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Abstract

With the advent of 3D sensors, point clouds are becoming increasingly popular in

robotic perception. Using point clouds, mapping algorithms can generate 3D environ-

ment models. A widely used one is OctoMap, informing a robotic platform which parts

of the environment are free and which are not using the octree structure.

The generation of point clouds from sensor data and the operation of OctoMap are

governed by different parameters, the correct selection of which significantly affects the

process and the quality of the final map. Unfortunately, research in the process to

identify the parameter set to achieve best occupancy mapping performance remains

limited. The current work aims to fill this gap with a two-step principled methodol-

ogy that first identifies the most significant parameters by conducting Neighbourhood

Component Analysis on all parameters and then optimise those using grid search with

the area under the Receiver Operating Characteristic curve.

In addition, the map update policy in OctoMap has limitations. All the nodes contain-

ing endpoints will be assigned with the same probability regardless of the points being

noise and the probability of one such node can only be increased with a single measure-

ment. Moreover, potentially occupied nodes with points inside but traversed by rays

cast from the sensor to endpoints will be marked as free. To overcome these limita-

tions, the current work presents a mapping method using the context of neighbouring

points to update the nodes containing points, with the occupancy information of a

point represented by the average distance from the point to its k-Nearest Neighbours

(k-NN). A relationship between the distance and the change in probability is defined

with the Cumulative Density Function of average distances, potentially decreasing the

probability of a node despite points being present inside.

This study is conducted on 20 data sets collected with specially designed targets in two

outdoor environments, providing precise ground truths for evaluation purposes. Point

clouds are created by applying StereoSGBM on the images from a stereo camera and

poses are produced by ORB-SLAM. Using the proposed method, a clear indication

can be seen that the mapping parameters are more important than other parameters.

Through grid search, improvement in occupancy map quality can be achieved over de-

fault parameters. Moreover, the k-NN mapping method can also achieve improvement

over the performance of OctoMap.
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Chapter 1

Introduction

In robotics, occupancy maps have a wide range of applications, including spatial repre-

sentation of the real world [1], navigation [2, 3], motion planning [4, 5], and autonomous

driving [6]. In most applications, occupancy maps are generated from point clouds.

Over the past few years, sensors like LIDAR can produce high-quality point clouds to

represent the 3D world [7, 8]. However, such sensors are normally expensive, which has

restricted their applications. Recently, point clouds are becoming increasingly popular

in the research community as cheaper solutions become available. A RGB-D camera [9]

can simultaneously produce both colour and depth images, the latter of which can be

used for point cloud reconstruction. Similarly, point clouds can be reconstructed from

a stereo camera [10] with the disparity map derived by left and right images. One

popular occupancy mapping algorithm generating occupancy maps from point clouds

is OctoMap [11], using the octree structure [12] and its cubic nodes to model the 3D

world. Given the usefulness and the wide adoption of OctoMap as a mapping algorithm,

a further in-depth study of the octree based occupancy mapping is necessary.

1.1 Introduction to OctoMap

Point clouds are required to generate maps using OctoMap. Cheaper solutions to

generate point clouds include RGB-D cameras and stereo cameras. A RGB-D cam-

era is using structured light or time-of-flight (ToF) to acquire the depth information.

However, this type of sensor suffers from characteristic problems such as noise and am-

biguity, and non-systematic errors, e.g., scattering and motion blur [13, 14]. To achieve

satisfactory performance, the operation of a ToF sensor requires a very controlled light

environment, which has restricted its applications in outdoor environments with com-
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plex lighting conditions [15]. Compared with RGB-D cameras, a stereo camera can

generate high-resolution disparity maps which can be used for measurements in both

indoor and outdoor environments [14, 16]. Figure 1-1 shows an example of benchmark-

ing stereo images with disparity maps as ground truths. Using left and right images

algorithms such as StrereoSGBM in OpenCV [17] can produce disparity maps, from

which point clouds can be reconstructed with a binocular camera model. The procedure

of 3D reconstruction of point clouds will be introduced in Chapter 2.

(a) (b) (c)

(d) (e) (f)

Figure 1-1: Benchmarking images [18]. (a-c) Cones: left image, right image and ground
truth. (d-f) Teddy: left image, right image and ground truth.

With point clouds, mapping algorithms can generate occupancy maps representing

the real world. Compared with other common mapping approaches, OctoMap is an

efficient and flexible framework for 3D environment mapping [11]. Figure 1-2 shows

the representation of a tree scanned with a laser range sensor using common mapping

approaches elevation maps [19], multi-level surface maps [20] and OctoMap. A clear

indication can be seen that the volumetric representation of OctoMap is better than

the other mapping approaches. More details are preserved by OctoMap, and occupied

and free space are consistent with the original laser measurements.

The octree [12] is implemented in the OctoMap to save memory and speed up the

mapping process. An octree is an hierarchical data structure in which each internal
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(a) (b) (c) (d)

Figure 1-2: 3D representation of a tree [11]. (a) Point cloud. (b) Elevation map. (c)
Multi-level surface map. (d) OctoMap.

node has eight child nodes [12]. In OctoMap, 3D space can be represented by the cubic

nodes in the octree. As shown in Figure 1-3, each node can be recursively subdivided

into eight sub-nodes. The minimum size of the cube is equal to the resolution of an

occupancy map. The recursive subdivision stops when a cubic cell reaches the minimum

size. The nodes with the minimum dimension are called leaf nodes.

(a) (b)

Figure 1-3: Octree structure. (a) Recursive subdivision of a cube. (b) Octree.

OctoMap uses the octree and probabilistic estimation to model the 3D environment. A

ray cast operation from the sensor to the endpoints in a point cloud will be performed

to determine which nodes should be updated. The nodes containing endpoints will be

updated with a high probability, while the nodes traversed by rays will be updated

with a low probability. In an occupancy map, the state of a node can be occupied,

free or unknown. If the space contained in a cubic volume has been explored, the node

will be marked as either occupied or free depending on its corresponding probability

and threshold. Otherwise, the node state will be marked as unknown. Due to the

hierarchical structure of the octree, OctoMap has following benefits.

Multi-Resolution Queries An octree recursively subdivides a cubic cell into eight

children. Conversely, eight child nodes can be pruned into one node. An occupancy
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map can be queried at different levels. Figure 1-4 illustrates a map queried at different

depths. The occupancy probability of a cubic volume is estimated at the leaf node

level. The probability of a parent node can be acquired by recursive calculation from

the probabilities of eight child nodes. Researchers have proposed approaches to get the

probability of a node from its children, e.g., the average occupancy and the maximum

occupancy [21].

(a) (b) (c)

Figure 1-4: Example of a map queried at different levels [11]. (a) Resolution 0.08 m.
(b) Resolution 0.64 m. (c) Resolution 1.28 m.

Map Compression Since OctoMap uses the octree structure to represent 3D space,

it is possible to compress a map to save memory. A clamping update policy proposed

in [22] is implemented in OctoMap to set upper and lower bounds on the occupancy

probability of a node. When the probability of a node reaches clamping thresholds, the

state of this node will be considered as stable. If eight child nodes are all stable and

their probabilities are equivalent to the same clamping threshold, then these nodes can

be pruned into one node. When new measurements change the states of the children,

the parent node will be redivided into eight nodes and the child nodes will be updated

accordingly. If the user only focuses on the states of a node, i.e., occupied or free, then

the values of probabilities are not important. In this case, the map can be further

compressed with the maximum likelihood probabilities proposed in [23].

Octree Hierarchies OctoMap can display multiple submaps in one tree-structure

with octree hierarchies. Figure 1-5 shows an example of an occupancy map with several

objects at different resolutions in one tree. Background, table and objects are presented

in yellow, magenta and cyan. The benefits of a hierarchical octree include indepen-

dent maintenance and manipulation of submaps in terms of mapping parameters and

movement, and preserving hierarchical dependencies among different submaps when

one submap is moved.

Since OctoMap is memory-efficient and can quickly adapt to environmental changes, it
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Figure 1-5: Example of a hierarchical octree model [11].

has a wide range of applications such as underwater inspection [24, 25], navigation [26]

and autonomous driving [27].

In [28], an iterative path re-planning method based on OctoMap was introduced to

adapt to the path in real time for the inspection mission of 3D underwater struc-

tures. OctoMap was used for maintaining a 3D map for quick access using sonar range

measurements. Figure 1-6 shows an occupancy map with depth colour coded. The

occupied nodes were used to reshape the nominal path which was then optimised to

produce a smooth trajectory, based on which a path re-planning algorithm could be

implemented. In [29], OctoMap was used to build the map of the inspection area. As

shown in Figure 1-7, the underwater terrain was modelled by occupancy maps.

Figure 1-6: Example 3D occupancy grid map of an underwater environment obtained
by Octomap during one of inspection trials [28].

OctoMap is also a popular mapping approach for navigation. A navigation method for

uneven and unstructured indoor environments using OctoMap was proposed in [30].
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Figure 1-7: Four snapshots of an inspection survey [29]. Green polygons delimit the
inspection area at depth 0m and the maximum depth. Yellow lines represent the field
of view (FOV) of the vehicle. The blue line is the inspection path generated by the
path planner. Purple spheres are the path created by the motion planner.

Figure 1-8 shows a wheeled robot navigating up the slope to the goal at the higher

platform. The uneven environment was first modelled by OctoMap using the wheel

odometry, 2D laser and RBD-D data. Then the map could be further used for indoor

navigation. Figure 1-9 shows the representation of the real environment with OctoMap.

Figure 1-8: Navigation of the robot up the slope to the goal at the higher platform [30].

Robotic applications such as autonomous driving, navigation and localisation can be

improved by dense semantic models [31]. As an important perception technology, se-
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(a) (b)

Figure 1-9: 3D mapping of the real environment [30]. (a) Photo of the real environment.
(b) 3D representation of the environment using OctoMap.

mantic segmentation is widely used in autonomous driving and other industries [32].

A semantic OctoMap mapping method based on CBAM-PSPNet was proposed in [32].

The images acquired by a RGB-D camera were processed by two threads. ORB-

SLAM [33, 34] was running in the background to generate poses from images. CBAM-

PSPNet was used for the semantic segmentation of the images. With segmentation

information and the depth image, semantic point clouds could be constructed. Then

the semantic point clouds were inserted into OctoMap to generate semantic occupancy

maps. The maps generated by OctoMap and semantic OctoMap have been compared

in Figure 5-4.

1.2 Motivation

The generation of point clouds from raw images derived by stereo cameras and the

operation of OctoMap are governed by several parameters, the correct selection of

which significantly affects the process and the quality of the final map. Although

point cloud generation algorithms and mapping algorithms are normally initialised

with their default parameters, there is no evidence to show these parameters are the

optimal ones. To generate an occupancy map using OctoMap, the pose corresponding

to each frame of point cloud is required. The poses corresponding to point clouds are

not always obtained from sensors directly, but by implementing localisation algorithms,

e.g., ORB-SLAM [33], on the raw images. In this case, parameters for producing poses

are introduced. Considering occupancy mapping using point clouds has been widely

used, the impact of the different parameters needs to be evaluated and well understood.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1-10: Comparison of mapping effects [32]. (a), (d) and (g) are the point clouds
of three test scenes. (b), (e) and (h) are the occupancy maps derived by OctoMap. (c),
(f) and (i) are the occupancy maps derived by semantic OctoMap.

OctoMap is effective in building occupancy maps using point clouds. As specified in the

previous section, the ray cast operation determines the nodes to be updated and the

probability of a node is updated accordingly depending on whether it contains endpoints

or is traversed by rays. However, this update policy has limitations which may affect

the mapping performance. All the nodes containing endpoints will be updated with

the same probability even if the points inside are noise. The probability of one such

node can only be increased. Moreover, a potentially occupied node with points inside

but also traversed by rays will be assigned with a low probability, which may lead to

this node being marked as free. Considering these facts, the update policy in OctoMap

can be improved to achieve better mapping performance.
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1.3 Contributions

This thesis aims to improve the performance of the octree based occupancy mapping

by a systematic approach for parameter reduction and optimisation, and represent-

ing occupancy information with the average distance from a point to its k-Nearest

Neighbours (k-NN). The main contributions are:

• a low-cost way to create targets and test scenes with the boxes of different tex-

tures, either a plain cardboard texture or Voronoi diagrams, arranged in I, O, T,

L and S layouts inspired by the shapes of free tetrominoes in Tetris game [35] in

different environments, either in front of buildings or in a parking lot, providing

precise ground truths for evaluation purposes (Chapter 3, Publication 2);

• a two-step principled methodology that first identifies the most significant pa-

rameters by conducting Neighbourhood Component Analysis (NCA) [36] on all

parameters and then optimise those using grid search with the area under the

Receiver Operating Characteristic (ROC) curve (Chapter 4, Publication 2);

• a k-NN method for occupancy mapping using the context of neighbouring points

to update the nodes containing points with a relationship defined between the

average distance and the change in occupancy probability using the Cumula-

tive Density Function (CDF) of average distances, potentially decreasing the

probability of a node despite the points being present in the node. (Chapter 5,

Publications 1 and 3)

Two journal articles and one conference paper were published.

1. Y. Miao, A. J. Hunter, and I. Georgilas, “An occupancy mapping method based

on k-nearest neighbours,” Sensors, vol. 22, no. 1, 139, 2022. (Chapter 5)

2. Y. Miao, A. J. Hunter, and I. Georgilas, “Parameter reduction and optimisation

for point cloud and occupancy mapping algorithms,” Sensors, vol. 21, no. 21,

7004, 2021. (Chapters 3 and 4)

3. Y. Miao, I. Georgilas, and A. J. Hunter, “A k-nearest neighbours based inverse

sensor model for occupancy mapping,” in Proceedings of Annual Conference To-

wards Autonomous Robotic Systems, 2019, pp. 75-86. (Chapter 5)

Data sets are available at https://doi.org/10.15125/BATH-00594, accessed on 10

September 2021 under the Creative Commons Attribution 4.0 license.
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1.4 Thesis Outline

In this thesis, the study of the optimisation and extension of the octree based occupancy

mapping mainly consists of two parts, i.e., parameter reduction and optimisation, and a

k-NN method for occupancy mapping. After providing an introduction in this chapter,

the thesis is organised as follows.

