Polygons’ bounding box centers are

calculated in both axes, as shown in Equation (6.1) and Equation (6.2), respectively.

xc =
xmin + xmax

2
(6.1)

yc =
ymin + ymax

2
(6.2)

where: xc and yc are the coordinates of polygon’s center in both x and y axes respectively;

xmin is the minimum vertex coordinate in x-axis; xmax is the maximum vertex coordinate

in x-axis; ymin is the minimum vertex coordinate in y-axis; ymax is the maximum vertex

coordinate in y-axis. xmin, xmax, ymin and ymax are each of 8-byte length (ESRI, 1998).

Unlike the approach to calculating the polygons’ centers, based on bounding boxes as

explained above, Huo et al. (Huo et al., 2011b) calculate polygons’ centers by summing up

all vertices coordinates for each polygon and dividing the sum by the number of vertices

minus one; the minus one is due to the last vertex coordinates being the same as for the first

vertex, according to the polygon shapefile format (ESRI, 1998). These polygons’ average

centers are quite sensitive to the total number of vertices in a polygon; consequently, adding

(interpolation) or removing (simplification) some vertices, will change the average value of

the polygons’ centers. In contrast, the bounding box centers are independent from the total

number of vertices in a polygon; consequently, the use of this property plays a significant role

in achieving the required robustness to both simplification and interpolation attacks.

Step 2 : Clustering Polygons’ Bounding Boxes Centers

The k-means method is used to cluster the bounding box centers in order to determine the

positions for embedding the watermark. The k-means clustering method is relatively simple,

easy to implement, and needs a predefined number of clusters (k). We experiment with

different numbers of k to explore different values for capacity and the effect they have on

fidelity. More specifically, we experiment with values of k that represent approximately 25%,

33% and 50% of the total number of polygons. The resulting centroids are kept as a secret
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key (key1).

Step 3 : Distance Calculation

For each cluster centroid identified at the previous step, unlike the previous approaches (Abubahia

and Cocea, 2015a, 2014; Huo et al., 2011b), the distance length is calculated by measuring

the distance from the polygon bounding box top right corner to its center, where the cen-

ter is calculated as described in Step 1. Equation (6.3) illustrates the way of computing

the distance length of selected polygons. This approach is adding increased robustness to

the simplification and interpolation attacks due to the independence of this distance of the

number of vertices in a polygon.

Lc =
√

(xc − xmax)2 + (yc − ymax)2 (6.3)

where: Lc is the distance length; xc and yc are the center coordinates in x and y axes,

respectively; xmax and ymax are the up right bounding box corner coordinates in x and y

axes, respectively.

The values of bounding box distance lengths for all selected polygons are stored as a

secret key (key2) and they represent the selective positions for embedding the watermark.

6.3.2 Watermark Bits Insertion

The concept of zero watermarking (Wang et al., 2012b) is utilized in the proposed water-

mark embedding process. Zero watermarking aims to exploit some of the host GIS data

characteristics in order to generate a more robust watermark. In this case, the topological

characteristic of the host GIS data that is used, is the distance length of polygons.

The watermark is constructed by adding or subtracting a bit value of 1 from the distance

length of polygons. The watermark is embedded by applying odd-even indexing (Baiyan

et al., 2008a; Huo et al., 2011b), as outlined in Equation (6.4).

Wi =

{
T − 1, if OES(I) = odd

T + 1, if OES(I) = even
(6.4)

where: Wi is the ith bit value of the watermark; OES stands for Odd-Even Status; I is the

order index of the distance length value in the matrix; T is the value of the 4th digit of the

distance length value, after the decimal point (Huo et al., 2011b).

The index of each distance value is used in this approach, instead of using an additional

random sequence proposed by Huo et al. (2011b), to get more consistent positions for em-

bedding the watermark. This consistency sum up both: (a) the indexing as a vital role in the
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clustering process, and (b) maintaining the security of the watermark position by storing the

index values as a key instead of utilizing a random sequence that is not relevant to the used

data. This also offers the ability to control the watermark capacity in order to preserve the

map fidelity, whereas the use of a random sequence (Huo et al., 2011b) will limit that choice

of control.

As shown in Equation (6.4), the watermark is embedded by comparing the OES (Odd-

Even Status) of the I and T variables. The conditions are set based on two scenarios as in

the following:

• If the OES of I is odd, 1 will be subtracted from the value of T .

• In contrast, if the OES of I is even, 1 will be added to the value of T .

After applying the OES to change the values of Lc, the new values of distance length

will be represented by L∗
c . This new distance length values are stored as another secret key

(key3), to secure the positions in which the watermark is embedded. The change rate αc is

calculated as depicted in Equation (6.5):

αc =
L∗
c

Lc
(6.5)

The change rate αc is used to change all vertices of polygons that belong to each cluster’s

center on the basis of the embedding condition, as given in Equations (6.6) and (6.7).

v∗x = αcvx + xc(1− αc) (6.6)

v∗y = αcvy + yc(1− αc) (6.7)

where: v∗x and v∗y are the new vertices’ coordinates after embedding the watermark accord-

ing to the aforementioned condition, in Equation (6.4); vx and vy are the original vertices’

coordinates before inserting the watermark bits.

Embedding the watermark bits into the distance length values has the advantage of pro-

viding robustness to rotation, translation and scaling attacks.

In rotation and translation attacks the entire map is shifted either by turning the map

around to a specific angle or by moving the entire map in a specific direction. These modifi-

cation apply the same shift to all coordinate values of vertices; this consistent change signifies

that the distance values will remain the same. Consequently, the distance lengths are not

affected by rotation and translation attacks.
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Scaling attacks involve a change in the size of the map by a particular scaling factor.

This scaling factor can be determined by dividing the distance values of the attacked map by

the distance values of the original map (i.e. key2). Consequently, the original map can be

restored from the attacked map by applying the complementary scaling factor to the attacked

map.

6.3.3 Watermark Bits Extraction

The proposed approach is characterized by blindness and flexibility. Blindness means that

the original vector map is not needed in the watermark extraction process, while flexibility

means that the watermark extraction process can be implemented in similar way as presented

in the watermark embedding process.

The bounding box centers are computed for each polygon and the k-means method is

used to divide the polygons’ computed centers into k-clusters in the same way as illustrated

in Step 2 (Section 6.3.1). The results are compared with the stored key1 to identify if there

have been some modification applied to the vector map; the comparison with the other stored

keys (see below) has the same purpose.

The distance length for the watermarked map are calculated in the same way as illustrated

in Step 3 (Section 6.3.1). The recalculated distances are compared to the stored key2 and

key3, to ensure that the vector map has the embedded watermark bits (1 or -1) in order to

go further for the extraction stage. Both key2 and key3 help in retrieving the watermarked

map to its original form, which maintain the robustness to rotation, translation and scaling

attacks, as discussed in Section 6.3.2.

6.4 Experiments and Discussion

Three maps were used to compare the k-means approach using the bounding box property

with the k-means approach using the mean centers of polygons. As shown in Fig. (6.3a),

(6.3b) and (6.3c), the used GIS maps are polygon-based maps that represent administrative

boundaries of 3 countries in Africa: Benin (222 polygons), Angola (501 polygons) and Burkina

Faso (1046 polygons). These GIS vector maps are freely available, in ESRI shapefile format,

from the Natural Earth website.1

ESRI Shapefiles (.shp) are produced by ESRI 2, and considered as a popular format

for geographic information system applications (Longley et al., 2011). They have several key

features: small storage space, easy reading and writing, fast shape editing, storing both spatial

1http://www.mapmakerdata.co.uk.s3-website-eu-west-1.amazonaws.com/library/stacks/Africa/index.htm
2http://www.esri.com/
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Figure 6.3: The GIS vector maps used in the experiments.

Table 6.1: The percentage of added/removed vertices in relation to the total number of
vertices in the Burkina Faso map

The total number of vertices in the map 113996

The number of watermarked vertices in the map 39375

The number of removed/added vertices 7875

and attribute information, and supporting point, polyline and polygon geometry types (ESRI,

1998).

For the watermark embedding and extraction processes, we implemented the two ap-

proaches in MATLAB3 version R2014b (8.4.0.150421) on 64-bits windows-PC.

The effect of simplification and interpolation attacks on the two approaches has been

investigated through the following experiment on the map of Burkina Faso, i.e. the map with

the largest number of polygons (1046). As shown in Table 6.1, the map of Burkina Faso

contains a total of 113996 vertices. The watermark was inserted in a third of the whole map,

i.e. 349 polygons were watermarked containing 39375 vertices, referred to as watermarked

vertices in Table 6.1. The total number of removed or added vertices is 7875, which represents

6.9% of the map vertices and 20% of the watermarked vertices.

For each watermarked polygon, 20% of the vertices were removed (for the simplification

attack) or added (for the interpolation attack), and the changes in the computed distance

values were calculated. The differences are illustrated in Fig. (6.4) and Fig. (6.5) and they

point out that the interpolation and simplification attacks result in changes when the mean

centers approach is used, but have no effect on the bounding box approach. Consequently,

the bounding box approach is robust to simplification and interpolation attacks.

Although the changes in the mean distance values when using the mean centers may

3http://www.mathworks.co.uk/
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Figure 6.4: Changes after the simplification attack.

seem small, they are significant because they distort the watermark, which may lead to the

loss of its copyright. Moreover, these small changes may also mean that the quality of the

map is still quite high, thus allowing the attackers to use it without the liability of copyright

infringement.

The robustness to the simplification and interpolation attacks is ensured by using the

bounding box centers due to their independence of the number of vertices in a polygon. In

other words, removing or adding new vertices would not affect the main four corners of the

bounding box, thus leaving the value of the polygon center unchanged. In contrast, the mean

centers approach (Huo et al., 2011b) is vulnerable to these attacks because the center of a

polygon is calculated as the average values of vertices’ coordinates, thus depending on the

number of vertices. Consequently, the removal or addition of vertices will affect the values of

the polygons’ centers calculated with this approach.

Here, we assume that the attacker will not remove each of bounding box corners’ co-

ordinates because removing each of these coordinates will lead to a considerable change in

polygon shape and make the map unusable due to the loss of its quality. An attacker would

normally be interested in preserving the quality of the map when removing its watermark,

so that they can still use it.
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Figure 6.5: Changes after the interpolation attack.

To further test the bounding box approach, we investigated the effect of this approach on

the capacity and fidelity metrics. Table 6.2 compares the results of the proposed approach

using the bounding box information with the results for the approach using mean centers (Huo

et al., 2011b), to investigate the advantage of using polygons’ bounding box based centers

over the traditional polygons’ mean centers in achieving a good trade-off between fidelity and

capacity. The difference between the compared approaches is in the definition of the centers

of polygons, i.e. using the bounding box information as explained in Section 4.1 vs using the

mean of polygon vertices coordinates in the approach of Huo et al. (2011b). Consequently,

the difference in results can be attributed to a certain degree to the use of the bounding box

properties.

The fidelity metric aims to measure the imperceptibility of the watermark and reflects

its degree of invisibility. This invisibility is measured by using PSNR (Peak Signal to Noise

Ratio), in decibels (Abubahia and Cocea, 2014; Huo et al., 2011b). There is no specific

range for PSNR values but a higher PSNR would normally indicate that the data is of higher

quality (Huynh-Thu and Ghanbari, 2008). The typical values are considered to be between

30 and 50 dB, in the context of digital images (Hamzaoui and Saupe, 2006). In order to use

this metric, we stored the watermarked GIS maps in JPEG image format.
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Table 6.2: of C (Capacity) and F (Fidelity) between bounding box approach and mean
polygon centers using k-means

The Proposed Approach Huo et al. (2011b)

No. of Clusters (= No. of Polygons) C F C F

Benin Map (25%) 1278 40.5223 1113 39.7769

Benin Map (33%) 1452 40.1054 1239 40.0029

Benin Map (50%) 2492 37.4146 2363 36.9682

Angola Map (25%) 4009 43.6947 3902 43.6013

Angola Map (33%) 5365 41.9369 5219 41.9134

Angola Map (50%) 9631 39.7193 9507 39.7081

Burkina Faso Map (25%) 15242 40.3900 15171 40.1572

Burkina Faso Map (33%) 19017 39.5909 18930 38.9722

Burkina Faso Map (50%) 31147 36.2769 31012 36.2584

On the other hand, capacity refers to the number of vertices in the host GIS map, which

carry the watermark bits. The importance of the watermark capacity is specified by its vital

implication on increasing the watermark robustness to cropping attacks. Cropping is the

process of cutting some parts of the host GIS map (Zhao et al., 2013a). Consequently, it is

important not only to have high capacity, but also to have the watermark distributed across

the entire map.

