404 research outputs found

    Semi-Global Stereo Matching with Surface Orientation Priors

    Full text link
    Semi-Global Matching (SGM) is a widely-used efficient stereo matching technique. It works well for textured scenes, but fails on untextured slanted surfaces due to its fronto-parallel smoothness assumption. To remedy this problem, we propose a simple extension, termed SGM-P, to utilize precomputed surface orientation priors. Such priors favor different surface slants in different 2D image regions or 3D scene regions and can be derived in various ways. In this paper we evaluate plane orientation priors derived from stereo matching at a coarser resolution and show that such priors can yield significant performance gains for difficult weakly-textured scenes. We also explore surface normal priors derived from Manhattan-world assumptions, and we analyze the potential performance gains using oracle priors derived from ground-truth data. SGM-P only adds a minor computational overhead to SGM and is an attractive alternative to more complex methods employing higher-order smoothness terms.Comment: extended draft of 3DV 2017 (spotlight) pape

    EpicFlow: Edge-Preserving Interpolation of Correspondences for Optical Flow

    Get PDF
    We propose a novel approach for optical flow estimation , targeted at large displacements with significant oc-clusions. It consists of two steps: i) dense matching by edge-preserving interpolation from a sparse set of matches; ii) variational energy minimization initialized with the dense matches. The sparse-to-dense interpolation relies on an appropriate choice of the distance, namely an edge-aware geodesic distance. This distance is tailored to handle occlusions and motion boundaries -- two common and difficult issues for optical flow computation. We also propose an approximation scheme for the geodesic distance to allow fast computation without loss of performance. Subsequent to the dense interpolation step, standard one-level variational energy minimization is carried out on the dense matches to obtain the final flow estimation. The proposed approach, called Edge-Preserving Interpolation of Correspondences (EpicFlow) is fast and robust to large displacements. It significantly outperforms the state of the art on MPI-Sintel and performs on par on Kitti and Middlebury

    Photo-consistent surface reconstruction from noisy point clouds

    Get PDF
    International audienceExisting algorithms for surface reconstruction from point sets are defeated by moderate amounts of noise and outliers, which makes them unapplicable to point clouds originating from multi-view image data. In this paper, we present a novel method which incorporates the input images in the surface reconstruction process for a better accuracy and robustness. Our approach is based on the medial axis transform of the scene, which our algorithm estimates through a global photo-consistency optimization by simulated annealing. A faithful polyhedral representation of the scene is then obtained by inversion of the medial axis transform

    Multi-View Dynamic Shape Refinement Using Local Temporal Integration

    Get PDF
    International audienceWe consider 4D shape reconstructions in multi-view environments and investigate how to exploit temporal redundancy for precision refinement. In addition to being beneficial to many dynamic multi-view scenarios this also enables larger scenes where such increased precision can compensate for the reduced spatial resolution per image frame. With precision and scalability in mind, we propose a symmetric (non-causal) local time-window geometric integration scheme over temporal sequences, where shape reconstructions are refined framewise by warping local and reliable geometric regions of neighboring frames to them. This is in contrast to recent comparable approaches targeting a different context with more compact scenes and real-time applications. These usually use a single dense volumetric update space or geometric template, which they causally track and update globally frame by frame, with limitations in scalability for larger scenes and in topology and precision with a template based strategy. Our templateless and local approach is a first step towards temporal shape super-resolution. We show that it improves reconstruction accuracy by considering multiple frames. To this purpose, and in addition to real data examples, we introduce a multi-camera synthetic dataset that provides ground-truth data for mid-scale dynamic scenes

    Classic Mosaics and Visual Correspondence via Graph-Cut based Energy Optimization