Chapter 2 examines the previous related research and presents the detailed background

required by the work in the thesis. Initially research on SLAM data sets, OctoMap

parameters and the extension of OctoMap has been introduced. Then the procedure of

point cloud reconstruction from a stereo camera using the disparity map derived by left

and right images is provided, followed by a brief introduction to ORB-SLAM which

will be used to generate camera poses in the following chapters. The mathematical

derivation of the update policy in occupancy mapping is introduced and a brief analysis

of the key steps of OctoMap is given as well. The limitations of OctoMap update policy

are further discussed.

Chapter 3 introduces the details of the 20 data sets collected in the outdoor environ-

ments with specially designed targets and the measured ground truths are given as

well.

Chapter 4 presents the method for parameter reduction using NCA and optimisa-

tion with grid search. The details of parameters and performance metrics are first

introduced, followed by the node classification procedure using the concept of pixel

connectivity [37]. A simple mapping approach as a proxy for the cleanness of point

cloud is given as well. The relationship between mapping parameters and performance

measures is investigated with neural networks. The results derived by the two-step

principled methodology are presented and discussed.

Chapter 5 gives a detailed description of the k-NN based inverse sensor model using the

relationship between the average distance from a point to its k-NN and the occupancy

probability. The relationship is defined with the CDF of average distances and the

choice of the distribution is explained. The map update procedure using the proposed

model is given as well. The proposed k-NN method and OctoMap are optimised using

the methodology in Chapter 4 and then compared. A point cloud sampling approach

based on the k-NN method is introduced in the end.

Chapter 6 concludes the thesis and makes suggestions for future work.
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Chapter 2

Literature Review and

Background

This chapter first examines the previous related work, including existing data sets,

research on OctoMap parameters and the improvement on OctoMap. Then the back-

ground required by the research in this work is presented. To generate an occupancy

map, point clouds and their corresponding poses are necessary. Monocular and binoc-

ular camera models are explained, followed by the procedure of 3D reconstruction of

point clouds from disparity maps. A brief introduction to ORB features is given. Based

on ORB features, ORB-SLAM is introduced as well, which will be used for generating

poses in the following chapters. In the end, occupancy grid mapping and its variant

OctoMap are presented. Finally, the research gap explored in the thesis is summarised.

2.1 Literature Review

2.1.1 Public Data Sets

Data sets are needed to demonstrate the ability of a mapping approach. Researchers

have created a number of data sets which are publicly available for benchmarking.

These data sets were recorded with various sensors such as IMUs, cameras, sonars and

laser range finders in either indoor or outdoor environments. The ground truths of the

data sets can be categorised into two types, poses or maps. This section presents an

overview of existing public data sets.

In [11], three data sets collected in real world environments were used to test the

accuracy of OctoMap. The occupancy maps shown in Figures 2-1 and 2-2 were modelled
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by OctoMap using three different data sets. The nodes in the free space are not shown

for clarity. The map for the corridor of building 079 at the Freiburg campus has been

created, as shown in Figure 2-1. The corridor data set was recorded with a laser

range finder. The observations outside the building through windows were removed by

limiting the max range of the sensor to 10 m. The visualised maps of two fairly large

outdoor data sets, i.e.,the Freiburg campus and the New College [38] are presented in

Figures 2-2a and 2-2b.

Figure 2-1: Occupancy map of FR-079 corridor data set (size of the scene:
43.7 m× 18.2 m× 3.3 m) [11].

Accuracy was used as the performance metric to evaluate OctoMap in [11]. The accu-

racy was defined as the percentage of correctly mapped nodes in all 3D scans from the

sensor. A node with consistent occupancy states in the evaluated scans and the pre-

built map generated by all or part of the scans would be counted as correctly mapped.

Although this definition of accuracy can make comparison easy, it cannot illustrate how

the model is right or wrong in absolute terms in a confusion matrix [39]. In addition,

the map to be evaluated and the ground truth (pre-built map) are generated with the

same data set, which may lead to a biased result.

Table 2.1 shows the overview of existing SLAM data sets. Thanks to the work in [40].

Normally, platforms used for data collection include vehicles, rovers, unmanned aerial

vehicles (UAVs), unmanned surface vehicles (USVs), unmanned ground vehicles (UGVs),

remotely operated underwater vehicles (ROVs), mobile robots and handheld. Types
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(a) Freiburg campus.

(b) New College.

Figure 2-2: Resulting octree maps of two outdoor data sets [11]. (a) Freiburg campus
data set (size of the scene: 292 m× 167 m× 28 m). (b) New College data set (size of
the scene: 250 m× 161 m× 33 m).

of ground truths can be categorised into two groups, poses or maps, including depth

maps, 3D point cloud maps and semantic segmentation. Various configurations of sen-

sors can be used for recording data. Vision senors such as monocular cameras, stereo

cameras and RGB-D cameras are widely used. Laser range finder is a good choice for

long-distance observations. IMU and GPS are commonly used for deriving the position

and orientation of a robotic platform.
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From Table 2.1, it can bee seen that the ground truths for most data sets are poses

only. These data sets are not suitable for evaluating the quality of an occupancy map.

Data sets, e.g, [65], use semantic segments as ground truths which are not suitable

for judging mapping performance. Depth maps derived by stereo cameras are given as

ground truths in several data sets such as [49] and [51]. However, as introduced in [51],

the reported depths might have errors due to moving objects. Although some RGB-D

data sets such as CoRBS [67] can give both poses and 3D point clouds as ground truths,

they are only limited to indoor environments. In addition, the derivation of the ground

truths in public data sets normally involves high-priced hardware and complicated

procedure.

2.1.2 Optimisation of OctoMap Parameters

OctoMap is governed by several parameters which affect the mapping process and the

quality of final maps. Although previous studies on parameter optimisation techniques

have been reported in the literature, few of them focused on optimising OctoMap

parameters and research in the process to identify the parameter set to achieve best

occupancy mapping performance remains limited.

In most applications, OctoMap is implemented with default parameters. The default

parameters were introduced in [11]; however, there is no clear evidence to show they

are the optimal ones. In [11], the values of these parameters were experimentally deter-

mined to work best for mapping mostly static environments with laser range finders,

while still preserving the ability to adapt to occasional changes. The impact of map

resolution on memory usage has been investigated, as shown in Figure 2-3. Memory

consumption would increase exponentially as the resolution becomes better. Clamping

parameters were also analysed by Kullback–Leibler divergence (KLD) in terms of map

accuracy and compression. The trade-off between map confidence and compression

is shown in Figure 2-4. With a higher clamping threshold, a map would be further

compressed but at the cost of losing map confidence. Although some of OctoMap

parameters were claimed to be experimentally determined, how the experiments were

conducted is not given in [11]. There is no systematic method provided to test the

optimality of default parameters.

Other researchers usually focused on the resolution when OctoMap was implemented to

make sure the desired resolution matched well with their application scenarios. In [77],

the main parameters of the MoveIt! motion planning framework were investigated

to identify the parameters that affect the overall performance of the system most.

As one of OctoMap parameters, the resolution was tested since it influences both
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Figure 2-3: Effect of resolution on memory usage of the Freiburg campus data set in
logarithmic scale [11].

planning time and the length of the planned movements. As an efficient 3D mapping

framework, OctoMap has been tailored for field robots in outdoor environments in [78].

The clamping threshold was slightly increased to achieve better results. In [79], it

has been mentioned that the change in the resolution and the initial probability of

OctoMap could affect the final result. However, how to choose these parameters was

not explained. Moreover, the resolution is not a parameter which directly determines

the probability of a cubic node and other OctoMap parameters were often ignored when

tuning parameters.

2.1.3 Extension of OctoMap

As introduced in Section 1.1, OctoMap has a wide range of applications due to its

compact and flexible octree structure. Research has been done to extend OctoMap to

improve its performance or expand its applications.

Since the outliers in the map generated by the raw OctoMap might affect the robot

navigation, an improvement algorithm was proposed in [80] to remove the sparse out-

liers. The average distance from a point to its k-NN in the point cloud was computed.

A Gaussian distribution derived by the average distances of all the points was used

to remove the outliers in the point cloud. The processed point clouds were then used

for building occupancy maps. The proposed method was tested on TUM data set

with RGB-D SLAM. As shown in Figures 2-5 and 2-6, the outliers in point clouds and

occupancy maps have been removed. Similarly, the Point Cloud Library (PCL) [8]

provides several filters such as PassThrough filter, StatisticalOutlierRemoval filter and

RadiusOutlier removal to remove the outliers in point clouds. The work in [80] is sim-
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Figure 2-4: Effect of clamping ranges on map compression and accuracy in three data
sets [11].
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ilar to the StatisticalOutlierRemoval filter in PCL. Instead of building a map with the

original point clouds, the quality of the map can be improved using the filtered point

clouds. However, the details in environmental features may not be preserved when the

outliers or clusters in point clouds are removed by filters. As shown in Figure 2-6, after

implementing the removal algorithm, the number of the nodes in the occupancy map

decreased from 16 536 to 13 510. Considering an extreme case, for the point clouds of

perfect quality, some points will still be removed, which will lead to the loss in map de-

tails. In addition, the problem can be more severe when point clouds are down sampled

for the use in fairly large scenes.

(a) (b)

Figure 2-5: 3D point clouds of the TUM sequence fr1/xyz [80]. (a) Raw point clouds.
(b) Point clouds with outliers removed.

(a) (b)

Figure 2-6: Occupancy maps of the TUM sequence fr1/xyz [80]. (a) Raw occupancy
map generated by OctoMap (16 536 nodes). (b) Occupancy map with outliers removed
(13 510 nodes).

As introduced in Section 1.1, OctoMap has been extended with semantic segmentation,

as shown in Figure 1-10. Similar work has been reported in [81]. Gaussian Processes
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(GPs) multi-class classification was implemented for map interface to extend OctoMap

to semantic OctoMap. An example of developed semantic OctoMap using the data

set in [82] has been shown in Figure 2-7. Instead of using offline trained classifiers for

semantic segmentation, a nonparametric and data-driven method to parse scenes was

introduced in [31], which can be easily deployed to a large environment.

Figure 2-7: Semantic OctoMap built with the Stanford 2D-3D-Semantic data set (area
1, conference room 1) [81].

Recently, machine learning is getting more and more popular. To refine occupancy

maps, Recurrent-OctoMap is proposed in [83], with each cell in OctoMap modelled as a

Recurrent Neural Network (RNN). Unlike most existing semantic mapping approaches

which only focused on improving semantic understanding of single frames, the learning

approach in this work aims to fuse semantic observations. In [84], learning-aided 3D

occupancy mapping is introduced to build 3D maps from sparse and noisy range sen-

sor data. By expanding the method leveraging Bayesian kernel inference in [85], the

occupancy states of the unobserved regions can be predicted to build dense occupancy

maps.

Previous studies reported in the literature also focused on the improvement of the ef-

ficiency of occupancy mapping. In [86], a computationally efficient probabilistic map

update policy utilising the sparse nature of the environment is proposed. The effi-

ciency of the OctoMap framework can also be improved by the Fast Line Rasterisation

Algorithm [87].

42



2.2 Background

2.2.1 Camera Model

To reconstruct point clouds from images, how the objects in the real world are projected

into the image needs to be understood. Figure 2-8 shows the transformation from world

coordinates to pixel coordinates. The parameters for imaging process can be categorised

into extrinsic parameters and intrinsic parameters. Extrinsic parameters transform

world coordinates to camera coordinates and intrinsic parameters transform camera

coordinates to pixel coordinates. Different coordinate systems will be introduced in

the following section.

World
coordinates

Camera
coordinates

Image plane
coordinates

Pixel
coordinates

Extrinsic parameters Intrinsic parameters

Figure 2-8: Coordinates transformation in imaging process.

Pinhole Camera Model.

The ideal pinhole camera model [88] in figure 2-9 presents the relationship of four

coordinate systems, i.e., world frame Ow − xwywzw, camera frame Oc − xcyczc, image

plane frame Oi − xiyi and pixel frame Op − uv. Oc is the optical centre of the camera,

zc is the principal axis of the camera and perpendicular to the image plane. Oi − xiyi
and Op − uv are located in the image plane. Oi is the principal point, which is the

intersection of the principal axis and the image plane. The distance between Oc and

Oi is the focal length of the camera, which is denoted as f .

For any point (xc, yc, zc) in the camera frame, its projection to the image plane is:[
xi

yi

]
=
f

zc

[
xc

yc

]
. (2.2.1)

Two scale factors ωx and ωy will change the metric units to pixels:[
u

v

]
=

[
ωxxi + cx

ωyyi + cy

]
, (2.2.2)

where (cx, cy) are the coordinates of the principal point in the pixel frame. Let fx = ωxf

and fy = ωyf , where fx and fy are the focal lengths in pixels. Then the transformation
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Oi

xi

yi

Op

u

v

zc

yc

xc

Ocf

P

xw
zw

yw Ow
Rcw , tcw

Figure 2-9: Pinhole camera model.

from the camera frame to the pixel frame can be denoted as:

zc

uv
1

 =

fx 0 cx

0 fy cy

0 0 1


xcyc
zc

 := K Pc , (2.2.3)

where K is the camera matrix, also known as camera intrinsic parameters, and Pc is

the coordinates in the camera frame. Let P̃ and P̄ denote normalised and homogeneous

coordinates of P, respectively. The transformation from camera coordinates to pixel

coordinates in (2.2.3) in can be rewritten as:

P̄p = K P̃c , (2.2.4)

where P̄p represents homogeneous coordinates in the pixel frame. World coordinates

can be converted to camera coordinates by a rotation matrix Rcw and a translation

matrix tcw . Then the transformation from the world frame to the pixel frame can be

denoted as:

P̄p =
1

zc
K

([
Rcw tcw

0 1

] [
xw yw zw 1

]>)
(1:3)

:=
1

zc
K( Tcw P̄w )(1:3) , (2.2.5)

where P̄w is the homogeneous coordinates in the world frame and Tcw is the trans-
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formation matrix from the world frame to the camera frame. A transformation from

homogeneous coordinates to non-homogeneous coordinates is hidden in (2.2.5).