As shown in Table 6.2, the trade-off between capacity and fidelity is achieved by increas-

ing the number of vertices that carry the watermark bits (capacity) while keeping higher

watermark invisibility measured by PSNR (fidelity).

In addition, three different proportions of map size, i.e. 25%, 33% and 50%, were used to

observe the effect of increased capacity and its effect on fidelity. These proportions represent

approximately a quarter, a third and half of the number of polygons in the used maps. The

relation between the map size proportions and the number of clusters is illustrated in the

following for each of the three maps used in the experiments. Thus, for the map of Benin,

25%, 33% and 50% corresponds to 56, 74 and 111 clusters, respectively; for the map of Angola,

25%, 33% and 50% corresponds to 126, 167 and 251 clusters, respectively; and for the map

of Burkina Faso, 25%, 33% and 50% corresponds to 262, 349 and 523 clusters, respectively.

When looking at the results for the 25% sizes of the three maps in Table 6.2, we notice
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that the capacity values for the approach proposed in this Chapter (bounding box-based

k-means), i.e. 1278, 4009 and 15242, are higher than those of Huo et al. (2011b), i.e. 1113,

3902 and 15171. At the same time, we notice that the fidelity values are also higher in

the approach using the bounding box compared with the approach using the mean centers,

despite the increase in capacity. The same can be observed for the 33% and 50% sizes on all

three maps.

The research in this Chapter and in the previous Chapter used clustering for identifying

the embedding locations. Clustering has the advantage of ensuring a good distribution of

the watermark across the entire map, thus adding resilience to cropping attacks. Other

approaches for the identification of locations, however, when used in conjunction with the

bounding box property, should still preserve the robustness to simplification and interpolation

attacks.

In terms of the trade-off between capacity and fidelity, the experimental results reported

in this Chapter, as well as previous results using k-medoids clustering (Abubahia and Cocea,

2015a) indicate that the use of the bounding box centers led to a good trade-off between

capacity and fidelity; more specifically, the results indicate an increase in fidelity even when

there is an increase in capacity. Further experimentation would be needed to assess the role

of the bounding box in achieving this results compared with the role of the two other main

factors: the approach for identifying the embedding locations and the watermark insertion

approach. Although the results indicate that the bounding box plays a role in the trade-off

between capacity and fidelity, we cannot separate this effect from the two factors mentioned

above.

6.5 Summary

In this Chapter, we investigated the influence of using the bounding box property for pro-

tecting the copyright of digital GIS vector maps, by comparing a k-means clustering method

that used the bounding box property with the earlier work of Huo et al. (2011b) using the

mean centers of polygons.

Using bounding box centers increases the robustness to the simplification and interpola-

tion attacks due to the independence property of bounding box centers from the number of

vertices in a polygon, in contrast to mean centers of polygons, which are dependent on the

number of vertices.

The effectiveness of the proposed approach is assessed by looking at both fidelity and ca-

pacity aspects. The experiments demonstrate that the computation of bounding box centers
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has a considerable implication on the trade-off between the fidelity and the capacity metrics,

and resulted in higher fidelity as capacity increased.

The PSNR fidelity metric was used for consistency with the work of Huo et al. (2011b).

This measurement is often used in image watermarking research, and is not necessarily the

best metric for GIS vector map (Niu et al., 2006).

Building on the previous approach based on k-medoids clustering in Chapter 5 which

demonstrate the advantages of using bounding box property for promoting the research of

GIS map copyright protection, the proposed approach in this Chapter stresses that these ad-

vantages are maintained even with a k-means clustering based approach, and can reasonably

conclude that they would hold regardless of the clustering method used for identifying the

watermark embedding locations in the map.
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Topological Quality Measurement

A key requirement of any watermarking approach is the quality preservation in the water-

marked data (Abubahia and Cocea, 2017; Wang et al., 2015b). In the context of vector

data, the quality preservation expresses that the original vector map is not affected by the

concealed watermark, and is referred to as fidelity. Most often this is defined as the percep-

tual degree of similarity between the original vector map and the watermarked vector map.

In the context of images (although used with vector map data as well) it is referred to as

invisibility. In both cases, the emphasis is on the perceptual perspective (Urvoy et al., 2014)

and is measured with error metrics, such as RMSE (Root Mean Squared Error) and PSNR

(Peak Signal to Noise Ratio) (which is based on mean squared error). More details about

the metrics used for invisibility of vector data can be found in (Abubahia and Cocea, 2017;

Peng et al., 2014b; Huynh-Thu and Ghanbari, 2008).

While in the context of image watermarking the invisibility of the watermark can be taken

to mean that the original image has preserved its quality (Wang et al., 2015d), in the context

of vector data, the quality of the map needs to be assessed in terms of the preservation of

its topological properties, i.e. the geometrical shapes have not been distorted in the water-

marking process. Although the need for a metric to assess topological quality preservation

has been repeatedly highlighted (Abubahia and Cocea, 2017; Niu et al., 2006; Huang et al.,

2010; Abubahia and Cocea, 2014), few research works looked into this aspect (Huang et al.,

2010; Kim, 2010a,b; Sangita and Venkatachalam, 2012a; Neyman et al., 2014a). These works

discussed the importance of topology preservation, and for particular applications looked at

the effect of watermarking on some topological properties. A metric for quantifying topologi-

cal distortion that can be used for assessing watermarked vector map topological quality has

not yet been presented.

In this Chapter, a metric based on topological properties of polygon-based maps is pro-
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posed. Here, the focus is on three topological rules, stating that the polygons need to be

closed, that they should not have gaps between them and that they should not overlap. Con-

sequently, a metric that quantifies to what degree these rules are broken is presented in this

Chapter, i.e. how many polygon disclosures, gaps and overlaps are present, in proportion

to watermark size. To evaluate the metric, experiments with the two different embedding

approaches mentioned above and controlled watermarking capacity (i.e. how much is embed-

ded) were run on maps of various sizes.

The rest of this Chapter is organized as follows: Section 7.1 reviews previous work on

topology preservation in the context of digital vector map watermarking. Section 7.2 intro-

duces the proposed metrics for measuring the polygon disclosure, overlap and gap aspects.

Section 7.3 describes the experiments, including the data used and the experimental setup for

the evaluation of the proposed metric. Section 7.4 discusses the experimental results, while

Section 7.5 summarises this Chapter.

7.1 Related Work

In this section, the topological aspects of vector data and the importance of their preservation

are briefly outlined. Also an overview of previous work is introduced in relevance to addressing

the issue of topological preservation when assessing watermarked vector map quality.

Unlike raster image data, vector map data has to follow topological rules that specify

constraints for the shapes, e.g. lines and polygons, used in vector maps. The development

of vector maps GIS tools (e.g. ArcGIS) (Maguire, 2015) allows the identification of these

errors, which allows them to be fixed. The value of the vector maps is related to the precision

of the data, which allows spatial analysis (Maraş et al., 2010). While it is accepted that

watermarking without any effect on the precision of vector map data is not possible (Kim,

2010a), it is also clear that measuring the loss of precision only with error metrics, without

checking the topology preservation, is not a good way to evaluate watermarked vector map

data quality.

A recent review Abubahia and Cocea (2017) outlines that the most used metrics for

watermarked vector map fidelity are RMSE and PSNR, which are both error metrics based

on the mean square error. The output of error metrics gives an indication of the precise

loss caused by the watermarking process. Over the last 10 years, the research community on

watermarking vector map data has repeatedly posed that error metrics are not appropriate

for the evaluation of watermarked vector map topological quality (Abubahia and Cocea, 2017;

Niu et al., 2006; Sangita and Venkatachalam, 2012a).

A limited number of works have discussed topology preservation in the evaluation of
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watermarked vector maps (Huang et al., 2010; Kim, 2010a,b; Sangita and Venkatachalam,

2012a; Zope-Chaudhari et al., 2015). These works are outlined below. In (Kim, 2010a,b),

the authors used what they call an intersection test to verify if modifications occurred in

the topology of line-based maps – more specifically, they assessed if lines that intersected

previously to watermarking still intersect and if lines that should not intersect still do not

intersect after watermarking. They report that they compared the values of the test before

and after the watermark embedding, without details of how this was done, and that based

on that comparison they concluded that topology was preserved.

In the work of Huang et al. (2010), the authors looked at polygon closure, data topology,

error analysis and visual analysis. They also point out that in previous work data quality

is mainly assessed through error metrics borrowed from image watermarking. They focused

on tools for data inspection of watermarked vector data that allows visual identification of

polygon disclosure, self-intersect, self-overlay and overlay for lines.

Like the work of Huang et al. (2010), in the work of Sangita and Venkatachalam (2012a)

the authors also focus on the visual inspection of topological issues without proposing a

metric to quantify them; however, through this visual inspection, they stress the need for

watermarking approaches that retain the topology of vector data and that the error analysis

on its own is not an appropriate way of evaluating watermarking vector data approaches. In

more recent work Zope-Chaudhari et al. (2015) investigate the data accuracy (i.e. the dif-

ference in coordinates values between the original and the watermarked map1). The authors

talk about the assessment of distortion, but they only look at data accuracy and assess it

with error metrics.

In summary, previous work highlighted the importance of topology preservation and pro-

posed visual inspection for identifying distortions after watermarking. In this Chapter, to

take this work further, a metric for quantifying topological distortions of polygon-based vector

maps is proposed. The next section describes the proposed metric.

7.2 Metric for Topological Distortion

This section presents the proposed metric for judging the topological quality of watermarked

GIS vector maps in line with the required standards for spatial data analysis tasks. Such

standards are identified by several organisations working with and regulating the use of spatial

1some researchers use the term fidelity to mean both data accuracy and invisibility; while other researchers
distinguish between these terms, which is also the case for the work discussed in this Chapter
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data. Here, this Chapter follows the topological rules defined by the Environmental Systems

Research Institute (ESRI), which supports the OCG2 and ISO/TC2113 geospatial standards.

ESRI defined a set of polygon-based shapefiles topology rules 4 to ensure the quality of

polygon maps for spatial analysis tasks. In relation to the research of digital vector map

watermarking, the significant rules are:

• Each polygon must be in the form of closed shape. A polygon is defined by a series of

points, with the first point being the same as the last point; if the first and the last

point are not the same, the polygon is not closed.

• Polygons must not overlap each other. This rule specifies that the interior of polygons

must not overlap; polygons can only share edges or vertices.

• The map must not have gaps between polygons. This rule specifies that there should

be no voids within a polygon or between neighboring polygons, so that all polygons

form a continuous surface.

In this Chapter, three metrics are proposed in relation to these rules by quantifying the

number of times the rules are broken proportionately to the size of the watermark. Also an

overall metric as an average of the three metrics is defined, which can be used to compare

topological problems across different watermarking approaches and map sizes. The metrics

and the way they are calculated are described in the following subsections.

7.2.1 Polygon Disclosure

The polygon shape is formed by a sequence of vertices where the coordinates of the first point

and the last point must be the same. Polygon disclosure occurs when this constraint is not

met, i.e. the coordinates of the first and the last point are different.

In the watermarking process, there is a potential of having the polygon disclosure issue

since the process of inserting the watermark is modifying the redundant bits of data, and

the modification of different points may be done in different ways. For example, adding a

watermark bit of 1 to the first point, while adding a watermark bit of −1 to the last point,

would lead to disclosure.