    Get PDF
    Computer graphics and computer vision were traditionally two distinct research fields focusing on opposite topics. Lately, they have been increasingly borrowing ideas and tools from each other. In this thesis, we investigate two problems in computer vision and graphics that rely on the same tool, namely energy optimization with graph cuts. In the area of computer graphics, we address the problem of generating artificial classic mosaics, still and animated. The main purpose of artificial mosaics is to help a user to create digital art. First we reformulate our previous static mosaic work in a more principled global optimization framework. Then, relying on our still mosaic algorithm, we develop a method for producing animated mosaics directly from real video sequences, which is the first such method, we believe. Our mosaic animation style is uniquely expressive. Our method estimates the motion of the pixels in the video, renders the frames with mosaic effect based on both the colour and motion information from the input video. This algorithm relies extensively on our novel motion segmentation approach, which is a computer vision problem. To improve the quality of our animated mosaics, we need to improve the motion segmentation algorithm. Since motion and stereo problems have a similar setup, we start with the problem of finding visual correspondence for stereo, which has the advantage of having datasets with ground truth, useful for evaluation. Most previous methods for stereo correspondence do not provide any measure of reliability in their estimates. We aim to find the regions for which correspondence can be determined reliably. Our main idea is to find corresponding regions that have a sufficiently strong texture cue on the boundary, since texture is a reliable cue for matching. Unlike the previous work, we allow the disparity range within each such region to vary smoothly, instead of being constant. This produces blob-like semi-dense visual features for which we have a high confidence in their estimated ranges of disparities

    Appearance Modelling and Reconstruction for Navigation in Minimally Invasive Surgery

    Get PDF
    Minimally invasive surgery is playing an increasingly important role for patient care. Whilst its direct patient benefit in terms of reduced trauma, improved recovery and shortened hospitalisation has been well established, there is a sustained need for improved training of the existing procedures and the development of new smart instruments to tackle the issue of visualisation, ergonomic control, haptic and tactile feedback. For endoscopic intervention, the small field of view in the presence of a complex anatomy can easily introduce disorientation to the operator as the tortuous access pathway is not always easy to predict and control with standard endoscopes. Effective training through simulation devices, based on either virtual reality or mixed-reality simulators, can help to improve the spatial awareness, consistency and safety of these procedures. This thesis examines the use of endoscopic videos for both simulation and navigation purposes. More specifically, it addresses the challenging problem of how to build high-fidelity subject-specific simulation environments for improved training and skills assessment. Issues related to mesh parameterisation and texture blending are investigated. With the maturity of computer vision in terms of both 3D shape reconstruction and localisation and mapping, vision-based techniques have enjoyed significant interest in recent years for surgical navigation. The thesis also tackles the problem of how to use vision-based techniques for providing a detailed 3D map and dynamically expanded field of view to improve spatial awareness and avoid operator disorientation. The key advantage of this approach is that it does not require additional hardware, and thus introduces minimal interference to the existing surgical workflow. The derived 3D map can be effectively integrated with pre-operative data, allowing both global and local 3D navigation by taking into account tissue structural and appearance changes. Both simulation and laboratory-based experiments are conducted throughout this research to assess the practical value of the method proposed

    Discrete and Continuous Optimization for Motion Estimation

    Get PDF
    The study of motion estimation reaches back decades and has become one of the central topics of research in computer vision. Even so, there are situations where current approaches fail, such as when there are extreme lighting variations, significant occlusions, or very large motions. In this thesis, we propose several approaches to address these issues. First, we propose a novel continuous optimization framework for estimating optical flow based on a decomposition of the image domain into triangular facets. We show how this allows for occlusions to be easily and naturally handled within our optimization framework without any post-processing. We also show that a triangular decomposition enables us to use a direct Cholesky decomposition to solve the resulting linear systems by reducing its memory requirements. Second, we introduce a simple method for incorporating additional temporal information into optical flow using inertial estimates of the flow, which leads to a significant reduction in error. We evaluate our methods on several datasets and achieve state-of-the-art results on MPI-Sintel. Finally, we introduce a discrete optimization framework for optical flow computation. Discrete approaches have generally been avoided in optical flow because of the relatively large label space that makes them computationally expensive. In our approach, we use recent advances in image segmentation to build a tree-structured graphical model that conforms to the image content. We show how the optimal solution to these discrete optical flow problems can be computed efficiently by making use of optimization methods from the object recognition literature, even for large images with hundreds of thousands of labels
    • …
    corecore