Lens Distortion

Without rectification, the images derived by a camera are normally distorted. Images

can be rectified by considering radial distortion and tangential distortion [89]. The light

rays will bend more near the edges of the lens than at the optical centre, which will

cause radial distortion. Tangential distortion occurs when the lens and the image plane

are not strictly parallel. With a good camera calibration and rectification procedure,

the distortion in the image can be eliminated.

The radial distortion can be approximated as:[
δrx

δry

]
=

[
(ζ1r

2 + ζ2r
4 + . . . )x̃

(ζ1r
2 + ζ2r

4 + . . . )ỹ

]
, (2.2.6)

where δrx and δry are radial distortions, ζ1, ζ2, . . . are coefficients for radial distortion,

x̃ and ỹ are in normalised image coordinates, x̃ =
ud − cx
fx

, ỹ =
vd − cy
fy

, (ud, vd)

are unrectified coordinates, and r is the distance from the point to the centre and

r2 = x̃2+ỹ2. Normally, two coefficients are sufficient for radial distortion compensation.

The tangential distortion can be denoted as:[
δtx

δty

]
=

[
2η1x̃ỹ + η2(r

2 + 2x̃2)

η1(r
2 + 2ỹ2) + 2η2x̃ỹ

]
, (2.2.7)

where δtx and δty are tangential distortions, η1 and η2 are the coefficients of tangential

distortion.

With accurate calibration, the camera model for radial and tangential distortion cor-

rections can be expressed in the following form:[
u

v

]
=

[
fx(x̃+ δrx + δtx)

fy(ỹ + δry + δty)

]
+

[
cx

cy

]
. (2.2.8)

3D Reconstruction from Binocular Vision

Figure 2-10 shows the binocular camera model. Oc and O′c are the optical centres of

left and right cameras, respectively. OcO
′
c is called the baseline of which the length is

sb. Let O′c − x
′
cy
′
cz
′
c, O

′
i − x

′
iy
′
i and O′p − u

′v′ denote the right camera frame, the right
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image plane frame and the right pixel frame. Two cameras are identical in an ideal

binocular camera model and two lenses have exactly the same focal length f . P is a

scene point in 3D space and its projections onto the image planes of two cameras are

Pl and Pr. The coordinates of the projection points in two images are different. The

x-coordinates of Pl and Pr in the respective image plane frames created on two cameras

are x and x′.

f

z c

xi −x′i

sb

P

Oc O′c

Pl Pr

Figure 2-10: Binocular camera model.

The distance from point P to the baseline can be calculated by the projection relation-

ship in Figure 2-10, and is equal to its z-coordinate in the left camera frame:

zc =
fsb
d
, (2.2.9)

where d = xi − x
′
i, also known as the disparity.

In computer vision, the disparity is measured in pixels and referred to as the coordinate

difference of a point between the left and right images. With (2.2.1) and (2.2.3), the

following relationship can be derived:

xi
f

=
u− cx
fx

. (2.2.10)

Let fp denote the focal length in pixels of two lens and normally fp = fx = fy. The

coordinates of Pl and Pr in their corresponding pixel frames are denoted as (u, v) and

(u′, v′). The coordinates of the principal points of two cameras are (cx, cy) and (c′x, c
′
y).

Then the distance from point P to the baseline can be calculated by:

zc =
fpsb
dp

, (2.2.11)
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where dp is the disparity in pixels and dp = u − u′ − cx + c′x and in the ideal model

cx = c′x.

Then the coordinates of a point in the camera frame can be computed by its correspond-

ing coordinates (u, v) in the pixel frame. This procedure is called 3D reconstruction,

which can be written as:
X

Y

Z

W

 =


1 0 0 −cx
0 1 0 −cy
0 0 0 fp

0 0
1

sb
−cx − c

′
x

sb



u

v

dp

1

 . (2.2.12)

Then the coordinates of the point in the camera frame are:

Pc =
[
xc yc zc

]>
=

1

W

[
X Y Z

]>
. (2.2.13)

For the case of a stereo camera, the StereoSGBM algorithm [17] can generate the

disparity map of left and right images. Then point clouds can be reconstructed by

the stereo camera model from this disparity map. The parameters in the StereoSGBM

algorithm in OpenCV are as follows:

• dmin is the minimum possible disparity value. It is normally set to 0 and should

be adjusted accordingly when rectification algorithms can shift images.

• dn is the difference between maximum disparity and minimum disparity. It must

be a number greater than 0 and divisible by 16.

• Bs is the block size for matching two images. It must be an odd number no less

than 1.

• P1 is the first parameter for disparity smoothness control. A reasonably good

sample in OpenCV is P1 = 8NcB
2
s , where Nc is the number of image channels.

• P2 is the second parameter for disparity smoothness control. A reasonably good

sample in OpenCV is P2 = 32NcB
2
s .

• dm is the maximum allowed difference in the left-right disparity check. A non-

positive value will disable the check.

• C is the truncation value for pre-filtered image pixels.

• ru is the margin in percentage.
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• dw is the maximum size of smooth disparity regions to consider noise speckles

and invalidate. 0 will disable speckle filtering.

• dv is the maximum variation in disparity. Normally, 1 or 2 for dv is good enough.

• mode is an option to run the full-scale two-pass dynamic programming algorithm,

which is set to false by default.

2.2.2 ORB-SLAM

ORB Feature

Image feature has a wide range of applications in computer vision. As an efficient

alternative to SIFT (Scale-Invariant Feature Transform) or SURF (Speeded-Up Robust

Features), ORB (Oriented FAST and Rotated BRIEF) was proposed in [90]. ORB

is based on FAST (Features from Accelerated Segment Test) keypoint detector and

BRIEF (Binary Robust Independent Elementary Features) descriptor.

Keypoint FAST [91] is effective in detecting corner points, which can be used for

extracting features for a real-time system. Normally, there are a large number of FAST

keypoints in a image. ORB uses Harris corner filter [92] to determine which points

should be accepted. Compared with the FAST keypoint, ORB is scale invariant by

implementing an image pyramid [93]. In addition, ORB also shows good rotational

invariance by representing orientation information with intensity centroid as per [94].

The moment of a patch can be defined as:

Mij =
∑
x,y

xiyjI(x, y) , (2.2.14)

where i, j ∈ {0, 1}. Then the centroid is:

E =

(
M10

M00
,
M01

M00

)
. (2.2.15)

From the geometric centre O to the centroid E, the vector
#    »

OE can be constructed.

The orientation of the patch can be defined as:

γ = atan2(M01,M10) . (2.2.16)

Descriptor The BRIEF descriptor is a binary vector which consists of only 0 and

1 [95]. The vector is normally a 128 to 512 bits string. In ORB feature, the length of a
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descriptor vector n = 256. Each keypoint in a smoothed image patch can be described

by a binary test as:

τ(p;x,y) :=

{
1 if Ip(x) < Ip(y)

0 if Ip(x) ≥ Ip(y)
, (2.2.17)

where Ip(x) is the intensity of image patch p at the point x, x and y are the points

around the centre of the patch randomly picked up by a Gaussian distribution. Then

the feature can be defined as a vector with n binary tests:

fn(p) :=
∑

1≤i≤n
2i−1τ(p;xi,yi) . (2.2.18)

Since the descriptor is sensitive to high-frequency noise, it is necessary to smooth image

before performing binary tests. In ORB feature, a 31 × 31 image patch is smoothed

by a 5 × 5 sub-window. Compared with BRIEF, the descriptor in ORB is invariant

to in-plane rotation. In [90], an approach to steer BRIEF is presented based on the

orientation of keypoints. A matrix is defined for n binary tests at location (xi,yi):

S =

[
x1 . . . xn

y1 . . . yn

]
. (2.2.19)

Then the steered version of S is:

Sγ = RγS , (2.2.20)

where Rγ is the rotation matrix derived by orientation in (2.2.16). Then the steered

BRIEF descriptor is:

gn(p, γ) := fn(p) | (xi,yi) ∈ Sγ . (2.2.21)

The angle is discretised with an increment of π/15 and a lookup table of BRIEF

patterns is pre-computed. Then the correct set of points Sγ will be used to compute

its descriptor when the keypoint orientation is consistent in different views.

Brief Introduction to ORB-SLAM

ORB-SLAM is considered to be the most complete feature-based monocular visual

SLAM system and has been extended to stereo visual SLAM [33, 34, 96]. Figure 2-11 is

the overview of ORB-SLAM system. It is a feature based SLAM and ORB features are

used to detect keypoints in the mapping process. ORB-SLAM consists of three threads,

tracking, local mapping and loop closing. They are parallel threads, so ORB-SLAM can

run efficiently on a CPU without using a GPU. Bundle adjustment (BA) is performed in

both local mapping and loop closing to reduce the projection error of the visual sensor.
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A map will be updated when the loop is detected to reduce the cumulative error in the

pose. Loop detection also enables ORB-SLAM to relocate a mobile robot after losing

tracking. ORB-SLAM performs well in tracking and localisation. However, the map

derived by ORB-SLAM is not suitable for collision avoidance since ORB-SLAM uses

sparse feature points to build a map.

Figure 2-11: Overview of ORB-SLAM system [33].

In ORB-SLAM, the parameters are as follows:

• Nf is the number of features in each image.

• sf is the scale factor between levels in the scale pyramid.

• Nl is the number of levels in the scale pyramid.

• ti is the initial threshold implemented to extract FAST corners.

• tmin is the lower threshold to extract FAST corners. If no corners are detected

with the initial threshold, threshold tmin will be imposed.

These parameters are all for ORB feature extraction. The corresponding default values

are presented in Table 2-2.
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Table 2-2: Default ORB parameters.

Parameter Value

Nf 2000
sf 1.2
Nl 8
ti 12
tmin 7

2.2.3 Occupancy Grid Mapping

In robotics, to navigate a robot the environment needs to be represented in a way

which informs the robot which parts of the environment are free and which are not.

Occupancy grid mapping presents the world as a field of random variables which are

estimated by the posterior probability and arranged in evenly spaced grids [97], and

was first introduced in [98]. The probability distribution of the map can be expressed

by:

p(m | z1:t, x1:t) =
∏
i

p(mi | z1:t, x1:t) , (2.2.22)

where m is the map, mi is the cell, z1:t is the measurements up to time t and x1:t is

the sequence of poses.

By implementing Bayes rules [99], the posterior probability of each cell is:

p(mi | z1:t, x1:t) =
p(zt | mi, z1:t−1, x1:t)p(mi | z1:t−1, x1:t)

p(zt | z1:t−1, x1:t)
. (2.2.23)

With Markov assumption [100], the above probability can be denoted as:

p(mi | z1:t, x1:t) =
p(zt | mi, xt)p(mi | z1:t−1, x1:t−1)

p(zt | z1:t−1, x1:t)
. (2.2.24)

With Bayes rules:

p(zt | mi, xt) =
p(mi | zt, xt)p(zt | xt)

p(mi | xt)
. (2.2.25)

Then (2.2.24) can be written as:

p(mi | z1:t, x1:t) =
p(mi | zt, xt)p(zt | xt)p(mi | z1:t−1, x1:t−1)

p(mi | xt)p(zt | z1:t−1, x1:t)
. (2.2.26)
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By implementing Markov assumption again, the probability can be denoted as:

p(mi | z1:t, x1:t) =
p(mi | zt, xt)p(zt | xt)p(mi | z1:t−1, x1:t−1)

p(mi)p(zt | z1:t−1, x1:t)
. (2.2.27)

The probability of its complementary event is:

p(¬mi | z1:t, x1:t) =
p(¬mi | zt, xt)p(zt | xt)p(¬mi | z1:t−1, x1:t−1)

p(¬mi)p(zt | z1:t−1, x1:t)
. (2.2.28)

The ratio of (2.2.27) and (2.2.28) is:

p(mi | z1:t, x1:t)
p(¬mi | z1:t, x1:t)

=
p(mi | zt, xt)p(mi | z1:t−1, x1:t−1)p(¬mi)

p(¬mi | zt, xt)p(¬mi | z1:t−1, x1:t−1)p(mi)
. (2.2.29)

That is:

p(mi|z1:t, x1:t)
1− p(mi|z1:t, x1:t)

=
p(mi|zt, xt)

1− p(mi|zt, xt)
p(mi|z1:t−1, x1:t−1)

1− p(mi|z1:t−1, x1:t−1)
1− p(mi)

p(mi)
. (2.2.30)

The above can be simplified by log-odds notation:

l(x) =
p(x)

1− p(x)
. (2.2.31)

Then the equation (2.2.30) can be expressed as:

l(mi | z1:t, x1:t) = l(mi | zt, xt) + l(mi | z1:t−1, x1:t−1)− l(mi) , (2.2.32)

where l(mi | zt, xt) is the inverse sensor model, l(mi | z1:t−1, x1:t−1) is the recursive

term and l(mi) is the prior probability.