Consequently, it is important to assess whether the polygon closure has been affected by

the watermarking process. For this purpose, the condition used is that the coordinate value

2http://www.opengeospatial.org/docs/is
3http://www.isotc211.org/
4http://help.arcgis.com/en/arcgisdesktop/10.0/help/001t/pdf/topology_rules_poster.pdf
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pair of the first point and the coordinate value pair of the last point must be the same, as

shown in Equations (7.1) and (7.2).

Fx = Lx (7.1)

and

Fy = Ly (7.2)

where Fx is the x-coordinate of the first point, Lx is the x-coordinate of the last point, Fy is

the y-coordinate of the first point and Ly is the y-coordinate of the last point.

The metric for polygon disclosure in the watermarked map is defined in Equation (7.3)

as the proportion of disclosed polygons from all watermarked polygons:

M1 =

∑nw
i=1 di
nw

(7.3)

where M1 represents the disclosure metric, nw represents the number of watermarked poly-

gons and di is defined as in Equation (7.4):

di =


1, if Fx 6= Lx

1, if Fy 6= Ly

0, otherwise

(7.4)

for each polygon i, where i takes values from 1 to nw.

7.2.2 Overlap and Gap Identification

The overlap within the map polygons is a potential issue after inserting the watermark bits.

This affects the map topology against the rule that the interior of polygons must not overlap,

which means that an area cannot be shared by two or more polygons, i.e. polygons can only

share edges or vertices. For example, the satisfaction of this topology rule is important for

modeling administrative boundaries, such as voting districts, postal codes or land cover type.

The gaps between the map polygons could also be a consequence of the watermark in-

sertion process, which has the effect of creating voids between adjacent polygons, while the

topology rule requires that all polygons must form a continuous surface. This rule is signifi-

cant in the context of spatial data analysis because it changes the perimeter of the surface.

For example, when polygons define the type of soil in a particular area, there should be no

gaps between polygons, i.e. the entire area needs to be defined in terms of the soil type; a

gap would mean that the soil type (for the surface defined by this gap) is not known.

Algorithm 3 shows how the number of overlaps and gaps are identified. The inpolygon
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function in Matlab is used for this purpose, which establishes if a point is in or on the edge of

a polygon. Thus, for all watermarked vertices, this function is applied with reference to the

original polygon. If the watermarked vertex is within the original polygon, a gap is created,

while if the watermarked vertex is outside the original polygon, an overlap is created.

Algorithm 3 Overlap Gap Calculation
Input : The original and watermarked maps: Mo, Mw

Output: Gaps, Overlaps
sum1 = 0
sum2 = 0
sum3 = 0
for each watermarked polygon Pw in the watermarked map Mw do

[in, on] = inpolygon(xPw
, yPw

, xPo
, yPo

)
// xPw

and yPw
are vectors holding the x and y coordinates values of the

watermarked polygon Pw; xPo
and yPo

are vectors holding the x and y
coordinates values of the corresponding original polygon Po

// in indicates if the points are inside or on the edge of the polygon; on
indicates if the points are on the edge of the polygon

sum1 = sum1 + numel(xPw
[in])

// the number of points inside or on the edge of the polygon

sum2 = sum2 + numel(xPw
[on])

// the number of points on the edge of the polygon

sum3 = sum3 + numel(xPw [∼ in])
// the number of points outside the edge of the polygon

end
Gaps = sum1 − sum2

// the number of points inside the original polygons for the whole map

Overlaps = sum3

// the number of points outside the original polygons for the whole map

return Gaps, Overlaps

The quantified measure for the overlap issue in the watermarked map is defined in Equa-

tion (7.5) as the proportion of overlapping polygons from all watermarked polygons:

M2 =

∑Vw
i=1 Voi
Vw

(7.5)

where M2 represents the overlap metric, Vw represents the number of watermarked vertices

and Vo represents the number of vertices placed outside their original polygon after water-

marking, thus leading to overlaps.

The quantified measure for the gap issue in the watermarked map is defined in Equa-

tion (7.6) as the proportion of gaps between polygons from all watermarked polygons:

M3 =

∑Vw
i=1 Vgi
Vw

(7.6)
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(a) Map of Morocco (47
polygons, 7523 vertices)

(b) Map of Swaziland (53
polygons, 7678 vertices)

Figure 7.1: Dataset 1.
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(a) Map of Congo-Brazzaville
(46 polygons, 12511 vertices)

(b) Map of Guinea (56 poly-
gons, 21304 vertices)

Figure 7.2: Dataset 2.

where M3 represents the gap metric, Vw represents the number of watermarked vertices and

Vg represents the number of vertices placed within their original polygon after watermarking,

thus leading to gaps.

7.2.3 The Overall Metric

The overall metric is defined as the average of disclosure, overlap and gap measurements that

were described in the previous subsections – see Equation (7.7).

M =

∑3
i=1Mi

3
(7.7)

where M represents the overall fidelity metric, M1 represents the disclosure metric, M2

represents the overlap metric and M3 represents the gap metric.

For all metrics, the values are between 0 and 1, where a value of 0 indicates no topology

problems, and 1 indicates the maximum number of topology problems. For example, for

the overall metric a value on 1 means that all watermarked polygons are disclosed and that

overlaps and gaps take place for all watermarked vertices.
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(a) Map of Egypt (129 poly-
gons, 5992 vertices)

(b) Map of Chad (347 poly-
gons, 19542 vertices)

Figure 7.3: Dataset 3.

(a) Map of the Ghana (138
polygons, 243329 vertices)

(b) Map of Burkina Faso
(351 polygons, 113996 ver-
tices)

Figure 7.4: Dataset 4.

7.3 Experiments

This section describes the experiments that are conducted for the evaluation of the proposed

metrics, including the data used and the way of controlling the embedding of the watermark

to assess the comparability of the results across maps and watermarks of different sizes.

7.3.1 Data Description and Experimental Setup

To evaluate if the metrics allow comparisons for maps of different sizes in terms of number of

polygons and number of vertices, four datasets (of two maps each) combining high and low

numbers of polygons and vertices were used, respectively:

• Dataset 1 includes maps with small number of polygons and small number of vertices.

• Dataset 2 includes maps with small number of polygons and large number of vertices.

• Dataset 3 includes maps with large number of polygons and small number of vertices.

• Dataset 4 includes maps with large number of polygons and large number of vertices.
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Within each dataset, the two maps are chosen to represent opposite ratios of number of

polygons to number of vertices, i.e. one map has on average a smaller number of vertices per

polygon compared with the other map in the same dataset.

Also, the size of the watermark is controlled, i.e. 25%, 33% and 50% of the original map,

to show that the metrics can be used to compare watermarked maps not only of variable map

size, but also variable watermark size.

Table 7.1 lists the maps of the four datasets, their number of polygons and vertices, the

average number of vertices per polygon, as well as the number of polygons that correspond

to the proportions of 25%, 33% and 50%, which are used when embedding the watermark.

Figures 1 to 4 illustrates the eight maps of the four datasets.

Table 7.1: The datasets (D) with corresponding number of polygons (#P), vertices (#V)
and number of polygons for proportions of map size.

D Map #P #V Avg Proportions
25% 33% 50%

1 Morocco (MOR) 47 7523 160 12 16 24
Swaziland (SWA) 53 7678 144 14 18 27

2 Congo-Brazzaville (CNG) 46 12511 271 12 16 23
Guinea (GIN) 56 21304 380 14 19 28

3 Egypt (EGY) 129 5992 46 33 43 65
Chad (CHA) 347 19542 56 87 116 174

4 Ghana (GHA) 138 243329 1763 35 46 69
Burkina Faso (BUF) 351 113996 324 88 117 176

The proposed metrics are defined in relation to the watermark size to allow comparison

across maps and watermarks of different sizes. This relativity to the watermark size should

results in the experiments in similar metrics values for all the maps within the same dataset,

as well as across all datasets. In other words, the experiments were set up to show that

regardless of map size, comparisons on the distortions introduced by watermarking still can

be made.

The maps used in the experiments are freely available, in ESRI shapefile format, from the

map maker website5. Maps that are freely available Were used to facilitate the development

of benchmarks in the context of vector data, as one of the important aspects of bringing

research in this area forward, by making it possible to compare different developments.

ESRI Shapefiles (.shp) are produced by ESRI6, and considered as a popular format for

geographic information system applications (Burrough et al., 2013). They have several key

features: small storage space, easy reading and writing, fast shape editing, storing both spatial

and attribute information, and supporting point, polyline and polygon geometry types (ESRI,

1998).

5http://www.mapmakerdata.co.uk
6http://www.esri.com/
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Original Map - ESRI Shapefile .shp

Computing the bounding box
center of each polygon (xc, yc)

Selecting random K-centers
from the calculated centers

Clustering all-centers into K-clusters
by using K-means clustering method

Watermark embedding by ap-
plying index odd-even coding

Watermarked Map - ESRI Shapefile .shp

(a) The coordinates based approach

Original Map - ESRI Shapefile .shp

Computing the bounding box
center of each polygon (xc, yc)

Selecting random K-centers
from the calculated centers

Clustering all-centers into K-clusters
by using K-means clustering method

Calculating the distance length (Lc)

Watermark embedding by ap-
plying index odd-even coding

Watermarked Map - ESRI Shapefile .shp

(b) The distance based approach

Figure 7.5: Two different watermark insertion approaches

The two most-known watermark embedding approaches were implemented in MATLAB

version R2014b (8.4.0.150421) on a 64-bits Windows-PC. The way watermarks of different

sizes were embedded, is explained in the following section.

7.3.2 Watermark Insertion Process

For the watermark embedding process, two main prevalent approaches were used and com-

pared: (1) a coordinate-based approach (shown in Fig.7.5a) and (2) a distance based ap-

proach (shown in Fig.7.5b). These approaches have shown, practically, a better resilience

to map changes/attacks such as: rotation, translation, scaling, simplification and interpola-

tion (Abubahia and Cocea, 2015b,a). In both approaches, clustering is used to control the

size of the watermark in relation to map size, as well as distribute the watermark throughout

the map. Clustering is used to identify locations in the map for embedding the water-

mark (Abubahia and Cocea, 2014).

Both approaches mentioned above uses the bounding box property in ESRI shapefiles,

which identifies the boundaries of each polygon in the map (ESRI, 1998). Polygons’ bounding

box centers are calculated in both axes, as shown in Equation 7.8:

xc =
xmin + xmax

2
& yc =

ymin + ymax

2
(7.8)
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where xc and yc are the coordinates of a polygon’s center in x and y axes respectively; xmin

is the minimum vertex coordinate in the x-axis; xmax is the maximum vertex coordinate in

the x-axis; ymin is the minimum vertex coordinate in the y-axis; ymax is the maximum vertex

coordinate in the y-axis; xmin, xmax, ymin and ymax are each of 8-byte length (ESRI, 1998).

The k-means clustering method is used to cluster the bounding box centers, as the poly-

gons’ representatives, in order to determine the positions for embedding the watermark. More

precisely, through this process, a number of polygons are identified as locations for embed-

ding the watermark. The k-means method is relatively simple, easy to implement, and needs

a predefined number of clusters (k) – see reference Abubahia and Cocea (2015b) for more

detail. The experiments were set up with values of k that represent approximately 25%, 33%

and 50% of the total number of polygons. In this way, the size of the watermark is controlled,

which allows evaluating the proposed metrics for different watermark sizes.

The watermark is constructed by adding or subtracting a bit value of 1 from either x and

y vertex coordinate values (coordinate-based approach) or distance length values (distance-

based approach) within the selected polygons (identified by k-means clustering).

The watermark is embedded by applying odd-even indexing, which is one of the most

popular embedding approaches (Baiyan et al., 2008a; Huo et al., 2011b; Abubahia and Cocea,

2015a,b, 2014). This approach is formally represented as in Equation (7.9).

Wi =

T − 1, if OES(I)=odd

T + 1, if OES(I)=even
(7.9)

where Wi is the ith bit value of the watermark; OES stands for Odd-Even Status; I is the

order index of the watermark embedding position value; T is the value of the 4th digit of the

embedding position value, after the decimal point. The following two subsections detail the

embedding procedure for the coordinate-based and distance-based approaches.

Coordinates-based Embedding

In this approach, the embedding space is the x and y vertex coordinate values. The watermark

is embedded by comparing the OES (Odd-Even Status) of I which represents the sequential

order of the vertex within the set of polygon’s vertices. As shown in Equation (7.10), the

conditions are set based on two scenarios: (a) if the OES of I is odd, 1 will be subtracted

from the value of T , which represents the 4th bit after the decimal point of the x and y vertex

coordinate values; (b) if the OES of I is even, 1 will be added to the value of T .

v∗x = vx ± 0.0001 & v∗y = vy ± 0.0001 (7.10)
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where v∗x and v∗y are the new vertices’ coordinates after embedding the watermark accord-

ing to the aforementioned condition, in Equation (7.9); vx and vy are the original vertices’

coordinates before inserting the watermark bits.

Distance-based Embedding

In this approach, the embedding space is the mean distance length values. The distance

length is calculated by measuring the distance from the polygon bounding box top right

corner to its center, as illustrated in Equation (7.11).

Lc =
√

(xc − xmax)2 + (yc − ymax)2 (7.11)

where Lc is the distance length; xc and yc are the center coordinates in x and y axes,

respectively; xmax and ymax are the top right bounding box corner coordinates in the x and

y axes, respectively.

As shown in Equation (7.9), the watermark is embedded by comparing the OES (Odd-

Even Status) of the I variable, which represents the order index of the mean-distance length

values. Similarly to the coordinate-based approach, the conditions are set based on two

scenarios: (a) if the OES of I is odd, 1 will be subtracted from the value of T ; (b) if the OES

of I is even, 1 will be added to the value of T .

After applying the OES to change the values of Lc, the new values of distance length will

be represented by L∗
c . The change rate αc is calculated as depicted in Equation (7.12):

αc =
L∗
c

Lc
(7.12)

The change rate αc is used to change all vertices of polygons that belong to each cluster’s

center on the basis of the embedding condition, as given in Equation (7.13).

v∗x = αcvx + xc(1− αc) & v∗y = αcvy + yc(1− αc) (7.13)

Both embedding approaches should lead to contrasted readings in overlaps and gaps as

the size of the watermark increases; the same should occur for disclosures for the coordinate-

based approach (the distance-based approach does not lead to disclosures). In other words,

the more watermark bits are included, the more issues with topology will occur. As a metric

should allow comparison across different map sizes, as well as watermark size (and not simply

penalise bigger watermarks), the metrics are defined as the number of topological issues

(disclosures/gaps/overlaps) relative to the watermark size. Consequently, similar metrics
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were expected across the maps of different size and across the different sizes of watermarks,

with some expected variety due to the randomness involved in the selected polygons for

embedding (with varying numbers of vertices) and the odd-even status of the embedding

locations; these random variations are further discussed in the next section.

Consequently, to show the reliability of the overall metric, the experimental results should

show the following:

1. The disclosure metric for the coordinate-based approach will depend on the number of

vertices in the watermarked polygons, thus leading to variations unrelated to the map

size or watermark size; if all watermarked polygons have an even number of vertices,

there will be no disclosures, while if all watermarked polygons have an odd number

of vertices, all will have disclosures. The probability for a watermarked polygon to

have either an odd or an even number of polygons is 0.5; thus, for higher numbers

of watermarked polygons, the M1 metric would be expected to have values around

0.5, while for fewer watermarked polygons, a higher variety would be expected in the

metrics’ values.

2. The gaps and overlaps metrics for both embedding approaches should have very similar

values; since all watermarked vertices will lead to either a gap or an overlap, two

phenomena are expected: (a) approximately half of the vertices will lead to gaps and

half to overlaps, which would results in values of approximately 0.5 for metrics M1

and M2; (b) when the previous does not happen due to randomness, there will be a

complementarity between the number of gaps and overlap, i.e. the more gaps, the fewer

overlaps;

3. The overall metric for the coordinate-based approach will follow the variation in the

disclosure metric, as it is an average of the disclosure, overlaps and gaps metrics, and

the overlaps and gaps metrics should display little variation;

4. The overall metric for the distance-based approach should be very similar for all maps

and all watermark sizes, as there are no disclosures for this embedding approach, and

the overlaps and gaps metrics should be complementary (i.e. the more gaps, the fewer

overlaps).

The next section presents the results and discusses them in terms of the expectations

outlined above.
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7.4 Results and Discussion

This section presents the results of the experiment in relation to the three metrics correspond-

ing to the three topology rules for polygons, as well as the overall metric. The results are

discussed in relation to the experimental setup and the expectations outlined in the previous

section.

Table 7.2: The disclosure metric for the coordinate-based embedding method; Notes: nw =
number of watermarked polygons; D = number of disclosures; M1 = disclosure metric.

Dataset Map nw Coordinate
D M1

1 MOR (25%) 12 3 0.25000
MOR (33%) 16 3 0.18750
MOR (50%) 24 9 0.37500
SWA (25%) 14 8 0.57143
SWA (33%) 18 9 0.50000
SWA (50%) 27 15 0.55556

2 CNG (25%) 12 4 0.33333
CNG (33%) 16 6 0.37500
CNG (50%) 23 11 0.47826
GIN (25%) 14 9 0.64286
GIN (33%) 19 11 0.57895
GIN (50%) 28 17 0.60714

3 EGY (25%) 33 14 0.42424
EGY (33%) 3 22 0.51163
EGY (50%) 65 29 0.44615
CHA (25%) 87 50 0.57471
CHA (33%) 116 69 0.59483
CHA (50%) 174 92 0.52874

4 GHA (25%) 35 18 0.51429
GHA (33%) 46 26 0.56522
GHA (50%) 69 38 0.55072
BUF (25%) 88 44 0.50000
BUF (33%) 117 61 0.52137
BUF (50%) 176 86 0.48864

The disclosure metrics for all datasets are given in Table 7.2 and Fig. 7.6; this is just for

the coordinate-based approach, as for the distance-based approach there are no disclosures

due to the embedding process.

As expected, the results show an increase in disclosures proportionate to the watermark

size, i.e. the larger the watermarks, the higher the number of disclosures – see the 4th column

(D) in Table 7.2. The M1 metric does not entirely preserve this proportions (see Fig. 7.6)

due to the randomness involved in the odd-even status of the number of vertices in a polygon,

i.e. if the watermark is added to a polygon with an odd number of vertices, there will be

no disclosure, while if the watermark is added to a polygon with an even number of vertices,

there will be a disclosure.

When looking at the variations of the M1 metric for the same map with different water-
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Figure 7.6: Coordinate-based method disclosure metrics (M1).

mark sizes, it is noticeable that these are relatively small with most differences smaller than

0.09. The biggest variations take place for the MOR (0.19) and CNG (0.15) maps, which

is not surprising since these are the maps with the smallest number of polygons (at it is

known that the randomness effect stabilizes for larger numbers). Unsurprisingly, the smallest

variation occurs for BUF (0.03), which is the map with the highest number of polygons.

The experimental results for the overlap metric (M2) are displayed in Table 7.3, Fig. 7.7

and Fig. 7.8, for both watermarking approaches.

As expected, the higher the number of watermarked vertices, the higher the number of

overlaps (columns 4 and 6 in Table 7.3). The only exception to this is for the Map of Egypt,

where the 33% watermark results in fewer watermarked vertices than the 25% watermark.

This is due to the embedding procedure in which a number of polygons is selected in which

the watermark is inserted, thus, the number of watermarked vertices overall depends on the

number of vertices in each polygon selected for embedding. In the case of the Map of Egypt–

33%, the polygons selected for the embedding of the watermark had fewer vertices overall

than the polygons selected for the Map of Egypt–25%.

As expected, for both embedding approaches, overlaps metrics are very similar regardless
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Table 7.3: The overlap metrics for coordinate-based and distance-based embedding methods;
Notes: Vw = number of watermarked vertices; O = number of overlaps; M2 = overlap metric

Dataset Map Vw
Coordinate Distance
O M2 O M2

1 MOR (25%) 2105 1067 0.50689 1094 0.51971
MOR (33%) 2729 1382 0.50641 1386 0.50788
MOR (50%) 4275 2165 0.50643 2225 0.52047
SWA (25%) 1808 922 0.50996 1093 0.60454
SWA (33%) 2793 1419 0.50806 1559 0.55818
SWA (50%) 4174 2119 0.50767 2424 0.58074

2 CNG (25%) 3510 1770 0.50427 1860 0.52991
CNG (33%) 4194 2115 0.50429 1682 0.40105
CNG (50%) 6036 3043 0.50414 2720 0.45063
GIN (25%) 6277 3138 0.49992 3115 0.49626
GIN (33%) 9046 4526 0.50033 4397 0.48607
GIN (50%) 13887 6947 0.50025 6930 0.49903

3 EGY (25%) 4055 2065 0.50925 2126 0.49824
EGY (33%) 2855 1478 0.51769 1612 0.56462
EGY (50%) 4504 2328 0.51687 2467 0.54774
CHA (25%) 4887 2538 0.51934 2486 0.50870
CHA (33%) 6933 3595 0.51853 3782 0.54551
CHA (50%) 10004 5187 0.51849 5082 0.50800

4 GHA (25%) 59299 29417 0.49608 30301 0.51099
GHA (33%) 94058 46648 0.49595 49442 0.52565
GHA (50%) 133860 66401 0.49606 70292 0.52513
BUF (25%) 26270 13206 0.50270 13886 0.52859
BUF (33%) 36404 18304 0.50280 18677 0.51305
BUF (50%) 54854 27593 0.50303 29217 0.53263

of map size and watermark size. For the same maps with different watermark sizes, for the

coordinate-based approach, the average difference is 0.00109 with a standard deviation of

0.00221. For the distance-based approach, the average is 0.03041 and the standard deviation

is 0.03166.

Overall, the overlap metric for all maps ranges between 0.49595 and 0.51934 for the

coordinate-based approach and between 0.40105 and 0.60454 for the distance-based approach.

Thus, it is noticeable that the coordinate-based approach leads to more similar values than

the distance-based approach.

Table 7.4, Fig. 7.9 and Fig. 7.10 displays the gap metrics for both coordinate-based and

distance-based approaches. As expected, the more vertices are watermarked, the more gaps

occur, with the exception for the Map of Egypt mentioned previously for overlaps - since

the gap metric, like the overlap one, is influenced by the total number of vertices in the

watermarked polygons, the same effect occurs.

For the same maps with different watermark sizes, for the coordinate-based approach the

average difference is 0.00120 and the standard deviation is 0.00235. For the distance-based

approach, the average is 0.03108 and the standard deviation is 0.03125.

Overall, the gap metrics range between 0.48147 and 0.50405 for the coordinate-base ap-

proach and between 0.39546 and 0.59895 for the distance-based approach. Similar the over-

120



Chapter 7. Topological Quality Measurement

25% 33% 50%

0.2
0.4
0.6

Map of Morocco

M
2

25% 33% 50%

0.2
0.4
0.6

Map of Swaziland

25% 33% 50%

0.2
0.4
0.6

Map of Congo-Brazzaville

M
2

25% 33% 50%

0.2
0.4
0.6

Map of Guinea

25% 33% 50%

0.2
0.4
0.6

Map of Egypt

M
2

25% 33% 50%

0.2
0.4
0.6

Map of Chad

25% 33% 50%

0.2
0.4
0.6

Map of Ghana

M
2

25% 33% 50%

0.2
0.4
0.6

Map of Burkina Faso

Figure 7.7: Coordinate-based approach overlap metric (M2).

laps metric, it is noticeable that a smaller range occurs for the coordinate-based approach

compared with the distance-based approach.