2.2.4 OctoMap

OctoMap integrates sensor readings with occupancy grid mapping in a method as

per [98], which has been introduced in the previous section. In OctoMap, by incorpo-

rating pose xt into measurement zt, the probability of a node given sensor measurements

z1:t can be denoted as:

l(mi | z1:t) = l(mi | z1:t−1) + l(mi | zt) , (2.2.33)

where l(mi | zt) is the inverse sensor model. A ray-cast operation will be performed

from the sensor origin to the endpoints to determine which nodes should be updated.
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The inverse sensor model in OctoMap is defined as:

l(mi | zt) =

{
locc if beam is reflected within volume

lfree if beam traversed volume
, (2.2.34)

where locc and lfree are the log-odds values to update occupied and free cells, respec-

tively. The clamping update policy in [22] is applied in OctoMap to set limitations on

the log-odds value:

l(mi | zt) = max(min(l(mi | z1:t−1) + l(mi | zt), lmax), lmin) , (2.2.35)

where lmax and lmin are lower and upper bounds in log-odds, respectively.

Based on the above OctoMap algorithm, the parameters which have an impact on the

occupancy probability of a node are listed as follows:

• pmax is the upper clamping threshold. It is the upper bound of the occupancy

probability.

• ph is the probability for a “hit”. If a node contains endpoints, a “hit” will be

integrated to the node.

• pt is the occupancy threshold. The node will be marked as occupied if its occu-

pancy probability is greater than the threshold.

• pm is the probability for a “miss”. If a node is traversed by rays, a “miss” will

be integrated to the node.

• pmin is the lower clamping threshold. It is the lower bound on the occupancy

probability.

Default OctoMap parameters are presented in Table 2-3.

Table 2-3: Default OctoMap parameters.

Parameter Value

pmax 0.971
ph 0.7
pt 0.5
pm 0.4
pmin 0.1192

Through the literature review and the update policy in [11], the limitations of OctoMap
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are summarised as follows:

• Default parameters implemented in OctoMap may not be the optimal ones. The

operation of OctoMap is governed by several parameters, the choice of which will

affect the performance of the mapping algorithm. There is no evidence to show

the default parameters introduced in [11] are the optimal ones. Only clamping

parameters are analysed in terms of map accuracy and compression.

• The evaluation using accuracy cannot illustrate how the map is right or wrong.

In [11], point clouds are generated by a LIDAR sensor and the algorithm is

evaluated using accuracy by comparing the map generated by the evaluated scans

and the pre-built map generated with the same data set. However, accuracy

cannot demonstrate how the map is right or wrong as a confusion matrix [39].

• Ground truths and the maps to be evaluated are generated with the same data set,

which may result in a biased evaluation. On one hand, the measurements in the

data set may contain noise and thus cannot represent the ground truth very well.

On the other hand, the ground truth is better to be generated in a different way

than with the data set itself. A better alternative would have been the use of a

measured ground truth based on the measurements with a measuring device.

• Parameters for point cloud generation and pose generation are not considered. A

potential limitation in [11] is that point clouds are not always obtained directly

from 3D sensors, e.g. LIDAR, but using cheaper solutions, for example, a stereo

camera. In this case the point clouds need to be reconstructed following an

algorithm. As a result, parameters for point cloud generation affect the quality

of point clouds and thus have a potential impact on mapping performance. Since

it requires both point clouds and corresponding poses to build an occupancy map,

parameters for pose generation should be considered as well.

• The inverse sensor model in OctoMap has limitations when dealing with nodes

containing points. Normally, point clouds are either generated by sensors directly

or by implementing algorithms on the original data from sensors. Due to sensor

noise and the limitations of algorithms, a point cloud normally contains both

points on the external surfaces of objects and noise points. One one hand, in

OctoMap, the nodes containing endpoints are updated with the same probability

regardless of the points being noise. On the other hand, with a single frame of

point cloud, the probability of a node with points inside can be increased but

never allowed to be decreased. Moreover, potentially occupied nodes containing

points but traversed by the ray cast operation may be marked as free.
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2.3 Research Gap

The literature review has shown that OctoMap is an important research area for robotic

perception. Through review, the research gaps can be identified as:

• The derivation of the ground truths in existing public data sets normally requires

high-priced hardware and complicated procedure. There is a lack of a low-cost

and simple way to create data sets with precise ground truths.

• Few of previous studies focus on the process to identify the parameter sets for

the best occupancy mapping performance.

• The extension of OctoMap in the previous work is mainly about improving map

quality through pre-processing or expanding its applications, but the research in

improving the inverse sensor model of OctoMap remains limited. This is another

research gap.

2.4 Summary

This chapter summarises the existing work related to the contributions of the thesis.

Public SLAM data sets and the research on the improvement and extension of OctoMap

has been introduced. The background required by the following chapters are also given.

To generate occupancy maps, point clouds and corresponding poses are required. Point

clouds can be reconstructed from the disparity map using a stereo camera model.

ORB-SLAM can produce the poses needed for occupancy mapping. The mathematical

principles of occupancy grid mapping are introduced. The update policy and the

limitations of OctoMap are explained as well.
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Chapter 3

Test Scenes and Targets

This chapter is based on [101], and describes the test scenes and targets for the ex-

periments in this thesis. Initially, the motivation for measured targets with rich image

features is introduced. Then the setup of test scenes and targets is presented, followed

by the procedure for data collection. The overview of each data set is provided and the

corresponding camera trajectory is given as well. In the end, different types of ground

truths are discussed and the ground truth for each data set is presented.

3.1 Data Sets

An overview of data sets has been presented in Table 2.1 and the limitations of existing

data sets have been discussed in Section 2.1.1. A brief summary is given here. Most

public data sets use poses as the ground truth. Although these data sets can be used

by the map ground truth generated with part of the frames and the map for evaluation

built with the other frames as per [11], it may lead to biased results. Depth maps

given in the data sets recorded by stereo cameras normally suffer from moving objects.

RGB-D cameras can be used for recording data sets, providing accurate poses and

3D point clouds as ground truths. However, their applications are limited to indoor

environments. Moreover, the concrete experiments to generate ground truths in existing

data sets require either expensive sensors or complicated procedure. In this section, a

low-cost and simple way is used to collect data sets and generate ground truths.

3.1.1 Motivation for Reference Targets

In the most applications of occupancy mapping, the scene to be explored is normally

relatively large and the objects are of irregular shapes. In such environments, it is
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difficult to evaluate the performance of a mapping algorithm since an accurate ground

truth for real world representation can hardly be obtained. In addition, visual-based

mapping algorithms usually heavily rely on image features but objects in the scene

can be lack of features. To make the evaluation reliable and create more test scenes,

covering the surfaces of targets with artificial textures can be considered. For the ease

of evaluation, a small measured scene in which objects are of regular shapes and rich

features is needed to mediate between mapping algorithms and real applications.

Boxes are naturally to be a good choice of targets since they can be accurately mea-

sured. However, the colour of the external surfaces of plain boxes remains same. As a

consequence, targets like boxes are lack of image features. To create more features, a

Voronoi diagram can be used as the patterns on the coverings of boxes. It has a wide

range of applications such as image segmentation, path planning and network coverage

optimisation [102–104]. Given a set S of n points in the plane, a Voronoi diagram

divides a plane into regions where all the points in each region is closer to one point of

S than to any other point of S [105]. Given two points Pi, Pj ∈ S (i 6= j), the bisector

of PiPj divides the plane into two halves. The half-plane containing Pi is the locus of

points closer to Pi than to Pj . Let H(Pi, Pj) denote this half-plane. Then the Voronoi

polygon associated with Pi can be defined as:

Vi =
⋂
i 6=j

H(Pi, Pj) . (3.1.1)

In fact, this polygon is the intersection of n − 1 half-planes and all the points in this

polygon is closer to Pi than other points of S. The Voronoi diagram then can be defined

as the collections of convex polygons produced by all the points in S:

V =
⋃
i

Vi . (3.1.2)

The distance between points was originally defined by Euclidean distance to charac-

terise the loci of proximity [106]. In this thesis, the Euclidean plane is used to generate

Voronoi diagrams, the polygons of which are then filled with random colours.

3.1.2 Experimental Setup

The experiments are conducted in two different environments, in front of buildings and

in a parking lot. Boxes with different textures on the external surfaces are the targets

to be explored. The boxes have a plain cardboard texture or are covered with Voronoi
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diagrams to allow the investigation of the impact of the texture.

To cover the external surfaces of the boxes, the Voronoi diagram is printed on A0

posters with 300 DPI and then cropped to match the size of the boxes. The average

size of the polygons in the diagram is about 3 cm× 3 cm. Since patterns are randomly

generated, the diagram is different in each poster. Each polygon in the Voronoi diagram

is filled with a random colour. Voronoi diagrams to cover the boxes are presented in

Figure 3-1.

Inspired by the Tetris game, several different layouts can be created with a pair of

boxes. There are seven one-sided tetrominoes in Teris game, including two enantiomeric

pairs [107]. These shapes are not superimposable in 2D space and can be translated,

rotated but not reflected. By excluding one of the shapes from each enantiomeric pair,

five free tetrominoes can be obtained [35]. As shown in Figure 3-2, the shapes of five

free tetrominoes are I, O, T, L and S. Based on these free tetrominoes, five layouts of

two boxes can be created.

(a) (b)

(c) (d)

Figure 3-1: Voronoi diagrams. (a–d) Randomly generated patterns.
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(e) (f)

(g) (h)

(i) (j)

Figure 3-1 (continued): Voronoi diagrams. (e–j) Randomly generated patterns.
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(a) (b) (c)

(d) (e)

Figure 3-2: Free tetrominoes. (a) I tetromino. (b) O tetromino. (c) T tetromino. (d)
L tetromino. (e) S tetromino.

3.1.3 Data Collection

Considering two environments, two textures and five layouts, 20 data sets will be

collected. A circle of approximate radius 2.96 m is drawn on the ground. Then the

boxes are put in the centre of the circle and arranged in a layout as one of the free

tetrominoes. The centre of the circle is also the centroid of the bottom surface of each

layout.

A ZED stereo camera (Stereo Labs, USA) is placed in front of the boxes and the initial

relative position between the camera and boxes is measured. Then the camera moves

along the circle orbiting around the objects twice to record videos at HD resolution

(2560×720 pixels for a stereo camera). Figure 3-3 shows boxes of different layouts and

textures in two environments, and corresponding camera trajectories are presented in

Figure 3-4. The camera moves in a anti-clock direction in the experiments. For each

data set, ORB-SLAM introduced in Sections 2.2.2 is implemented to produce camera

poses. Then the trajectory of the camera can be plotted with the pose of each frame

in the data set. The origin point in each coordinate system is the initial position of the

camera.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 3-3: Boxes of five layouts and two textures in two environments. (a–e) I, O, T,
L and S layout boxes with Voronoi diagrams in front of buildings. (f–h) I, O and T
layout plain boxes in front of buildings.
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(i) (j)

(k) (l)

(m) (n)

(o) (p)

Figure 3-3 (continued): Boxes of five layouts and two textures in two environments.
(i–j) L and S layout plain boxes in front of buildings. (k–o) I, O, T, L and S layout
boxes with Voronoi diagrams in the parking lot. (p) I layout plain boxes in the parking
lot.
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(q) (r)

(s) (t)

Figure 3-3 (continued): Boxes of five layouts and two textures in two environments.
(q–t) O, T, L and S layout plain boxes in the parking lot.

(a) (b)

(c) (d)

Figure 3-4: Camera trajectories of boxes of five layouts and two textures in two envi-
ronments. (a–d) I, O, T and L layout boxes with Voronoi diagrams in front of buildings.
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(e) (f)

(g) (h)

(i) (j)

(k) (l)

Figure 3-4 (continued): Camera trajectories of boxes of five layouts and two textures
in two environments. (e) S layout boxes with Voronoi diagrams in front of buildings.
(f–j) I, O, T, L and S layout plain boxes in front of buildings. (k–l) I and O layout
boxes with Voronoi diagrams in the parking lot.
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(m) (n)

(o) (p)

(q) (r)

(s) (t)

Figure 3-4 (continued): Camera trajectories of boxes of five layouts and two textures
in two environments. (m–o) T, L and S layout boxes with Voronoi diagrams in the
parking lot. (p–t) I, O, T, L and S layout plain boxes in the parking lot.
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3.1.4 Ground Truth

A ground truth is needed as a reference to evaluate the performance of mapping al-

gorithms. The dimensions and locations of the targets in 3D space are required. The

dimensions of each box can be easily measured and the locations can be derived by the

relative positions between the camera and boxes. Ground truths are generated with

following steps.

1. The camera is put into the real environment and its initial position can be derived.

The world coordinate system is created on the left camera. The origin point of

the world frame is the optical centre of the left camera and the ywzw plane is

perpendicular to the principal axis of the left camera.

2. In the principal axis of the left camera, the point whose distance to the optical

centre is 2.96 m can be located and its projection on the ground is the centroid

of the bottom surfaces of two boxes. Boxes are arranged in one of five layouts in

Figure 3-2 and their external surfaces towards the camera are parallel to ywzw

plane. Then the locations of each surface of the boxes can be calculated since the

coordinates of the bottom centroid are known.

3. The resolution of the ground truth is set to 0.1 m, which will also be introduced in

Section 4.7.1. The nodes containing the external surfaces of boxes can be located

in the ground truth and are marked as occupied while free nodes are marked

accordingly. Normally, occupied nodes form a shell and the space inside the shell

is unknown since the inside is not observable.

If the quality of the data collected by a senor is good enough, the corresponding occu-

pancy map derived by a mapping algorithm should match well with this ground truth.

The ground truth settings for each data set is presented in Figure 3-5.

3.2 Summary

Test scenes and targets are introduced in this chapter. Instead of using a large scene

with irregularly shaped objects, a relatively small scene to be explored is created with

two boxes, the external surfaces of which can be plain or covered with Voronoi diagrams.