For the overall metrics, the results are displayed in Table 7.5, Fig. 7.11 and Fig. 7.12. For

the coordinate-based approach, the overall metric values are between 0.39583 and 0.54762,

while for the distance-based approach the metrics are 0.33333 for all maps and all watermark

sizes. For the distance-based approach, the same values are occurring due to the lack of

disclosures (thus, the lower value) and the complementarity between gaps and overlaps (i.e.

a watermarked vertex will lead to either a gap or an overlap), i.e. when more gaps occur,

there are fewer overlaps (as reflected in the M2 and M3 metrics).

For example, the SWA (25%) map has a large number of overlaps reflected in a high M2

metric, i.e. 0.60454, and a lower number of gaps reflected in a low M3 metric, i.e. 0.39546

(the two metrics add up to 1); the M2 and M3 metrics add up to 1 for all maps. As there

are no disclosures, and each metric has the same weight, the overall metric becomes 1/3, i.e

0.33333.

The experiments were set up with the purpose of showing that the metrics allow compar-

isons between maps of different sizes, as well as different watermark sizes. More specifically,
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Figure 7.8: Distance-based approach overlap metric (M2).

this work looked at a variety of maps grouped into four datasets covering the different com-

bination of number of polygons and number of vertices. Moreover, within the same dataset,

maps that had opposite ratios of numbers of vertices per polygon were chosen. The results

show that the metrics are comparable across this variation in map size properties, with a few

exceptions explained by the randomness involved in the embedding process.

By looking at different watermark sizes, the metrics were tested in terms of their accurate

reflection of the number of distortions. As the number of distortions are proportionate to

the size of the watermark, an increase in the number of distortions were expected as the size

of the watermark increased, which has been shown in the results. Because the metrics are

defined as the number of distortions relative to the size of the watermark, it is expected that

the metrics for the same map with the different watermark sizes would be very similar, with

only small differences in values.

The results showed this consistency in the values of the metrics between the same map

with watermarks of different size. The results were more consistent for the overlap and

gap metrics than for the disclosure metric for the coordinate-based approach. The higher

variability in the disclosure metric could be explained as a consequence of the odd-even
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Figure 7.9: Coordinate-based approach gap metric (M3).
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Table 7.4: The gap metrics for coordinate-based and distance-based embedding methods:
Notes: Vw = number of watermarked vertices; G = number of gaps; M3 = gaps metric.

Dataset Map Vw
Coordinate (Wang et al., 2007) Distance (Huo et al., 2011b)
G M3 G M3

1 MOR (25%) 2105 1038 0.49311 1011 0.48029
MOR (33%) 2729 1347 0.49359 1343 0.49212
MOR (50%) 4275 2110 0.49357 2050 0.47953
SWA (25%) 1808 886 0.49004 715 0.39546
SWA (33%) 2793 1374 0.49194 1234 0.44182
SWA (50%) 4174 2055 0.49233 1750 0.41926

2 CNG (25%) 3510 1740 0.49573 1650 0.47009
CNG (33%) 4194 2079 0.49571 2512 0.59895
CNG (50%) 6036 2993 0.49586 3316 0.54937
GIN (25%) 6277 3139 0.50008 3162 0.50374
GIN (33%) 9046 4520 0.49967 4649 0.51393
GIN (50%) 13887 6940 0.49975 6957 0.50097

3 EGY (25%) 4055 1990 0.49075 2141 0.50176
EGY (33%) 2855 1377 0.48231 1243 0.43538
EGY (50%) 4504 2176 0.48313 2037 0.45226
CHA (25%) 4887 2349 0.48066 2401 0.49130
CHA (33%) 6933 3338 0.48147 3151 0.45449
CHA (50%) 10004 4817 0.48151 4922 0.49200

4 GHA (25%) 59299 29882 0.50392 28998 0.48901
GHA (33%) 94058 47410 0.50405 44616 0.47435
GHA (50%) 133860 67456 0.50394 63565 0.47487
BUF (25%) 26270 13064 0.49730 12384 0.47141
BUF (33%) 36404 18100 0.49720 17727 0.48695
BUF (50%) 54854 27261 0.49697 25637 0.46737

indexing used in the embedding process. Another aspect related to the higher variability

in the disclosure metric is the fact that the disclosure metric is defined in relation to the

number of watermarked polygons, while the overlap and gap metrics are defined in relation

to the number of vertices. As the number of polygons has a smaller range than the number

of vertices, the metrics show more variation for the disclosure metric.

7.5 Summary

In this Chapter, the importance of a metric to assess topological distortions in watermarked

vector maps is discussed, and a metric for polygon-based vector maps is proposed. This

chapter looked at three distortions that can occur when polygon topology rules are broken

in the watermarking process: polygon disclosures, overlaps and gaps.

Maps and watermarks of different sizes were used, as well as two different watermarking

approaches to test the metrics; thus, four datasets were used, where each dataset had vary-

ing degrees of size in terms of number of polygons and number of vertices. Each dataset

contained two maps, which had opposite ratios of number of vertices per polygon. By using

k-means clustering to embed the watermark, the size of the watermark is controlled and

experimented with three sizes corresponding approximately to 25% (16–117 polygons), 33%
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Figure 7.10: Distance-based approach gap metric (M2).

(12–88 polygons) and 50% (24–176 polygons) of the number of polygons in the original maps.

The results indicate that the metrics allow comparisons between watermarked maps of dif-

ferent sizes and of different watermark sizes, and, thus, can be used to asses the quality of

watermarked vector maps.

The proposed metric described and tested in this Chapter is a first step towards a standard

metric for watermarked vector map quality that assesses topological distortion.
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Table 7.5: The overall metric (M) for coordinate-based and distance-based embedding meth-
ods.

Dataset Map Coordinate Distance
M M

1 MOR (25%) 0.41667 0.33333
MOR (33%) 0.39583 0.33333
MOR (50%) 0.45833 0.33333
SWA (25%) 0.52381 0.33333
SWA (33%) 0.50000 0.33333
SWA (50%) 0.51852 0.33333

2 CNG (25%) 0.44444 0.33333
CNG (33%) 0.45833 0.33333
CNG (50%) 0.49275 0.33333
GIN (25%) 0.54762 0.33333
GIN (33%) 0.52632 0.33333
GIN (50%) 0.53571 0.33333

3 EGY (25%) 0.47475 0.33333
EGY (33%) 0.50388 0.33333
EGY (50%) 0.48205 0.33333
CHA (25%) 0.52490 0.33333
CHA (33%) 0.53161 0.33333
CHA (50%) 0.50958 0.33333

4 GHA (25%) 0.50476 0.33333
GHA (33%) 0.52174 0.33333
GHA (50%) 0.51691 0.33333
BUF (25%) 0.50000 0.33333
BUF (33%) 0.50712 0.33333
BUF (50%) 0.49621 0.33333
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Figure 7.11: Coordinate-based overall metric (M).
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Figure 7.12: Distance-based overall metric (M).
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Chapter 8

Workload Balanced GIS Map

Clustering

The growing demand for Geographic Information Systems (GIS) calls for high computation

reliability, as the spatial data grow rapidly in volume and require more complex computation.

Integrating parallel computing and spatial analysis tasks provides a promising solution to the

complexity of GIS data processing (Wei et al., 2015; McKenney and Schneider, 2007; Shuliang

et al., 2013; Fu et al., 2011; Wang et al., 2015c; Zhang et al., 2016).

GIS data can be categorized into two main structures1: raster data structure and vector

data structure. The raster structure (image) stores the geographic information into the form

of grid cells, and each cell represents the natural corresponding value on the ground (e.g.

color scale). On the other hand, the vector data structure stores the geographic information

into geometrical entities which have properties such as length, a starting point and an ending

point. GIS vector data is defined by a sequence of coordinates, and includes shapes such as

points, polylines and polygons. This Chapter focuses on the vector polygon type of GIS data.

The MapReduce (Dean and Ghemawat, 2004) model implementation for parallel comput-

ing shows a considerable efficiency in handling large-scale datasets in general. MapReduce,

as its name suggests, refers to two separate tasks: the mapping task and the reduce task.

In the map task the whole data set is partitioned into several smaller sub-sets, which are

indexed by using tuples on the basis of key/value pairs. In the reduce task, the results of

processing the sub-sets are combined by using the key/value pairs to form an output for the

whole dataset.

A better parallel computing scheme should ensure balanced workload at different data

processors to ensure optimal use of computing resources (i.e. distribute the workload equally

1http://www.ordnancesurvey.co.uk/support/understanding-gis/raster-vector.html
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to all processors, rather than having some overloaded processors and some idle ones), which

poses more challenges with GIS data (Zhao et al., 2016; Wei et al., 2015; Qiu et al., 2015;

Gufler et al., 2012; Dean and Ghemawat, 2004). In the context of GIS vector data, the most

known examples of MapReduce implementation are Spatial-Hadoop (Eldawy and Mokbel,

2015) and GIS-Hadoop (Aji et al., 2013). They have been introduced as potential solutions

for parallel spatial data processing. Although these systems have shown a good performance

in terms of spatial data storage and query processing, they still lack the partition strategy

that meets the workload balancing requirement.

A particular challenge in most spatial analysis tasks is that a map polygon should be

processed as a united structure that consists of a set of vertices. Each vertex can be consid-

ered as a tuple in database terminology. The workload balancing, in case of GIS data, could

be met by partitioning the GIS map into groups of polygons where these groups should be

approximately equal in terms of the total number of vertices, which is an optimization chal-

lenge. A common heuristic approach for optimisation is the use of evolutionary computation

algorithms, of which the most popular is the Genetic Algorithm (GA) approach.

In this Chapter, we argue that the workload balancing challenge could be solved by

applying evolutionary computation to partition large GIS maps into groups of polygons.

These groups should be approximately equal in terms of the total number of vertices, and

we propose an evolutionary computation based approach that consider both the nature of

spatial data and the workload balancing requirement to extend the computation reliability

for processing GIS complex data.

The rest of this Chapter is organized as follows: Section 8.1 introduces the proposed

evolutionary based approach for balanced workload based GIS vector map partitioning. Sec-

tion 8.2 describes the experiments, including the data used and the experimental setup for

the evaluation of the proposed partitioning approach. Section 8.3 discusses the experimental

results, while Section 8.4 concludes this Chapter.

8.1 GIS Map Partitioning

This section outlines the main steps for implementing the proposed partitioning approach,

including the map index computation, and applying the genetic algorithm to the problem of

workload-balanced partitions in the context of spatial data.
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Original Map - ESRI Shapefile.shp
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Evolutionary Compu-
tation Implementation

Fitness Function Evaluation

Terminate and return best solution

Figure 8.1: The proposed evolutionary-based approach.

8.1.1 Map Indexes/Indices Computation

In the proposed approach, we argue that the use of polygons’ representatives (indexes) will

lead to faster processing rather than the use of the whole set of polygons’ vertices. For

identifying the map spatial features (polygons) indexes, we used the polygon’s property of

bounding box. Each polygon in the GIS vector map has a defined bounding box, which

identifies the boundaries of each polygon in the map; the coordinates for the bounding box

are available in the shapefile (ESRI, 1998). The polygons’ bounding box centers are calculated

in both axes, as shown in Equation (8.1) and Equation (8.2), respectively.

xc =
xmin + xmax

2
(8.1)

yc =
ymin + ymax

2
(8.2)

where: xc and yc are the coordinates of polygon’s center in both x and y axes respectively;

xmin is the minimum vertex coordinate in x-axis; xmax is the maximum vertex coordinate

in x-axis; ymin is the minimum vertex coordinate in y-axis; ymax is the maximum vertex

coordinate in y-axis. xmin, xmax, ymin and ymax are each of 8-byte length (ESRI, 1998).