Five layouts of boxes are created with the free tetrominoes in the Tetris game. Data

sets are collected in two environments with a controlled procedure. Through different

textures and layouts of boxes, and different environments, different test scenes can be

created, which allows the investigation of the impacts of textures and environments

on mapping performance. The ground truth for each data set is generated based on
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Figure 3-5: Ground truths of boxes of five layouts and two textures in two environments.
Free nodes are not presented for clarity. (a–e) I, O, T, L and S layout boxes with Voronoi
diagrams in front of buildings. (f–j) I, O, T, L and S layout plain boxes in front of
buildings.
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(k) (l)

(m) (n)

(o) (p)

(q) (r)

(s) (t)

Figure 3-5 (continued): Ground truths of boxes of five layouts and two textures in
two environments. (k–o) I, O, T, L and S layout boxes with Voronoi diagrams in the
parking lot. (p–t) I, O, T, L and S layout plain boxes in the parking lot.
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measurements in the real environment. The benefits of the data sets introduced in this

chapter are as follows:

• Targets can be accurately measured and a precise baseline can be set for evalua-

tion purpose in a low-cost way.

• Rich features introduced by Voronoi diagrams can provide reliable results when

evaluating the performance of visual-based mapping algorithms.

• Data sets are collected in two different environments with two different textures,

allowing to evaluate the effect of the scene to the process.

Based on the above data sets and ground truths, several experiments will be conducted

to tune the performance of mapping algorithms in the next chapters. In addition, the

performance of different mapping algorithms will also be compared.
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Chapter 4

Parameter Reduction and

Optimisation

This chapter is based on [101] and presents a systematic method to identify the param-

eter set for the octree based occupancy mapping to achieve better performance. The

framework is using a two-step approach, by fisrt conducting NCA on all parameters and

then performing grid search with ROC curves for the most significant ones. To offer a

reliable comparison this study is conducted on 20 data sets collected in Chapter 3.

4.1 Parameter Space Considerations

The methodology will be tested on OctoMap. Point clouds are created by disparity

maps generated using StereoSGBM [17] in the OpenCV library on the images from a

stereo camera. The pose of each frame of the point clouds is produced by ORB-SLAM.

Parameters of StereoSGBM, OctoMap and ORB-SLAM will be analysed.

4.1.1 Combinations of Parameters

The parameter space for the analysis will be generated in the following way. Each

parameter will be generated by three values, i.e., minimum, maximum and step, as

well as the algorithm-required relations with other parameters. The possible values of

a parameter T can be denoted as:{
T

∣∣∣∣ T = Tmin + (i− 1)Ts, i <

⌊
Tmax − Tmin

Ts

⌋
+ 1, i ∈ N+

}
, (4.1.1)
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where Tmax and Tmin are upper and lower bounds on the parameter, and Ts is the step.

A function is defined to denote the step of a parameter:

ψ(T ) = Ts . (4.1.2)

Another two functions are defined to describe the combinations of parameters. One

function is:

g(T ) =

⌊
max(T )−min(T )

Ts

⌋
+ 1 . (4.1.3)

The other one is:

h(T, T ′, n) = min

[⌊
min(T ) + (n− 1)Ts −min(T ′)

T ′s

⌋
, g(T ′)− 1

]
+ 1 , (4.1.4)

where T and T ′ are respective collections of possible values for two parameters, Ts and

T ′s are corresponding steps, and n is an input integer.

With the above definitions, the number of all the combinations of the parameters for

point cloud generation can be written as:

Np = g(dmin)g(dn)g(Bs)g(P1)g(P2)g(dm)g(C)g(ru)g(dw)g(dv)g(mode) . (4.1.5)

In addition to the above grid of parameters, by considering upper and lower bounds on

the probability, a reasonable set of OctoMap parameters should satisfy:{
1 > pmax ≥ ph ≥ 0.5 > pm ≥ pmin > 0

pmax ≥ pt ≥ pmin

. (4.1.6)

Here pmax = 1 and pmin = 0 are avoided in case the log-odds probability is not a

number. From the above relationship, it can be inferred that:{
min(pmax) ≥ min(ph) > min(pm) ≥ min(pmin)

min(pmax) ≥ min(pt) ≥ min(pmin)
. (4.1.7)

Then the number of the combinations of OctoMap parameters is:

No =

g(pmax)∑
i=1

g(pm)∑
j=1

h(pm,pmin,j)∑
q=1

g(pt)h(pmax, ph, i) . (4.1.8)
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where the possible values of pt correspond to pmax value: min(pmax) + (i − 1)ψ(pmax)

and pmin value: min(pmin) + (q − 1)ψ(pmin).

The number of the combinations of ORB parameters is:

Nb = g(Nf )g(sf )g(Nl)g(ti)g(tmin) . (4.1.9)

Parameters will be combined and tested on the different data sets introduced in Chap-

ter 3. Let Nd denote the number of data sets, a random permutation of the indices

of all the combinations will be generated and divided into Nd groups. The number of

combinations for each data set is:

Nt =
NpNoNb

Nd
. (4.1.10)

4.2 Performance Metrics

Binary classification refers to tasks categorising elements into two classes and has a wide

range of applications, including bankruptcy prediction [108], disease diagnosis [109],

airlines delays prediction [110] and quality assurance [111]. Metrics used to evaluate

the performance of a binary classifier depend on scenarios. For example, sensitivity

and specificity normally have a wide range of usage in medicine, while recall, precision

and f-factor are commonly used in machine learning [112, 113].

An occupancy map can be generated with a series of point clouds. For any node in

the map, if the endpoints of any point cloud appear inside the node or the rays cast

from the sensor to the endpoints of any point cloud traverse the node, the volumetric

space inside the node is explored and the state of this node can either be occupied or

free; otherwise, the node is not explored and its state is unknown since no observations

from the sensor are available to determine the state of this node. The unknown state

means the data derived by the sensor have no impacts on the node and the state of

the node has never been determined by the mapping algorithm. So it is reasonable to

exclude the unknown nodes when judging the quality of an occupancy map since for

these nodes the mapping algorithm is never implemented to update their probabilities.

Take an simple case for example, without any point clouds, a blank map can be created

and the states of all the nodes in the map are unknown. It is not reasonable to compare

the map with the ground truth to evaluate the performance of a mapping algorithm

since the algorithm is never implemented on these nodes. By excluding the nodes of

unknown states, OctoMap can be treated as a binary classifier since it classifies the
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nodes in an occupancy map into occupied and free ones. Therefore, the performance

measures for binary classifiers can be used to evaluate the mapping performance of the

OctoMap algorithm.

4.2.1 Confusion Matrix

In machine learning, a confusion matrix, also called a contingency table, is a table

layout to describe the performance of a classification algorithm [39, 114]. As shown in

Table 4.1, a 2×2 confusion matrix summarises the number of true positives (TPs), false

positives (FPs), true negatives (TNs) and false negatives (FNs). Positive or negative

refers to the category a classifier assigns an instance to, while true or false refers to

whether the classification is correct or not.

Table 4.1: Confusion matrix.

True condition
Total population Condition positive Condition negative

Predicted
condition

Predicted
condition positive

True positive (TP) False positive (FP)

Predicted
condition negative

False negative (FN) True negative (TN)

Based on the outcomes in the table of confusion, a number of criteria can be defined

to analyse the performance of a binary classifier. In this thesis, true positive rate

(TPR), false positive rate (FPR) and false discovery rate (FDR) will be discussed. The

definitions of these metrics are:

TPR =
NTP

NTP +NFN
, (4.2.1)

FPR =
NFP

NFP +NTN
, (4.2.2)

and

FDR =
NFP

NFP +NTP
, (4.2.3)

where NTP , NFP , NTN and NFN are the numbers of TP, FP, TN and FN elements.

4.2.2 Receiver Operating Characteristic

A ROC curve, created by plotting TPR against FPR, is commonly used to demonstrate

the diagnostic ability of a binary classifier when its threshold is varied [115]. The

ROC curve is the summary of a confusion matrix at different thresholds. As shown in
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Figure 4-1, defined by FPR and TPR as x and y axes, the ROC space illustrates the

trade-off between TPR and FPR. As a metric for how good a binary classifier is, the

area under the curve (AUC) refers to the area defined by an ROC curve, x axis and

line x = 1. The perfect classification is on the top left corner. The diagonal line from

the origin to the top right corner represents the random guess. The space above the

diagonal line means the classification is better than random guess and the space below

the line represents worse results than random guess. An ROC curve is normally above

the line. The point produced by the classification will move on the ROC curve when

the threshold is changed.

0 0.2 0.4 0.6 0.8 1

FPR

0

0.2

0.4

0.6

0.8

1

T
P
R

ROC
AUC
Random guess
Perfect classi-cation

Figure 4-1: Receiver Operating Characteristic (ROC) space.

4.2.3 ROC Surface

The traditional AUC-ROC method is not effective in dealing with unbalanced data sets

in which elements in one class are more than in others. For example in empty scenes,

most elements in a map are classified as TNs, which will distort the ROC curve since

only a small portion of the curve is relevant to the real test. To solve the class-skewed

problem, researchers have come up with several approaches focusing on the sub-regions

of the ROC curve, e.g., magnifying part of the curve [116] and computing part of

AUC [117], or using another variant of ROC by replacing FPR with FDR [118, 119].

In [120], ROC surface (ROCS) is proposed for evaluating the classifier performance to

address the issue in the AUC-ROC method when the data is class-skewed by TNs. It
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combines the ROC method and its TPR-FDR variant. Three metrics, i.e., TPR, FPR

and the true discovery rate (TDR), are used to generate a three-dimensional surface

by projecting FPR-TPR-TDR curve to TPR-TDR plane. TDR can be derived by one

minus FDR. Figure 4-2 shows the construction procedure of ROCS.

Figure 4-2: Construction of the Receiver Operating Characteristic (ROC) curve and
the ROC surface (ROCS) [120].

In the ROCS method, AUC is replaced by the volume under the surface (VUS). VUS

is defined as the volume between the ROCS and its projection on the FPR-TPR plane:

VUS =

∫ ∞
−∞

(1− FPR (χ)) TDR (χ) dTPR (χ) , (4.2.4)

where χ is the threshold value. FDR-Controlled AUC (FCAUC) is defined the AUC

under the original ROC curve limited by a pre-defined FDR range. When the cutoff of

FDR is b, the corresponding minimum value of χ can be found by:

a = arg min
χ

(TPR (χ)) , s.t.FDR (χ) ≤ b . (4.2.5)

Then FCAUC can be defined as:

FCAUC =

∫ ∞
a

(1− FPR (χ)) dTPR (χ) . (4.2.6)
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When the TNs greatly outnumber TPs, the ROCS plot, and VUS and FCAUC values

provide alternative methods to measure the performance of a classifier.

4.2.4 Choice of Performance Metrics

A map built from a date set collected in outdoor environments is heavily class-skewed

by TNs since there is more free space than occupied space. In this case, the metrics in

ROCS can be used for judging the performance of a mapping algorithm. However, the

bottom surface is effectively defined by the traditional ROC curve, of which a small

portion is relevant to real tests when TNs greatly outnumber other categories. With a

reasonable set of point clouds and mapping parameters, the AUC of the curve in the

bottom surface is approximately equal to 1 since the FPR of most points derived by

real tests on the curve is approximately 1 and varies in a very small range. In addition,

TDR can be derived by FDR. So FPR can be ignored and TDR can be replaced with

FDR to reduce the metrics from three dimensions to two dimensions. In this thesis,

the metrics in ROC variant, the TPR-FDR curve, will be used to evaluate mapping

performance.

4.3 Node Classification

To compute performance metrics, an occupancy map will be compared with ground

truth to classify the nodes in the map into four categories, i.e, TPs, FPs, TNs and

FNs. This section introduces the procedure for the assessment against ground truth.

The assumptions made for the evaluation are also introduced.

4.3.1 Assumptions for Evaluation

In this thesis, the evaluation of the quality of an occupancy map is based on the

following assumptions:

• The camera poses derived by ORB-SLAM are accurate. As introduced in Sec-

tion 2.2.2, BA is implemented to reduce projection errors in both local mapping

and loop closing. In Section 3.1.3, data sets are collected by the camera orbiting

around the targets twice. The cumulative error in the pose can be minimised

when the loop closure is detected. It is assumed that ORB-SLAM can produce

accurate camera poses and errors caused by ORB-SLAM can be ignored. The

impact of ORB-SLAM parameters might be reduced since the optimisation by

ORB-SLAM may minimise the possible difference in poses caused by different

parameters.
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• The calibration for the camera and the re-projection model are ideal. The ZED

camera used in the experiments has been factory calibrated and the camera pa-

rameters are used for 3D reconstruction with a stereo camera model. The shift

of a re-projected point on the ray cast from the camera can be ignored com-

pared with the resolution of an occupancy map since the camera has been well

calibrated and the images are rectified by camera parameters. With this assump-

tion, the impacts of the camera parameters on the quality of an occupancy map

are ignored.

• The depth map derived by the camera is accurate. The StereoSGBM algorithm

in OpenCV is implemented for the derivation of the depth map of left and right

images. Since OpenCV is a highly optimised library, the depth map obtained by

the algorithm in it is considered to be reliable. The change in the parameters of

the StereoSGBM algorithm might result in less significant difference in the depth

map than other less optimised depth generation methods.

4.3.2 Pixel Connectivity

To deal with the fluctuation of points and identify real FPs, the concept of pixel

connectivity [37] in image processing is introduced to the node classification procedure.

In 3D space, for a specific pixel, 8-connected pixels are the neighbours that touch one

of the surfaces of this pixel. In addition to 8-connected pixels, 18-connected pixels also

touch one of the edges of the specified pixel. Besides 18-connected pixels, 26-connected

pixels are the neighbours also touch one of the corners of the specified pixel. Figure 4-3

shows the example of neighbourhood pixels-association with 26 pixels.

Figure 4-3: Association with 26 pixels.

For a node whose centre coordinates are (x, y, z), the corresponding coordinates of the

connected pixels are presented in Table 4.2. sl denotes the side length of a cube.

4.3.3 Classification Procedure

In an occupancy map, 3D space is evenly divided into cubic volumes of which the

states can be occupied, free or unknown. An occupied node indicates that it has a high

occupancy probability above the occupancy threshold, while a free node is with a low
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Table 4.2: Coordinates of connected pixels.

Connectivity Coordinates

26-connected

18-connected

8-connected
(x± sl, y, z)
(x, y ± sl, z)
(x, y, z ± sl)

(x± sl, y ± sl, z)
(x± sl, y ∓ sl, z)
(x± sl, y, z ± sl)
(x± sl, y, z ∓ sl)
(x, y ± sl, z ± sl)
(x, y ± sl, z ∓ sl)

(x± sl, y ± sl, z ± sl)
(x± sl, y ± sl, z ∓ sl)
(x± sl, y ∓ sl, z ± sl)
(x∓ sl, y ± sl, z ± sl)

probability below the threshold. The unknown state of an node means the node has not

been explored yet. If the unknown nodes in an occupancy map are not considered, the

map itself can be treated as a binary test. In this test, “positive” refers to “occupied”

and “negative” means “free”. The following terms in the statistical method can be

redefined to describe the nodes in a map:

• TP: Occupied nodes correctly identified as occupied.

• FP: Free nodes incorrectly identified as occupied.

• TN: Free nodes correctly identified as free.

• FN: Occupied nodes incorrectly identified as free.

For each node in an occupancy map, the coordinates of the node centroid are used to

find the corresponding node in the ground truth. The minimum and maximum values

of the bounding box of all occupied and free nodes in the map will be first computed.

The order of querying nodes will affect the classification results; however, there is no

obvious difference in the overall trend. The classification will be performed if the node

exists. In real experiments, the points produced by the StereoSGBM algorithm will

fluctuate near the external surfaces of objects and points may appear inside objects. If

the state of a node in a map is known but the corresponding node in the ground truth

is unknown, this node will be ignored in the classification procedure. Following this

rule, in this work a node will be ignored if the corresponding node in the ground truth
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is inside the boxes. The reasons for the ignorance of one such node are as follows:

• The same observation may lead to completely different classification results. Since

the space inside the objects are invisible, the observation from the outside is

always the same no matter the inside is full or empty. If the node is considered,

it can be categorised to different classes when the observation is the same but the

states inside the objects are different.

• The nodes appearing inside the objects normally do not affect the use of an occu-

pancy map. If a node in the map appears inside the objects in the ground truth, it

is usually behind the nodes containing the external surface of the objects. When

a map is used for navigation or path planning, the inside nodes are not visible

and thus has no impacts on the application.

TN and FN nodes For a free node in an map, the ground truth will be queried

with the coordinates of the node centre. If the corresponding node in the ground truth

is free, the node in the map will be marked as TN. Otherwise, it will be marked as

FN. With the assumptions in Section 4.3.1, most points in point clouds should be in

ideal positions. Since free nodes are determined by the rays cast from the sensor to

end points, most free nodes will belong to TNs.

TP and FP nodes 26-connected pixels introduced in Section 4.3.2 will be used

to identify TP and FP instances. For an occupied node in the occupancy map, the

coordinates of the node centre and its 26-connected nodes can be obtained following

Table 4.2. The ground truth will be queried by the node centre coordinates first and

then the coordinates of the neighbourhood nodes. The order to query the neighbours

can be found in algorithm 1. If the corresponding node in the ground truth is occupied,

the occupied node in the generated map is successfully associated with this node and

the query process stops. The node in the map will be marked as TP, while the node

in the ground truth will be marked as associated and it cannot be associated with

other occupied nodes in the generated map. On the contrary, an occupied node in

the generated map will be marked as FP if the ground truth has been queried by

corresponding 27 coordinates but none of the nodes can be associated. With the

assumptions in Section 4.3.1, most points will appear on the external surfaces of the

objects. Since occupied nodes are determined by the locations of endpoints, most

occupied nodes will be categorised as TPs.

Figure 4-4 is a 2D example of node classification. The classification can be extended

to 3D space by considering the third axis. On the left side is the occupancy map to
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be evaluated and on the right side is the ground truth. The nodes in the map will

be classified into different categories one by one by querying the states of the nodes

in the ground truth. The node marked with dashed square in the map is the current

one to be categorised. With the coordinates of this node, the corresponding node

and its connected neighbours can be found in the ground truth and are surrounded

by the dashed rectangular-shaped area. Then the explored node in the map can be

classified into one of four categories following the query order in pixel connectivity and

the classification procedure, which has been previously introduced. More details on the

classification operation are presented in algorithm 1.

With the above classification methods in this section, algorithm 1 shows the process of

classification of nodes in an occupancy map in this thesis. m and mr denote the map

and the ground truth, respectively. sl is the resolution of the occupancy map or the

side length of the cube in the octree, and m′r is a copy of mr. Lines 3 to 4 get the

bounds of the bounding box of a map. Lines 11 through 15 identify TP and FP nodes

with the aforesaid approach. Once a node in m′r is associated using pixel connectivity,

line 12 will delete it. Lines 17 to 20 categorise free nodes into TN and FN ones.

4.4 Framework for Parameter Reduction and Optimisa-

tion

The method is achieved by the reduction of the parameter space defined in Section 4.1

using NCA and then a grid search of the OctoMap parameter space. The respective

steps are presented in this section.

4.4.1 Parameter Reduction

Point cloud parameters, OctoMap parameters and ORB parameters are needed to

generate occupancy maps from the original images. Normally, there are a number

of parameters and these parameters affect to different degrees the performance of a

mapping algorithm. The analysis becomes complicated when a number of parameters

are taken into account. Therefore, the parameters of lower impacts on the performance

metrics can be neglected to reduce the complexity of analysis.

Feature selection is implemented to exclude parameters which are less relevant to the

performance metrics. Feature selection, also known as variable selection, will select

a set of relevant features from given features to construct a regression model [121].

In machine learning or pattern recognition, a feature is defined as an observation of
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Figure 4-4: 2D example of node classification.
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Algorithm 1: Classification of nodes

Input: m, mr, sl
Output: NTP ,NFP , NTN , NFN

1 NTP , NFP , NTN , NFN ← 0

2 m′r ← CopyGroundTruth(mr)
3 xmin, ymin, zmin ← GetMetricMin(m)
4 xmax, ymax, zmax ← GetMetricMax(m)

5 for z ← zmax −
sl
2

to zmin −
sl
2

step −sl do

6 for x← xmax −
sl
2

to xmin −
sl
2

step −sl do

7 for y ← ymax −
sl
2

to ymin −
sl
2

step −sl do
8 mi ← m.SearchNode(x, y, z)
9 mj ← mr.SearchNode(x, y, z)

10 if mi 6= ∅ and mj 6= ∅ then
11 if m.IsNodeOccupied(mi) then

12 if IsNodeAssociated(m′r, x, y, z) then
13 NTP ← NTP + 1
14 else
15 NFP ← NFP + 1

16 else
17 if mr.IsNodeOccupied(mj) then
18 NFN ← NFN + 1
19 else
20 NTN ← NTN + 1

individual measurable property or characteristic of a phenomenon [122]. In this chapter,

each parameter can be treated as a feature or variable.

With each combination of point cloud, OctoMap and ORB parameters, an occupancy

map can be generated. The corresponding TPR and FDR are computed by the number

of nodes in the four categories, i.e., TPs, FPs, TNs and FNs. The weight of each param-

eter under two metrics can be used for judging which parameters are more important.

The derivation of parameter weights from parameters and metrics is a regression prob-

lem. NCA feature selection introduced in [36] is a non-parametric method for selecting

features with the goal of maximising prediction accuracy of regression or classifica-

tion, and thus can be used to learn parameter weights with parameters as predictors

and performance metrics as responses. The results are then normalised as per [36] to

compare the results derived by different data sets.
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4.4.2 OctoMap Parameter Optimisation

To evaluate the mapping approach performance, a consistent evaluation of the quality of

the point cloud used is needed. Given different combinations of point cloud parameters

will give different quality of point clouds, a naive mapping policy is implemented here

as a proxy to point cloud quality.

The naive mapping policy is a non-parametric approach. A node will be marked as

occupied if it contains points, while a node will be marked as free if it contains no

points and is traversed by rays cast from the sensor to endpoints. Once a node is

marked as occupied, it cannot be converted to a free node. This is a simple and naive

way to generate an occupancy map, which is not affected by parameters. In this update

policy, the states of all potentially occupied nodes are guaranteed to be occupied. As

a result, the FDR of the generated map is the proxy for the cleanness of the point

cloud set. The higher the FDR is, the more nodes have been incorrectly identified as

occupied due to noise points being in empty space.

Point cloud sets produced by different parameters from each data set are ranked by

the FDR derived by the naive mapping approach and then five of those point cloud

sets are selected. A series of combinations of OctoMap parameters will be generated

and implemented on the selected point cloud sets. The AUC of TPR-FDR variant is

used to optimise parameters. The best AUC derived by grid search will be compared

with that derived by default parameters as suggested in [11]. In this work, the data

sets introduced in Chapter 3 will be randomly divided into two groups for training and

test purposes. The parameter set derived by training through searching grid parameter

space will be validated on test data sets.

4.5 Relationship Between OctoMap Parameters and Per-

formance Metrics

Two methods, i.e., linear regression and neural networks, are used to investigate the

relations between OctoMap parameters and performance metrics. Since in Section 4.8

the relationship can be well fitted by a single-layer neural network, a linear relationship

might exist between parameters and metrics. Therefore, a linear model is also tested

here.
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4.5.1 Fitting Relationship with Multiple Linear Regression

A linear relationship might exist between OctoMap parameters and performance met-

rics. A multiple linear regression (MLR) [123] is implemented to fit the relation between

parameters and metrics. For any outcome y, the linear model of predictor variables

can be written as:

y = β0 + β1x1 + β2x2 + · · ·+ βnxn + ε, (4.5.1)

where β0, β1, . . . , βn are coefficient estimates, x1, x2, . . . , xn are input variables and

n equals to the number of OctoMap parameters, and ε is the error term.

4.5.2 Learning Relationship with Neural Networks

The shallow neural network (SNN) [124] is also implemented to fit the relationship

between input parameters and output performance metrics. Figure 4-5 shows the

structure of neural networks. The neural network has three layers, i.e., the input layer,

the hidden layer and the output layer. Each layer consists of several neurons. The

input layer is the initial input data and the number of neurons is the same as that of

inputs. The network takes the inputs, does the computation and produces outputs.

...

...

...

I1

I2

In

H1

H2

Hi

O1

O2

Oq

Input
layer

Hidden
layer

Ouput
layer

Figure 4-5: Structure of neural networks.

Figure 4-6 shows how a neuron does the computation. The neurons of the hidden and

output layers assign significance to their corresponding inputs by combining weights and

bias with input data. The weights will determine how important each input element is.
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The sum of these products are put into the activation function for further calculation.

x2 w2 Σ Γ

Activation
function

y

Output

x1 w1

xn wn

Weights

Bias
b

Inputs

...

Figure 4-6: Structure of a neuron.

For each neuron, the input can be denoted as:

X =
[
x1 x2 . . . xn

]>
, (4.5.2)

where n equals to the number of input elements. The weights are:

W =
[
w1 w2 . . . wn

]
. (4.5.3)

With an activation function Γ(x), the output follows:

y = Γ(WX + b). (4.5.4)

The activation functions for hidden and output layers are sigmoid and identity func-

tions, respectively. The activation function can be denoted as:

Γ(x) =


1

1 + exp(−x)
hiddern layer

x output layer

. (4.5.5)

The aforesaid procedure is called forward propagation which moves forward through

the neural network from inputs until the activation of a neuron is derived. Apart from

this, the backpropagation is also required to calculate the error attributable to each

neuron and tweak the weights and biases. Bayesian regularisation [125] is used for the

bakpropagation to train the neural network.
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4.5.3 Pearson Correlation Coefficient and Mean Squared Error

Pearson Correlation Coefficient (PCC) [126] and Mean Squared Error (MSE) [127] are

used to evaluate the fitting results derived by MLR and SNN.

Correlation statistics depicts the strength of the relationship between two variables [128].

The range of a correlation coefficient normally varies between -1 and 1. The sign of a

correlation coefficient represents whether the correlation is positive or negative. The

absolute value is a measurement of the strength of a relationship. For example, corre-

lations of 1 and -1 mean perfect positive and negative correlations, respectively. While

0 means there is no linear relationship between two variables. For two variables x and

y, PCC is given as follows:

R =
cov(x, y)

σxσy
, (4.5.6)

where cov(x, y) is the covariance, and σx and σy are the standard deviations of x and

y, respectively. The covariance is defined as:

cov(x, y) =
1

n− 1

n∑
i=1

(xi − E(x))(yi − E(y)), (4.5.7)

where n is the number of elements and E(x) is the expectation of x.

MSE measures the average of the squares of errors and is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 , (4.5.8)

where y and ŷ are observed values and predicted values.

4.6 Time Estimation Model

For OctoMap mapping, the time elapsed for a single run is proportional to the processed

point number, so the run time for mapping can be defined as:

Φo(N) = aN + b, (4.6.1)

where a and b are coefficients, and N is the number of points in the point cloud set

used for generating an occupancy map.
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4.7 Experimental Method

4.7.1 Design of Experiments

Parameter weights will be analysed to reduce the parameters of lower impacts and

the residual most important parameters will be optimised to improve the mapping

performance. An exhaustive test on point cloud and OctoMap parameters will be first

performed to study the impact of each parameter. In this case, ORB parameters are

of default values. Then point cloud parameters will be fixed, and mapping parameters

and ORB parameters will be combined to conduct experiments on different data sets.

Figure 4-7 shows the workflow for experiments.