8.1.2 Evolutionary Computation Implementation

The Genetic Algorithm (GA) optimization technique is based on random search and has

many advantages, such as performing search in complex and large spaces, and providing
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Algorithm 4 Genetic Algorithm

Data: polygon based map; Seed Population(POP Size); crossover rate; mutation rate
Result: near-optimal balanced map partitions
START Initiate POP (POPsize) Evaluate POP while GEN ≤ GENsize do

for i← 1 to POPsize × crossoverratio do
Parent1 = Tournament Selection (POP , Tsize Parent2 = Tournament Selection
(POP , Tsize (Child1, Child1) = crossover(Parent1 , Parent2)

end
POPnew ← Child1 POPnew ← Child2 for i← 1 to POPsize ×mutationratio do

Parent1 = Tournament Selection (POP , Tsize Child1 = mutate(Parent1)
end
POPnew ← Child1 POP ← POPnew Evaluate POP GEN + +

end
Print best evolution/solution STOP

near-optimal solutions. Unlike other optimization methods, GA is more suitable to this

context of discrete variables based optimization problems. As shown in Algorithm 4, GA is a

heuristic search algorithm that is based on evolutionary computation, which uses a random

search to solve optimization problems. GA involves five main phases: initial population,

fitness computation, selection, crossover and mutation. In Algorithm 4, POP refers to the

population of individuals; POPsize represents the number of populations; GENsize represents

the number of generations; Tsize is the number of tournaments.

The initial population is randomly generated as a set of individuals, called a population,

that represent solutions to the map partition problem. The parent selection is the process

of selecting the fittest two pairs of individuals (i.e candidate solutions), based on standard

deviation value, to be used in producing the next generation. As shown in Fig. 8.2, the

crossover operator is the process of mating the selected parents to produce the next generation

by identifying a crossover point. One crossover point is selected, and the coordinate values

after the crossover point are copied from the second parent to the first child, and from

the first parent to the second child. The mutation operator is responsible for maintaining

diversity within the population and preventing premature convergence. As shown in Fig. 8.3,

the selected coordinate value is inverted to a new coordinate value. The parent selection,

crossover and mutation processes are carried for both horizontal lines (X–axis) and vertical

lines (Y–axis), as shown in Fig 8.4.

In the proposed approach, the resulted lines are combined to form the partitioning so-

lutions, i.e. a set of three horizontal lines and three vertical lines would lead to sixteen

(4 × 4) partitions. A collection of such solutions is called a population. The tournament

selection method is used for selecting the parents, which has the advantage of diversifying

the individuals set (i.e. candidate solutions). The process of parent selection, crossover and
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41.8 42.5 43.3 Parent 1

42.1 42.7 43.2 Parent 2

41.8 42.7 43.2 Child 1

42.1 42.5 43.3 Child 2

Figure 8.2: Crossover Diagram Example
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Figure 8.3: Mutation Diagram Example

mutation continues iteratively for a specified number of generations until the fitness function

is satisfied.

The fitness function for the problem is the standard deviation, as illustrated in Equation

(8.3). The best solution is defined by the minimum standard deviation value.

σ =

√∑N
i=1 (xi − µ)2

N
(8.3)

where: σ is the standard deviation; xi represents each value in the population; µ is the mean

value of the population; and N is the number of values in the population.

The standard deviation is calculated at the level of the set of map partitions, where each

set contain a number of polygons. The smaller the value of the standard deviation, the better
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Figure 8.4: Chromosome example of the horizontal and vertical solution lines (3× 3 lines or
4× 4 cells)

the balance between the partitions according to the total number of vertices.

8.2 Data and Experiments

This section discusses the experimental setup for evaluating the performance and effectiveness

of the proposed approach. Section 8.2.1 describes the data used in two sets of experiments;

the initial set of experiments showed that some partitions had no vertices due to the uneven

distribution of the data; consequently, an additional step was added to the partitioning ap-
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proach to deal with these issues and a second set of experiments was carried out. Section 8.2.2

describes the initial experiments, while Section 8.2.3 describes the second set of experiments.

8.2.1 Data and Materials

We implemented the proposed approaches on a PC machine with the following specification:

Windows–7 home premium 64-bits operating system, CPU 2.5GHz and RAM 4GB. The pro-

gramming tasks has been implemented with Java version 8 update 171 in Netbeans integrated

development environment.

To allow comparisons for maps of different sizes in terms of number of polygons and

number of vertices, four datasets (of two maps each) combining high and low numbers of

polygons and vertices were used, respectively:

• Dataset 1 includes maps with small number of polygons and small number of vertices.

• Dataset 2 includes maps with small number of polygons and large number of vertices.

• Dataset 3 includes maps with large number of polygons and small number of vertices.

• Dataset 4 includes maps with large number of polygons and large number of vertices.

Within each dataset, the two maps are chosen to represent opposite ratios of number of

polygons to number of vertices, i.e. one map has on average a smaller number of vertices per

polygon compared with the other map in the same dataset. As shown in Table 8.1, eight GIS

vector maps were used to implement the proposed approach, which are illustrated in Fig. 8.5,

Fig. 8.6, Fig. 8.7 and Fig. 8.8.

Table 8.1: The datasets with corresponding number of polygons, vertices and proportions of
map size.

Dataset Map No. of Polygons No. of Vertices Average no. of
vertices/polygon

1 Djibouti 11 676 61
Somalia 88 3175 36

2 Guinea 56 21304 380
Zimbabwe 81 32382 399

3 Liberia 305 10521 34
Chad 347 19542 56

4 Burkina Faso 351 113996 324
Ethiopia 575 261880 455

The used GIS maps are polygon-based maps that represent administrative boundaries of 8

countries in Africa, they are: Djibouti map of 11–polygons and 676–vertices (Fig.8.5a), Soma-

lia map of 88–polygons and 3175–vertices (Fig.8.5b), Guinea map of 56–polygons and, 21304–

vertices (Fig.8.6a), Zimbabwe map of 81–polygons and 32382–vertices (Fig.8.6b), Liberia map
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Figure 8.5: Data set 1.
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Figure 8.6: Data set 2.
of 305–polygons and 10521–vertices (Fig.8.7a), Chad map of 347–polygons and 19542–vertices

(Fig.8.7b), Burkina Faso map of 351–polygons and 113996–vertices (Fig.8.8a) and Ethiopia

map of 575–polygons and 261880–vertices (Fig.8.8b). These vector maps are freely available,

in ESRI shapefile format2, from the Map Library website3. ESRI Shapefiles (.shp) are con-

sidered as a popular format for geographic information system applications (Abubahia and

Cocea, 2017). They have several key features: supporting point, polyline and polygon geom-

etry formats, fast shape editing, easy reading and writing, small storage space, and storing

both spatial/attribute information (ESRI, 1998).

2http://www.esri.com
3http://www.maplibrary.org/library/stacks/Africa/index.htm
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Figure 8.7: Data set 3.
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Figure 8.8: Data set 4.
We ran an initial experiment which is described in Section 8.2.2 in which we found that

some partitions had no vertices, especially for maps containing concave shapes. To address

this issue, we introduce a merging step at each iteration. Consequently, we refer to the

fist experiment as ”non-merging” (described in Section 8.2.2) and the second experiment as

”merging” (described in Section 8.2.3).

8.2.2 Non–merging based experiment

The experimental setup were as follows: both population size and generation number pa-

rameters were set to 10, 15 or 20, respectively. The crossover parameter was set to 0.8, the
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mutation parameter was set to 0.1, and the ratio parameter was set to 0.1. Moreover, each

of these experiments was ran for 51 times – an odd number was chosen to have a median

value as a data point rather than an average of the middle two data points. The standard

deviation is used as the fitness function.

In the experiments, the number of grid cells (i.e. the number of partitions) were selected

according to the number of polygons. For more clarification, the number of cells was set

to 4 × 4 for maps with small number of polygons (i.e maps of Djibouti, Somalia, Guinea

and Zimbabwe), while the number of cells was set to 6× 6 for maps with a large number of

polygons (i.e maps of Liberia, Chad, Burkina Faso and Ethiopia). The number of partitions

can be user-defined to match the available number of processors in systems like MapReduce.

8.2.3 Merging based experiment

This approach follows the same implementation steps as in the non-merging experiment that

were given above

The only difference is that before computing the fitness function, a merging procedure is

applied to the partitions based on a threshold value. In this Chapter, the average number

of vertices per polygon is used as threshold value. This will be advantageous in avoiding the

partitions that contain no vertices, i.e the number of vertices is equal to zero.

The threshold value (i.e. the number of vertices per cell) were selected according to the

average number of vertices per polygon, and then set as follows: Djibouti Map (61 vertices),

Somalia Map (36 vertices), Guinea Map (380 vertices), Zimbabwe Map (399 vertices), Liberia

Map (34 vertices), Chad Map (56 vertices), Burkina Faso Map (324 vertices), and Ethiopia

Map (455 vertices).

8.3 Results and Discussion

In this section the experimental results of the two sets of results are presented and discussed.

Fig.8.9 shows a solution example for the Djibouti map for both the non-merging and

merging-based partitioning results for the experimental settings of: 51 run times, population

size parameter of 20, generation number parameter of 20, crossover parameter of 0.8, mutation

parameter of 0.1, and the ratio parameter of 0.1.

In the non–merging experiment, as shown in the Figure 8.9 (a), there are 16–cells that

represent the resulted partitions. Two partitions, i.e. upper-left and upper-right corner

cells, contain no vertices. Figure 8.9 (b) illustrates clearly how the number of vertices are

distributed over the resulted partition based number of grid cells.

138



Chapter 8. Workload Balanced GIS Map Clustering

Y
–
a
x
is

X–axis

45 71 47 0

85 0 90 0

35 16 95 77

0 55 60 0

X–axis

Y
–
a
x
is

338 338

(a) Resulted Partitions (Non–merging Approach) (b) No. of vertices per cell in (a)

(c) Resulted Partitions (Merging Approach) (d) No. of vertices per cell in (c)

Figure 8.9: Djibouti Map, examples of the best solution (chromosome)

In the merging experiment, as shown in the Figure 8.9 (c), there are 2 cells that represent

the resulted partitions which should contain equal or nearly-equal number of vertices. In the

shown figure each cell contains 338 vertices. Figure 8.9 (d) illustrate clearly how the number

of vertices are distributed over the resulted partition based number of grid cells.

To compare the results of the two sets of experiments, as well as the influence of the

different values for the population size and the number of generations, we present the results

in the form of box plots illustrating the range of values for the fitness function, i.e. the

standard deviation.

A box plot, as shown in Figure 8.10, is a graphical shape for displaying the statistical

range of values. Beginning from the top, the upper whisker represents the highest value in

the range. Seventy-five percent (75%) of the resulted values fall below the upper quartile.

The median marks the middle-point of the resulted standard deviation values and is shown

by the line that divides the box into two parts. Half of the resulted values are greater than

or equal to this value and half of the results have values lower than the median. Twenty-five

percent (25%) of the resulted standard deviation values fall below the lower quartile. Finally,

the lower whisker represents the smallest value in the range.
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Figure 8.10: Box Plot Diagram

Figures 8.11, 8.12 and 8.13 display the results for Dataset 1 for population sizes of 10,

15 and 20, respectively. Similarly, Figures 8.14, 8.15 and 8.16 display the results for Dataset

2; Figures 8.17, 8.18, 8.19 illustrate the results for Dataset 3, and Figures 8.20, 8.21, 8.22

diaplay the results for Dataset 4.

The experimental results show that an increase in the population size leads to lower values

for the standard deviation, which indicates better solutions, i.e. a more even distribution of

the vertices among the partitions. Experiments with the Djibouti map, for example, show

that when using the population size of 10, the standard deviation values range between 34.5

and 46.8 for the non–merging approach (top left in Figure 8.11), and between 0 and 11.2 for

the merging approach (top right in Figure 8.11). For the population size of 15, the standard

deviation values range between 34.5 and 40.8 for the non–merging approach (top left in

Figure 8.12), and between 0 and 5.1 for to the merging approach (top right in Figure 8.12).

For the population size of 20, the standard deviation values range between 34.5 and 37.1 for
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Figure 8.11: Dataset 1, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 10
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the non–merging approach (top left in Figure 8.13), and between 0 and 4.5 for the merging

approach (top left in Figure 8.13).