To generate an occupancy map, point clouds and corresponding poses are required. In

the experiments, ORB-SLAM [33] is implemented to generate the poses of the camera.

A series of keyframes is produced by ORB-SLAM and with the time stamps of those

keyframes the images can match with their respective keyframe pose. The StereoSGBM

algorithm is implemented on the images of keyframes to produce disparity maps, from

which point clouds can be reconstructed. Points will be preserved if their distances are

within 8 m from the camera in the principal axis.

PCL has been developed for processing point clouds [8]. PCL provides functional

modules and has a wide range of applications, including point cloud registration [129],

object recognition and pose estimation [130], segmentation [131], and mapping [132]. In

this section, point clouds are down sampled by the VoxelGrid filter in PCL at resolution

0.1 m before they are processed by OctoMap, to reduce computational time. 3D space

will be first divided by 3D voxel grids or cubes at a given resolution. Then the points

in a single voxel grid will be approximated by their centroid.

The leaf size in OctoMap is also set to 0.1 m. The resolution is chosen based on the

scale of test scenes and the size of targets. If the leaf size is too big, the details on

the external surface of an object will be lost. The fluctuation of the points has also

been considered. Since point clouds derived by stereo images are not perfect, points will

fluctuate near their real positions. This leaf size can tolerate the fluctuation. Moreover,

the resolution is constant here since maps of different leaf sizes are not comparable with

the total number of nodes being different, even derived by the same point cloud set.

Maximum range for how long individual beams are inserted is set to 4 m since the

fluctuation of points is not serious within this range.

Occupancy maps derived by different combinations of parameters will be compared with

ground truths to classify the nodes into TPs, FPs, TNs and FNs using the method in-
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Figure 4-7: Experimental method for parameter reduction and optimisation.
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troduced in Section 4.3. The performance metrics derived by the number of the nodes

in each category along with different parameter sets will be analysed by NCA feature

selection to determine which parameters should be neglected or optimised. The most

important ones will be optimised on point cloud sets selected by the non-parametric

naive approach explained in Section 4.4. The relationship between mapping parame-

ters and performance metrics will be learned by the neural network as introduced in

Section 4.5. The time estimation model proposed in Section 4.6 will be verified as well.

4.7.2 Parameter Space for Analysis

In this section, the minimum, maximum and step values of the parameter space are

given for point cloud generation, and occupancy map generation, and pose generation.

The configuration of point cloud parameters is shown in Table 4.3. The steps for spec-

ified parameters are not required since they are either of constant values or determined

by other parameters. Specifically, dmin, dn and mode are constants. dmin = 0 since the

camera is well calibrated at the factory. dn controls visible depth and has no impacts on

the quality of the disparity map and is set to constant to make point clouds comparable

when the other parameters are varied. mode is set as true to improve the quality of

disparity maps. P1 and P2 are determined by image channel number Nc and parameter

Bs. dw is up to 1000 following recommended setting for relatively large object targets.

As a result of those minimum, maximum and steps the number of combinations of

point cloud parameters is 1600.

Table 4.3: Configuration of point cloud parameters.

Parameter Minimum Maximum Step

dmin 0 0 N/A
dn 80 80 N/A
Bs 3 15 4

P1 8NcB
2
s 8NcB

2
s N/A

P2 32NcB
2
s 32NcB

2
s N/A

dm 0 1 1
C 10 50 10
ru 5 35 10
dw 200 1000 200
dv 1 2 1

mode true true N/A

Table 4.4 shows the configuration for the OctoMap parameter space. For parameter pt

from pmin to pmax two steps are investigated, a step of 0.12 for the reduction analysis
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and a step of (pmax − pmin)/8 for optimisation, with 9 points for generating the ROC

curve. If the metric of a point is not a number, that point will be excluded. The step

size of 0.12 and 9 points were decided following a limited testing of cases using step

size 0.06 and 17 points. No obvious difference was found in results, but there was a

significant computational time penalty. As a result, for the experiments reported here,

the steps given in Table 4.4 will be used with OctoMap parameter combinations for

reduction and optimisation being 1000 and 1350, respectively.

Table 4.4: Configuration of OctoMap parameters.

Parameter Minimum Maximum Step

pmax 0.5 0.98 0.12
ph 0.5 0.98 0.12
pm 0.02 0.38 0.12
pmin 0.02 0.38 0.12

pt
a pmin pmax 0.12

pt
b pmin pmax (pmax − pmin)/8

a Configuration for parameter reduction.
b Configuration for parameter optimisation.

ORB parameters are varied in reasonable ranges to study their impacts. The configu-

ration of ORB parameters is presented in Table 4.5. The considerations for parameter

settings are as follows. The number of features in each image should not be too small

to make sure the features in two images can be matched. Considering the number of

pyramid levels, 1.3 as maximum for sf is relatively large and appropriate since the

image size will be divided by s
Nl
f at Nl-th level. Nl and ti are varied based on the

default values, and tmin is further decreased. The number of the combinations of ORB

parameters is 243.

Table 4.5: Configuration of ORB parameters.

Parameter Minimum Maximum Step

Nf 1500 2000 500
sf 1.1 1.3 0.1
Nl 7 9 1
ti 11 13 1
tmin 5 7 1
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4.8 Results and Analysis

The first set of results is the weight of each of the point cloud and OctoMap param-

eters on performance metrics TPR and FDR. Here ORB parameters remain default

values. With the configurations in Tables 4.3 and 4.4, there are 80 000 combinations

of point cloud parameters and OctoMap parameters for each data set. Parameters of

constant values are excluded from this analysis. Parameter weights are calculated by

implementing the NCA method on node classification results derived by the 20 data

sets. Figure 4-8 shows the normalised weights of different parameters. The last five

ones are OctoMap parameters, and they show higher weights under both performance

metrics. For TPR, the majority of OctoMap parameter weights are over 0.6 while most

point cloud parameter weights are under 0.2. FDR is similar to the case TPR with the

weights of OctoMap parameters and point cloud parameters mostly being above 0.5

and under 0.2, respectively.

Since OctoMap parameters have higher impacts on performance metrics, point cloud

parameters are then fixed to study the weights of OctoMap parameters and ORB

parameters. Point cloud parameters correspond to the 800th point cloud set in Voronoi

box of I layout in front of buildings when the ORB parameters are of default values.

Keyframes produced by ORB-SLAM are normally different when ORB-SLAM is run

multiple times, even with the same data set and same parameters. To make results

comparable, point clouds of the keyframes generated by default ORB parameters from

each data set are used for map generation. When ORB parameters are different, the

poses corresponding to these keysframes can be derived by camera trajectories through

matching keyframe time steps. With the settings of OctoMap parameters in Table 4.4

and ORB parameters in Table 4.5, the number of combinations of parameters for each

data set is 12 150. The weight of each parameter is shown in Figure 4-9. OctoMap

parameters show higher weights than ORB parameters in both performance measures

with mostly being above 0.5. While most ORB parameter weights are under 0.1, and

sf shows the highest weight among these parameters, but its weights are mostly under

0.4.

Then 20 data sets are split into training and test groups, with 70% randomly selected

for optimisation and the other 30% for validation. Since OctoMap parameters have

higher weights than both point cloud and ORB parameters, optimisation will only

be performed on OctoMap parameters with the training data sets. Here the ORB

parameters are of default values. For each data set, 1600 sets of point clouds can

be generated with the parameter configuration in Table 4.3. Point cloud sets are
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Figure 4-8: Normalised weights of point cloud and OctoMap parameters for perfor-
mance metrics. (a) True positive rate (TPR). (b) False discovery rate (FDR).
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Figure 4-9: Normalised weights of OctoMap and ORB parameters for performance
metrics. (a) True positive rate (TPR). (b) False discovery rate (FDR).
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ranked by the simple non-parametric mapping approach from Section 4.4.2. The 1st,

400th, 800th, 1200th and 1600th (a lower number indicates better quality, i.e., cleaner

point clouds) ranked point cloud sets from each data set are selected to perform the

optimisation of OctoMap parameters, of which the grid parameter space is generated

by Table 4.4 and the relations in Section 4.7.2. The AUC of TPR-FDR curve specified

in Section 4.4.2 is used as the performance measure for optimisation. The results of

optimisation against OctoMap default parameters [11] on the training data sets are

presented in Figure 4-10. By optimisation, improvements can be achieved on all cases

in the two different environments, with highest improvement over default parameters

of up to 15%. Overall, the AUC derived by default parameters using the building data

set (Figure 4-10a) is better than that using the parking lot data set (Figure 4-10b).

The quantitative results corresponding to Figure 4-10 are presented in Table 4.6.

Overall, the improvement by optimisation over default parameters increases when the

AUC of default parameters decreases. The mapping performance in the environment

with buildings is better than that in the parking lot since there are more objects to

provide image features. The performance also benefits from the rich features introduced

by Voronoi diagrams. The baseline AUC generated by OctoMap default parameters in

two environments is normally better when boxes are covered with Voronoi diagrams.

There is not an obvious trend in the five tetromino layouts of boxes. However, a higher

improvement can normally be achieved when the quality of the point clouds degrades

in each data set.

The frequency of the parameter values which achieve best performance in the training

data sets through searching grid parameter space has also been analysed. The param-

eters derived by gird search are divided into five groups according to the point cloud

set ranking. The frequency of the values of each parameter derived by grid search is

presented in Figure 4-11. There is not an obvious change in pmax and ph with the

ranking (quality) of point cloud sets. Overall, these two parameters are dominated by

0.98 and 0.62, respectively. For pm and pmin, the most frequent parameters tend to be

smaller as the quality of point clouds becomes worse. The frequency of smaller values

is higher than larger ones, especially when the point cloud quality degrades.

The results are cross-validated using the test data sets and the findings from the pa-

rameter frequency analysis in Figure 4-11. Figure 4-12 shows the validation on testing

data sets with the most frequent values of pmax, ph, pm and pmin derived by training

at 0.98, 0.62, 0.14 and 0.02, respectively. The improvement increases to 9% as AUC

derived by default parameters decreases, but can be negative when AUC is already

relatively large. The details corresponding to Figure 4-12 are presented in Table 4-7.
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Figure 4-10: Improvement by grid search over the area under the curve (AUC) of
OctoMap default parameters on training data sets. (a) Building. (b) Parking lot.
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Table 4.6: Improvement over OctoMap default parameters on training data sets.

Environment Texture Layout
Point
Cloud

Ranking

AUC Improvement

Default
parameters

Grid
search

AUC %

Building Plain I 1 0.8487 0.8856 0.0368 4.34
Building Plain I 400 0.8382 0.8648 0.0266 3.18
Building Plain I 800 0.8328 0.8503 0.0175 2.10
Building Plain I 1200 0.8189 0.8423 0.0234 2.86
Building Plain I 1600 0.7718 0.8235 0.0517 6.69
Building Plain T 1 0.8808 0.9030 0.0222 2.51
Building Plain T 400 0.8804 0.9086 0.0281 3.19
Building Plain T 800 0.8663 0.8984 0.0321 3.70
Building Plain T 1200 0.8447 0.8951 0.0504 5.97
Building Plain T 1600 0.8090 0.8689 0.0599 7.40
Building Plain L 1 0.8652 0.9124 0.0472 5.46
Building Plain L 400 0.8560 0.9059 0.0500 5.84
Building Plain L 800 0.8494 0.8900 0.0405 4.77
Building Plain L 1200 0.8392 0.8760 0.0368 4.38
Building Plain L 1600 0.8042 0.8627 0.0585 7.28
Building Voronoi I 1 0.8866 0.8942 0.0077 0.86
Building Voronoi I 400 0.8811 0.8885 0.0075 0.85
Building Voronoi I 800 0.8814 0.8909 0.0094 1.07
Building Voronoi I 1200 0.8744 0.8825 0.0082 0.93
Building Voronoi I 1600 0.8524 0.8637 0.0113 1.32
Building Voronoi O 1 0.9505 0.9668 0.0163 1.72
Building Voronoi O 400 0.9447 0.9762 0.0316 3.34
Building Voronoi O 800 0.9397 0.9766 0.0369 3.92
Building Voronoi O 1200 0.8945 0.9549 0.0605 6.76
Building Voronoi O 1600 0.8715 0.9423 0.0708 8.13
Building Voronoi L 1 0.9819 0.9917 0.0097 0.99
Building Voronoi L 400 0.9819 0.9942 0.0122 1.25
Building Voronoi L 800 0.9800 0.9943 0.0143 1.46
Building Voronoi L 1200 0.9324 0.9875 0.0551 5.91
Building Voronoi L 1600 0.8975 0.9841 0.0866 9.65
Building Voronoi S 1 0.8569 0.9431 0.0863 10.07
Building Voronoi S 400 0.8357 0.9388 0.1031 12.33
Building Voronoi S 800 0.8075 0.9127 0.1051 13.02
Building Voronoi S 1200 0.8128 0.8856 0.0728 8.96
Building Voronoi S 1600 0.7792 0.8432 0.0640 8.22
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Table 4-6 (continued): Improvement over OctoMap default parameters on training data
sets.