For all population sizes (10, 15 or 20 populations), the results show that the higher the

generations number (10, 15 or 20 generations) for the reproduction process, the better the

solutions produced, i.e. lower values for the standard deviation. This applies to all datasets

regardless of the number of polygons or the number of vertices. Non–merging based experi-

ments with the Liberia map (dataset 3), for example, show that in non–merging based exper-

iments with population size of 20, when reproducing for 10 generations for the non–merging

approach, the standard deviation values range between 203 and 318.6; for 15 generations, the

standard deviation values are reduced to the range between 203 and 307.6; for 20 generations,

the range is further reduced between 203 and 292.3; (top left in Figure 8.19.

While when experimenting with the same map, show that in merging based experiments

with population size of 20, when reproducing for 10 generations for the non–merging approach,

the standard deviation values range between 116.6 and 284.4; for 15 generations, the standard

deviation values are reduced to the range between 116.6 and 257.7; for 20 generations, the

range is further reduced between 116.6 and 245.8; (top right in Figure 8.19.

When comparing both experiments with population size of 20 and generation size of 20,

it can be seen that the merging based experiment showed better standard deviation values

than the non–merging based experiment. for example, for the map of Ethiopia (Figure 22,

dataset 4), for the non-merging approach the standard deviation values range between 4895.7

and 9414.4 , while for the merging approach the range of the standard deviation values is
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Figure 8.12: Dataset 1, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 15
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Figure 8.13: Dataset 1, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 20

between 3766.6 and 7757.7.

All mentioned trends – i.e. the results improve with increasing population size, the results

improve with increasing numbers of generations and the results improve in the merging ap-

proach compared with the non-merging approach – can be observed for all datasets: Dataset 1

(Figures 8.11, 8.12 and 8.13), Dataset 2 (Figures 8.14, 8.15 and 8.16), Dataset 3 (Figures 8.17,

8.18, 8.19) and Dataset 4 (Figures 8.20, 8.21, 8.22).

8.4 Summary

In this Chapter, we discussed and highlighted the importance of workload balancing for

GIS vector map partitioning. To address this problem, we proposed an evolutionary-based

approach for GIS map partitioning using the Genetic Algorithm (GA).

The proposed approach considers the nature of spatial data to increase the computation

performance for processing GIS polygon-based maps with massive number of vertices and

complex shapes. Four datasets were used, where each dataset had varying degrees of size

in terms of number of polygons and number of vertices. Each dataset contained two maps,

which had opposite ratios of number of vertices per polygon.

A set of experiments on the four datasets were implemented to assess the influence of

the evolutionary genetic algorithm parameters including the population size and the number

of generations. The results showed the reliability of the proposed partitioning for workload

balancing approach in real GIS map based parallel processing scenarios. The use of evolu-
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Figure 8.14: Dataset 2, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 10
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Figure 8.15: Dataset 2, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 15
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Figure 8.16: Dataset 2, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 20
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Figure 8.17: Dataset 3, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 10
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Figure 8.18: Dataset 3, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 15
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Figure 8.19: Dataset 3, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 20
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Figure 8.20: Dataset 4, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 10
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Figure 8.21: Dataset 4, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 15
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Figure 8.22: Dataset 4, comparison between non-merging approach (left column) and merging
approach (right column), No. of runs=51, pop size= 20

tionary computation shows a promising potential in partitioning GIS maps into balanced set

of adjacent polygons based on the number of vertices.
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Chapter 9

Conclusion

This Chapter summarise the main contributions of this thesis, and discusses the important

directions of future work.

9.1 Contribution to Knowledge

In conclusion, this thesis contributes to the current knowledge, as follows:

1. The use of k-medoids clustering technique in the process of identifying the location

for embedding the watermark has an influence on the security of the watermarked

map measured in terms of capacity, fidelity, computational time and robustness. The

experimental results show that both k-medoids and kmeans clustering approaches result

in high fidelity, while the k-medoids based clustering approach achieves a more balanced

trade-off between capacity and fidelity, as well as better computational efficiency due

to the k-medoids characteristics.

2. The use of k-medoids clustering technique in combination with the bounding box cen-

ters has a significant implication on the trade-off between the fidelity and the capacity

metrics, and resulted in higher fidelity as capacity increased. In addition to the im-

provement of the trade-off between fidelity and capacity, the use of bounding box centers

adds more robustness to the simplification and interpolation attacks due to their in-

dependence from the number of vertices in a polygon. The experimental results show

that both k-medoids and kmeans clustering approaches result in high fidelity, while

the k-medoids based clustering approach achieves a more balanced trade-off between

capacity and fidelity, as well as better computational efficiency due to the k-medoids

characteristics.
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3. Regardless of the clustering technique type, merging the use of clustering techniques

with the bounding box property of GIS vector map for locating the watermark bits

into polygons’ vertices has a significant implication on protecting the GIS vector map

copyright, especially in terms of addressing the vulnerability to simplification and inter-

polation attacks, while preserving a good trade-off between fidelity and capacity. The

experimental results show that the advantages of using the bounding box property are

maintained even with k-means clustering approach, and argue that they would hold

regardless of the method used for identifying the watermark embedding locations in

the map.

4. The use of partitioning clustering techniques in combination with the vector polygon

based map topology rules leads to defining a metric that allow comparisons between

watermarked maps of different sizes and of different watermark sizes, and, thus, can

be used to assess the quality of watermarked vector maps. The experimental results

indicate that the metrics allow comparisons between watermarked maps of different

sizes and of different watermark sizes, and, thus, can be used to asses the quality of

watermarked vector maps.

5. The use of evolutionary computation technique in combination with GIS map properties

advances the implementation of partitioning clustering approach in the context of GIS

vector maps. The experimental results show the capability of the proposed clustering

approach in addressing the issue of workload balancing in the context of GIS vector

map data.

9.2 Future Research Directions

For future research directions, research and experiments will be carried out on computing a

fixed set of initial representatives for the proposed k-medoids-based watermarking approach to

achieve more predictability and efficiency, to eliminate the randomness involved in the initial

selection of the centers involved in the typical PAM-based k-medoids method in Chapter 4.

Also, we will experiment with other clustering approaches proposed in the literature, such as

grid-based and density-based approaches, to explore the capability of different cluster analysis

tools in the research context of GIS vector map data copyright protection.

Moreover, research and experiments will be carried out on addressing the problem of

the randomness in the map polygon indexes associated with odd-even coding to further

understand the behavior of the proposed metric in Chapter 7 with extreme cases. Also,
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the possibility of introducing different weights for the different topological aspects will be

investigated.

In addition, further research and experiments will be carried out on comparing the

proportion-based balancing (e.g. 25%, 33% or 50%) of total number of polygons in com-

parison with the total number of vertices, and investigating the impact of the vector map

shape (concave and convex shapes) on the partitioning experiments in Chapter 8. Also,

the possibility of introducing different vertices relevant weights for the different partitioning

aspects will be investigated.
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Gu, X., Angelov, P. P., and Pŕıncipe, J. C. (2018). A method for autonomous data parti-

tioning. Information Sciences, 460-461:65 – 82.

Gufler, B., Augsten, N., Reiser, A., and Kemper, A. (2012). The Partition Cost Model for

Load Balancing in MapReduce, pages 371–387. Springer New York, New York, NY.

Guo, R.-s. and Peng, F. (2010). Semi-fragile watermarking algorithm for 2D engineering

graphics based on improved odd-even quantization. Journal of Chinese Computer Systems,

10.

Hamzaoui, R. and Saupe, D. (2006). Fractal image compression. In Barni, M., editor,

Document and Image Compression, chapter 6, pages 145–177. CRC.

Han, J., Kamber, M., and Pei, J. (2012). Data Mining: Concept and Techniques. Morgan

Kaufmann, Waltham, 3rd edition.

Han, J., Lee, J.-G., and Kamber, M. (2009). An Overview of Clustering Methods in Geo-

graphic Data Analysis, chapter 7, pages 150–187. Taylor & Francis Group, LLC, 2 edition.

Haowen, Y. (2011a). Watermarking algorithm for vector point clusters. In 7th International

Conference on Wireless Communications, Networking and Mobile Computing, pages 1–4.

Haowen, Y. (2011b). Watermarking algorithm for vector point clusters. In 7th International

Conference on Wireless Communications, Networking and Mobile Computing (WiCOM),

pages 1–4.

Hassan, R. and Mohammed, M. (2017). Information hiding using geographic information

system (GIS) vector file 2017. Engineering and Technology Journal.

He, X., Zhu, C., and Wang, Q. (2009). The blind watermarking model of the vector geospatial

data based on DFT of QIM. In IEEE International Conference on Network Infrastructure

and Digital Content, pages 1039–1044.

157



Bibliography

Horness, E., Nikolaidis, N., and Pitas, I. (2007). Blind city maps watermarking utilizing road

width information. In 15th European Signal Processing Conference, pages 2291 – 2295,

Poland.

Hou, H., Li, J., Qi, J., and Guo, J. (2014). A blind watermarking for 2D-vector engineering

graphics. Information Technology Journal, pages 869–873.

Hou, X., Min, L., and Yang, H. (2018). A reversible watermarking scheme for vector maps

based on multilevel histogram modification. Symmetry, 10(9).

Hu, J. and Geng, M. (2013). A reversible watermarking algorithm for 2d vector maps. In

2nd International Symposium on Instrumentation and Measurement, Sensor Network and

Automation, pages 1101–1104.

Huan, Y. and Yufeng, G. (2009). A digital watermarking algorithm for cad two-dimensional

graphics. Electronic Measurement Technology, 4.

Huang, L., Zhou, W., Jiang, R., and Li, A. (2010). Data quality inspection of watermarked

GIS vector map. In Geoinformatics, 2010 18th International Conference on, pages 1–5.

Huang, X.-s. and Gu, J.-w. (2006). A non-blind detection watermarking algorithm for 2-

dimensional engineering drawings. Journal of Engineering Graphics, 4.

Huber, S., Kwitt, R., Meerwald, P., Held, M., and Uhl, A. (2010). Watermarking of 2D vector

graphics with distortion constraint. In IEEE International Conference on Multimedia and

Expo, pages 480–485.

Huo, X.-J., Lee, S.-H., Kwon, S.-G., Moon, K.-S., and Kwon, K.-R. (2011a). A watermarking

scheme for shapefile-based GIS digital map using polyline perimeter distribution. Journal

of Korea Multimeadia Society, 14(5):595 – 606.

Huo, X.-J., Moon, K.-S., Lee, S.-H., Seung, T.-Y., and Kwon, S.-G. (2011b). Protecting

GIS vector map using the k-means clustering algorithm and odd-even coding. In 17th

Korea-Japan Joint Workshop on Frontiers of Computer Vision, pages 1–5. IEEE.

Huo, X.-J., Moon, K.-S., Lee, S.-H., Seung, T.-Y., and Kwon, S.-G. (2011c). Protecting

GIS vector map using the k-means clustering algorithm and odd-even coding. In 17th

Korea-Japan Joint Workshop on Frontiers of Computer Vision, pages 1–5.

Huo, X.-J., Seung, T.-Y., Jang, B.-J., Lee, S.-H., and Kwon, S.-G. (2010). A watermark-

ing scheme using polyline and polygon characteristic of shapefile. In 3rd International

Conference on Intelligent Networks and Intelligent Systems, pages 649–652.

158



Bibliography

Huynh-Thu, Q. and Ghanbari, M. (2008). Scope of validity of PSNR in image/video quality

assessment. Electronics Letters, 44(13):800–801.

Im, D.-H., Lee, H.-Y., Ryu, S.-J., and Lee, H.-K. (2008). Vector watermarking robust to

both global and local geometrical distortions. IEEE Signal Processing Letters, 15:789–792.

Jang, B.-J., Lee, S.-H., Lee, E.-J., Lim, S., and Kwon, K.-R. (2016). A crypto-marking

method for secure vector map. Multimedia Tools and Applications, pages 1–34.

Jasim, M. and Asadi, T. A. (2012). New graph mining algorithm for vector GIS systems.

In 8th International Conference on Computing Technology and Information Management

(NCM and ICNIT), volume 1, pages 335–338.

Ji, G. and Zhang, L. (2009). A spatial polygon objects clustering algorithm based on topolog-

ical relations for GML data. In 2009 International Conference on Information Engineering

and Computer Science, pages 1–4.

Jia, P., Chen, Y., Ma, J., and Zhu, D. (2006). Digital watermark-based security technology

for geo-spatial graphics data. Chinese Geographical Science, 16(3):276–281.

Jian-Guo, S., Guo-Yin, Z., Ai-Hong, Y., and Jun-Peng, W. (2014). A reversible digital water-

marking algorithm for vector maps. International Journal of Network Security, 16(1):40–45.

Jiang, K., Zhu, K. Q., Huang, Y., and Ma, X. (2013). Watermarking road maps against

crop and merge attacks. In 1st ACM Workshop on Information Hiding and Multimedia

Security, IHMMSec ’13, pages 221–230, New York, NY, USA.

Jianguo, S., Chonghui, Z., and Di, G. (2014). Lossless digital watermarking scheme for image

maps. Communications, China, 11(8):125–130.

Jianguo, S., Liang, K., and Songzhu, X. (2013a). Research of lossless digital watermarking

technology. Applied Mechanics and Materials, 333:1219–1223.

Jianguo, S., Liang, K., and Songzhu, X. (2013b). Research of lossless digital watermarking

technology. Applied Mechanics and Materials, 333:1219–1223.

Jianguo, S., Songzhu, X., and Guoyin, Z. (2012). Vector map watermarking evaluation based

on certainty factor. Journal of Theoretical and Applied Information Technology, 46(1):67

– 72.

159



Bibliography

Joshi, D., Samal, A., and Soh, L.-K. (2009a). A dissimilarity function for clustering geospatial

polygons. In Proceedings of the 17th ACM SIGSPATIAL International Conference on

Advances in Geographic Information Systems, pages 384–387, New York, NY, USA. ACM.

Joshi, D., Samal, A. K., and Soh, L. K. (2009b). Density-based clustering of polygons. In

2009 IEEE Symposium on Computational Intelligence and Data Mining, pages 171–178.

Joshi, D., Soh, L. K., and Samal, A. (2009c). Redistricting using heuristic-based polygonal

clustering. In 2009 Ninth IEEE International Conference on Data Mining, pages 830–835.

Joshi, D., Soh, L.-K., and Samal, A. (2012). Redistricting using constrained polygonal clus-

tering. IEEE Transactions on Knowledge and Data Engineering, 24(11):2065 – 2079.

Junfeng, Z. and Bing, X. (2011). Research on digital watermarking algorithms for 2D graph-

ics. In IEEE 3rd International Conference on Communication Software and Networks,

pages 179–183.

Kan, Y.-h., Yang, C.-s., Cui, H.-c., Wang, Y.-y., and Liu, R. (2010). High-fidelity digital

watermarking algorithm for vector geospatial data. Journal of Geomatics Science and

Technology, 2.

Kang, H., Kim, K., and Choi, J. (2001a). A vector watermarking using the generalized square

mask. In International Conference on Information Technology: Coding and Computing,

pages 234–236.

Kang, H., Kim, K., and Choi, J. (2002). Map data watermarking using generalised square

mask. Electronics Letters, 38:1645–1646.

Kang, H. I., Kim, K. I., and Choi, J. U. (2001b). A map data watermarking using the

generalized square mask. In IEEE International Symposium on Industrial Electronics,

volume 3, pages 1956–1958.

Kang, J.-j. and Zhang, H.-l. (2009). Blind watermarking algorithm for 2d engineering graphics

based on fractional fourier transform. Journal of Computer Applications, 6.

Katzenbeisser, S. and Petitcolas, F. (2000). Information Hiding Techniques for Steganography

and Digital Watermarking. Computer Security Series. Artech House.

Kennedy, M. (2013). Introducing Geographic Information Systems with ArcGIS. John Wiley

and Sons.

160



Bibliography

Kim, J. (2010a). Robust vector digital watermarking using angles and a random table.

Advances in Information Sciences and Service Sciences, 2(4):79–90.

Kim, J. (2010b). Vector map digital watermarking using angles. In 6th International Con-

ference on Networked Computing and Advanced Information Management, pages 417–423.

Kim, J. and Hong, S. (2009). Development of digital watermarking technology to protect

cadastral map information. In 2nd International Conference on Interaction Sciences: In-

formation Technology, Culture and Human, pages 923–929.

Kim, J., Won, S., Zeng, W., and Park, S. (2011). Copyright protection of vector map using

digital watermarking in the spatial domain. In 7th International Conference on Digital

Content, Multimedia Technology and its Applications, pages 154–159.

Kingston, R. (2007). Public participation in local policy decision-making: The role of web-

based mapping. The Cartographic Journal, 44(2):138–144.

Kisore, N. R. and Koteswaraiah, C. B. (2017). Improving atm coverage area using density

based clustering algorithm and voronoi diagrams. Information Sciences, 376:1 – 20.

Kitamura, I., Kanai, S., and Kishinami, T. (2001). Copyright protection of vector map

using digital watermarking method based on discrete fourier transform. In International

Symposium on Geoscience and Remote Sensing, volume 3, pages 1191–1193.

Kolatch, E. (2001). Clustering algorithms for spatial databases: A survey.

Lafaye, J., Béguec, J., Gross-Amblard, D., and Ruas, A. (2007a). Geographical database

watermarking by polygon elongation. Technical report, HAL.

Lafaye, J., Béguec, J., Gross-Amblard, D., and Ruas, A. (2007b). Invisible graffiti on your

buildings: Blind and squaring-proof watermarking of geographical databases. In Papadias,

D., Zhang, D., and Kollios, G., editors, Advances in Spatial and Temporal Databases,

volume 4605 of LNCS, pages 312–329. Springer Berlin.

Lafaye, J., Béguec, J., Gross-Amblard, D., and Ruas, A. (2012). Blind and squaring-resistant

watermarking of vectorial building layers. GeoInformatica, 16(2):245–279.

Lan, H. and Peng, Y. (2017). Reversible fragile watermarking for fine-grained tamper local-

ization in spatial data. In ADC.

Lee, S.-H., Hwang, W.-J., and Kwon, K.-R. (2014). Polyline curvatures based robust vector

data hashing. Multimedia Tools and Applications, 73(3):1913–1942.

161



Bibliography

Lee, S.-H. and Kwon, K.-R. (2010). CAD drawing watermarking scheme. Digital Signal

Processing, 20(5):1379 – 1399.

Lee, S.-H. and Kwon, K.-R. (2013). Vector watermarking scheme for GIS vector map man-

agement. Multimedia Tools and Applications, 63(3):757–790.

Lele, W., Wei, L., and Yinghong, D. (2013). A good anti-robust algorithm with map water-

marking. In Zhang, W., editor, Advanced Technology in Teaching, volume 163 of Advances

in Intelligent and Soft Computing, pages 789–794. Springer Berlin.

Li, A., Chen, Y., Lin, B., Zhou, W., and Lu, G. (2008a). Review on copyright marking

techniques of GIS vector data. In International Conference on Intelligent Information

Hiding and Multimedia Signal Processing, pages 989–993.

Li, A., Lin, B.-x., Chen, Y., and Lu, G. (2008b). Study on copyright authentication of GIS

vector data based on zero-watermarking. The International Archives of the Photogramme-

try, Remote Sensing and Spatial Information Sciences, XXXVII:1783–1786.

Li, A., Lv, G., Zhou, L., Lin, B., and Gu, Z. (2009). Real-time copyright protection for

spatial data files. Journal of Geo-Information Science, 1.

Li, A., Zhou, W., Lin, B., and Chen, Y. (2008c). Copyright protection for gis vector data

production. In Geoinformatics 2008 and Joint Conference on GIS and Built Environment:

Geo-Simulation and Virtual GIS Environments, volume 7143, pages 71432–71439.

Li, A.-B., Li, S.-S., and Lv, G.-N. (2012a). Disguise and reduction methods of GIS vector

data based on difference expansion principle. Procedia Engineering, 29(0):1344 – 1350.

Li, B., Zhang, X., Jiang, X., and Ai, Q. (2014a). A selective authentication watermarking

algorithm for 2D CAD engineering drawings based on entity localization. In Innovative

Design and Manufacturing (ICIDM), Proceedings of the 2014 International Conference on,

pages 82–87.

Li, Q., Min, L.-q., Wang, F., Yang, Y.-q., and He, H.-z. (2011). A watermarking algorithm

of anti douglas compression for vector map data. Science of Surveying and Mapping, 3.

Li, Q., Min, L.-q., Wu, B., and Yang, Y.-q. (2010). A practical blind digital watermarking

scheme for vector map data. Engineering of Surveying and Mapping, 4.

Li, S.-S., Zhou, W., and Li, A.-B. (2012b). Image watermark similarity calculation of GIS

vector data. Procedia Engineering, 29:1331–1337.

162



Bibliography

Li, X., Li, W., Anselin, L., Rey, S., and Koschinsky, J. (2014b). A MapReduce algorithm to

create contiguity weights for spatial analysis of big data. In Proceedings of the 3rd ACM

SIGSPATIAL International Workshop on Analytics for Big Geospatial Data, pages 50–53,

New York, NY, USA. ACM.

Li, Y. and Xu, L. (2003). A blind watermarking of vector graphics images. In 5th International

Conference on Computational Intelligence and Multimedia Applications, pages 424–429.

Li, Y. and Xu, L. (2004). Vector graphical objects watermarking scheme in wavelet domain.

Acta Photonica Sinica, 1.

Liang, B., Rong, J., and Wang, C. (2010). A vector maps watermarking algorithm based on

DCT domain. In The Canadian Geomatics Conference and Symposium of Commission,

volume XXXVIII.

Lin, B. and Li, A. (2010). Study on benchmark system for copyright marking algorithms of

GIS vector data. In 18th International Conference on Geoinformatics, pages 1–5.

Lin, Z., Peng, F., and Long, M. (2018). A low-distortion reversible watermarking for 2d

engineering graphics based on region nesting. IEEE Transactions on Information Forensics

and Security, 13(9):2372–2382.

Lin, Z.-x., Peng, F., and Long, M. (2017). A reversible watermarking for authenticating 2d

vector graphics based on bionic spider web. Image Commun., 57(C):134–146.

Ling, Y., Lin, C.-F., and Zhang, Z.-y. (2012). A zero-watermarking algorithm for digital

map based on DWT domain. In He, X., Hua, E., Lin, Y., and Liu, X., editors, Computer,

Informatics, Cybernetics and Applications, volume 107 of LNEE, pages 513–521. Springer

Netherlands.

Liu, R., Wang, H., and Yu, X. (2018). Shared-nearest-neighbor-based clustering by fast search

and find of density peaks. Information Sciences, 450:200 – 226.

Liu, Y., Yang, F., Gao, K., Dong, W., and Song, J. (2017). A zero-watermarking scheme

with embedding timestamp in vector maps for big data computing. Cluster Computing,

20(4):3667–3675.

Longley, P. A., Goodchild, M., Maguire, D. J., and Rhind, D. W. (2011). Geographic Infor-

mation Systems and Science. John Wiley and Sons, 3 edition.

Longley, P. A., Goodchild, M. F., Maguire, D. J., and Rhind, D. W. (2005). Geographic

Information Systems and Science. John Wiley & Sons, Ltd, 2nd ed. edition.

163



Bibliography

Lopez, C. (2002). Watermarking of digital geospatial datasets: a review of technical, legal and

copyright issues. International Journal of Geographical Information Science, 16(6):589–607.

Lucchese, C., Vlachos, M., Rajan, D., and Yu, P. (2010). Rights protection of trajectory

datasets with nearest-neighbor preservation. The VLDB Journal, 19(4):531–556.

Magalhaes, K. and Dahab, R. (2009). SB-RAWVEC - a semi-blind watermarking method

for vector maps. In IEEE International Conference on Communications, pages 1–6.

Maguire, D. J. (2015). ArcGIS: General-Purpose GIS Software, pages 1–8. Springer Interna-

tional Publishing, Cham.
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