Environment Texture Layout
Point
Cloud

Ranking

AUC Improvement

Default
parameters

Grid
search

AUC %

Parking lot Plain I 1 0.8384 0.8725 0.0341 4.07
Parking lot Plain I 400 0.8207 0.8462 0.0255 3.11
Parking lot Plain I 800 0.8188 0.8428 0.0240 2.93
Parking lot Plain I 1200 0.8140 0.8388 0.0248 3.05
Parking lot Plain I 1600 0.7761 0.8353 0.0592 7.62
Parking lot Plain O 1 0.8207 0.8998 0.0791 9.64
Parking lot Plain O 400 0.8225 0.8945 0.0720 8.75
Parking lot Plain O 800 0.7879 0.9024 0.1145 14.53
Parking lot Plain O 1200 0.7788 0.8853 0.1066 13.68
Parking lot Plain O 1600 0.7331 0.8394 0.1064 14.51
Parking lot Plain L 1 0.8424 0.8723 0.0299 3.55
Parking lot Plain L 400 0.8442 0.8773 0.0331 3.92
Parking lot Plain L 800 0.8078 0.8490 0.0412 5.10
Parking lot Plain L 1200 0.8351 0.8603 0.0253 3.02
Parking lot Plain L 1600 0.7733 0.8314 0.0581 7.52
Parking lot Plain S 1 0.8459 0.8640 0.0182 2.15
Parking lot Plain S 400 0.8355 0.8634 0.0279 3.34
Parking lot Plain S 800 0.8390 0.8478 0.0088 1.05
Parking lot Plain S 1200 0.8290 0.8409 0.0119 1.44
Parking lot Plain S 1600 0.8173 0.8375 0.0202 2.47
Parking lot Voronoi I 1 0.8866 0.9354 0.0488 5.50
Parking lot Voronoi I 400 0.8886 0.9361 0.0475 5.34
Parking lot Voronoi I 800 0.8727 0.9210 0.0483 5.54
Parking lot Voronoi I 1200 0.8707 0.9348 0.0641 7.36
Parking lot Voronoi I 1600 0.8283 0.8984 0.0701 8.46
Parking lot Voronoi O 1 0.9185 0.9370 0.0185 2.01
Parking lot Voronoi O 400 0.9138 0.9379 0.0242 2.64
Parking lot Voronoi O 800 0.9069 0.9278 0.0210 2.31
Parking lot Voronoi O 1200 0.8976 0.9294 0.0318 3.55
Parking lot Voronoi O 1600 0.8563 0.9071 0.0508 5.94
Parking lot Voronoi L 1 0.9210 0.9359 0.0149 1.62
Parking lot Voronoi L 400 0.9096 0.9288 0.0192 2.11
Parking lot Voronoi L 800 0.9015 0.9299 0.0284 3.15
Parking lot Voronoi L 1200 0.8955 0.9293 0.0337 3.77
Parking lot Voronoi L 1600 0.8577 0.9127 0.0550 6.42
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Figure 4-11: Frequency of the values of OctoMap parameters through grid search
against point cloud set ranking on training data sets. (a) pmax. (b) ph. (c) pm.
(d) pmin.
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Table 4-7: Improvement for cross-validation.

Environment Texture Layout
Point
Cloud

Ranking

AUC Improvement

Default
parameters

Grid
search

AUC %

Building Plain O 1 0.9017 0.9094 0.0077 0.86
Building Plain O 400 0.8849 0.9080 0.0231 2.61
Building Plain O 800 0.8910 0.9292 0.0382 4.29
Building Plain O 1200 0.8825 0.9273 0.0448 5.08
Building Plain O 1600 0.8326 0.9007 0.0682 8.19
Building Plain S 1 0.9228 0.8972 -0.0256 -2.77
Building Plain S 400 0.9087 0.9082 -0.0005 -0.05
Building Plain S 800 0.9068 0.9139 0.0071 0.78
Building Plain S 1200 0.8895 0.9292 0.0397 4.46
Building Plain S 1600 0.8600 0.9214 0.0613 7.13
Building Voronoi T 1 0.9780 0.9532 -0.0248 -2.53
Building Voronoi T 400 0.9759 0.9652 -0.0107 -1.10
Building Voronoi T 800 0.9683 0.9779 0.0097 1.00
Building Voronoi T 1200 0.9313 0.9802 0.0489 5.25
Building Voronoi T 1600 0.9059 0.9630 0.0571 6.30

Parking lot Plain T 1 0.8261 0.8689 0.0429 5.19
Parking lot Plain T 400 0.8139 0.8483 0.0344 4.22
Parking lot Plain T 800 0.7833 0.8133 0.0300 3.83
Parking lot Plain T 1200 0.7978 0.8426 0.0449 5.62
Parking lot Plain T 1600 0.7438 0.8069 0.0630 8.47
Parking lot Voronoi T 1 0.9327 0.9345 0.0017 0.19
Parking lot Voronoi T 400 0.9252 0.9340 0.0088 0.96
Parking lot Voronoi T 800 0.9129 0.9356 0.0226 2.48
Parking lot Voronoi T 1200 0.8998 0.9264 0.0266 2.95
Parking lot Voronoi T 1600 0.8561 0.9209 0.0648 7.56
Parking lot Voronoi S 1 0.9210 0.9064 -0.0146 -1.59
Parking lot Voronoi S 400 0.9290 0.9258 -0.0032 -0.34
Parking lot Voronoi S 800 0.9145 0.9204 0.0059 0.65
Parking lot Voronoi S 1200 0.8757 0.9087 0.0331 3.78
Parking lot Voronoi S 1600 0.8676 0.9117 0.0441 5.08
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Figure 4-12: Cross-validation on test data sets.

The values of pmax and pmin achieving best performance among all the parameter com-

binations are similar for different point cloud sets, which reinforces the finding that

parameters for point cloud generation are less important. Despite of the high consis-

tency in these two parameters, one parameter set cannot achieve the best improvement

in all cases. With a higher baseline AUC, more occupied nodes can be preserved with

bigger pm and pmin. These occupied nodes mostly belong to the TP category since

point clouds corresponding to higher AUC are usually of less noise, and thus the AUC

can be improved. Loss in improvement can be observed when the values of pm and

pmin increase since FPs are likely to be introduced, resulting in a worse FDR. On the

contrary, smaller pm and pmin benefit mapping performance when point clouds are of

low quality. On one hand, the probability of a node drops faster with a smaller pm.

On the other hand, the probability can decrease further with a lower pmin. Therefore,

it would be more difficult for the probability to go beyond the threshold, benefiting

FDR.

Then the 800th point cloud set derived by I layout Voronoi boxes in front of buildings

when ORB parameters are of default values is used to investigate the relationships

between OctoMap parameters and performance metrics. The relations are fitted by

MLR and SNN. As specified in Section 4.5.3, PCC and MSE are implemented to

evaluate the performance of two regression methods. Figure 4-13 compares the results

derived by MLR and SNN. The results show the benefits of SNN, with better PCC and

smaller MSE than MLR.
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Figure 4-13: Comparison of multiple linear regression (MLR) and shallow neural
network (SNN) fittings of true positive rate (TPR) and false discovery rate (FDR).
y and ŷ denote target values and predicted values, respectively. (a) TPR, MLR,
R = 7.6315 × 10−1 and MSE=8.5420 × 10−3. (b) FDR, MLR, R = 7.2987 × 10−1

and MSE=4.8161× 10−2. (c) TPR, SNN, R = 9.9021× 10−1 and MSE=3.9846× 10−4.
(d) FDR, SNN, R = 9.9844× 10−1 and MSE=3.2099× 10−4.
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The two models are also cross-validated. The settings of data sets have been intro-

duced before, 70% for training and 30% for validation. For each data set, 3% of the

results derived by the 1st, 400th, 800th, 1200th and 1600th ranked point cloud sets are

randomly selected for cross-validation. Figure 4-14 shows the cross-validation results

for MLR and SNN. The results derived by SNN are still better than those derived

by MLR, with smaller MSE and better PCC. However, the performance of SNN for

cross-validation is not as good as that in Figure 4-13.
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ŷ
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Figure 4-14: Cross-validation for multiple linear regression (MLR) and shallow neural
network (SNN) fittings of true positive rate (TPR) and false discovery rate (FDR). y
and ŷ denote target values and predicted values, respectively. (a) TPR, MLR, R =
6.3655 × 10−1 and MSE=1.2207 × 10−2. (b) FDR, MLR, R = 7.2245 × 10−1 and
MSE=4.3655× 10−2. (c) TPR, SNN, R = 8.4319× 10−1 and MSE=6.0337× 10−3. (d)
FDR, SNN, R = 9.5055× 10−1 and MSE=9.2167× 10−3.
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Finally, the time model in Section 4.6 is verified. Figure 4-15 presents the linear fit for

the run time of OctoMap. Corresponding coefficients in (4.6.1) are a = 2.2711× 10−5

and b = 1.0567. 5% of the parameter reduction results of each data set are randomly

selected to plot points in Figure 4-15. The result shows that run time is proportional

to the number of points processed by the OctoMap algorithm.

Figure 4-15: Linear regression for the run time of OctoMap.

4.9 Summary

This chapter presents a framework of parameter reduction and optimisation for point

cloud generation and occupancy mapping algorithms. The ROC curve variant (TPR-

FDR) is used as a performance metric to deal with skewed data in a confusion matrix

due to mainly free space in outdoor environments. Pixel connectivity concept in image

processing is implemented for node classification to deal with the fluctuation of points.

Through NCA, the number of parameters can be reduced and the residual most im-

portant parameters can be optimised by investigating the grid parameter space. The

proposed method is verified by the implementation of the StereoSGBM algorithm in

OpenCV and OctoMap, strengthening the potential of the methodology to be applica-

ble with a variety of systems and sensors. Results show that the proposed approach

is effective in reducing parameters and robust in improving mapping performance. In

addition, the relations between mapping parameters and performance metrics are in-

vestigated by MLR and SNN. The proposed time estimation model is verified as well.
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The key findings of this chapter are:

• Compared with point cloud parameters and ORB parameters, mapping parame-

ters have a higher impact on performance metrics TPR and FDR.

• Through grid search optimisation, the performance of OctoMap can be improved

over default parameters.
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Chapter 5

K-Nearest Neighbours Based

Occupancy Mapping

This chapter is based on [133] and [134], and presents a map update policy using

the context of neighbouring points. The node in an occupancy map is updated with

its inside points, of which the probabilities are determined by corresponding average

distances to their k-NN. The parameters of the proposed k-NN method are investigated

and optimised, aiming to achieve better performance. OctoMap will be the baseline

and compared with the k-NN method.

5.1 K-NN Based Inverse Sensor Model

5.1.1 Inverse Sensor Model

In a point cloud, a point is likely to be noise if it is isolated from the points nearby.

Based on this assumption, the average distance from a point to its k-NN can be used

to represent the occupancy information of this point. A point should be assigned with

a higher probability if it has a smaller average distance, and vice versa. A relationship

between the average distance and the change in probability has been defined in the

previous work [133]. Here minor changes are made and the relationship is redefined

in [134]. Let F (x) denote the distribution of the average distance. Then the probability
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representing the occupancy information of a point can be denoted as:

p(s) = pu −

∫ s

−∞
F (x)dx∫ ∞

−∞
F (x)dx

(pu − pl) := pu −G(s)(pu − pl) , (5.1.1)

where s is the average distance from a point to its k-NN, pu and pl are the upper and

lower bounds on the probability, and G(s) is the CDF of the average distance and

G(s) =
∫ s
−∞ F (x)dx.

The inverse sensor model based on (5.1.1) can be defined as:

l(mi | zt) =



∑
j

l
[
p(sj)

]
if the jth point in node mi

lin if traversed by rays and points within range sc

lout if traversed by rays and points outside range sc

, (5.1.2)

where sc is the maximum range for how long individual beams are inserted, and lin and

lout are the respective log-odds values assigned to the nodes traversed by the rays cast

from the sensor to the points whose distances to the sensor are within and outside the

range sc. If a node satisfies both the requirements of lin and lout, it will be updated

with lin only. Then an occupancy map can be updated with (2.2.33) and (2.2.35).

5.1.2 Distribution of Average Distances

The average distance of a point is computed by searching its k-NN in the corresponding

point cloud among points whose distances to the sensor are within range sc. Different

distributions, i.e., Generalised Extreme Value (GEV) distribution, Log-logistic distri-

bution, Rayleigh distribution, Kernel Density Estimation (KDE) and Normal distribu-

tion, are used to fit the average distances of all the points within range sc in a point

cloud set generated from one data set. Results are shown in Section 5.4. The CDF

of the average distance is nonsensitive to types of distributions. Although KDE can

fit the average distance better than other distributions, it would be difficult to change

the k-NN model if KDE is applied due to its non-parametric property. Since there is

no obvious change in CDF when the distribution is different, the average distance is

assumed to be subject to the Normal distribution:

F (x) =
1√

2πσ2
exp

[
−(x− µ)2

2σ2

]
, (5.1.3)
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where µ is the mean and σ is the standard deviation.

To avoid brute force calculation and improve accuracy, the method for calculating

corrected sums of squares and products noted by [135] is implemented, which can

reduce rounding errors in computer implementation. As a result, a series of values of

mean and standard deviation will be generated as the number of points grows. Let n

denote the total number of elements to calculate the mean and the standard deviation.

For i = 1, 2, . . . , n, the following process will be performed:
µi =

i− 1

i
µi−1 +

1

i
si

Qi = Qi−1 +
i− 1

i
(si − µi−1)

2

= Qi−1 + (si − µi−1)(si − µi)

, (5.1.4)

where si is the average distance from the ith point to its k-NN in the corresponding

point cloud, µi−1 and µi are the mean values for i − 1 and i points, Qi−1 and Qi are

the sums of the squares of the deviations for i−1 and i points, and µ0 = 0 and Q0 = 0.

Then the mean and the standard deviation of the Normal distribution can be derived

by: 
µ = µn

σ =

√
Qn
n

. (5.1.5)

5.1.3 K-NN Parameter Space Considerations

With the inverse sensor model defined in Section 5.1.1, the parameters of k-NN mapping

are as follows:

• pmax is the upper clamping threshold, which is the upper bound on the probability.

• pt is the threshold. A node will be marked as occupied when the threshold is

reached.

• pm is the probability of a “miss”. A node will be updated with pm if it is traversed

by rays and corresponding endpoints are within range sc.

• p′m is the probability of a “miss”. A node will be updated with p′m if it is traversed

by rays and corresponding endpoints are outside range sc.

• pmin is the lower clamping threshold, which is the lower bound on the probability.

• pu is the upper bound on the probability derived by the average distance from a

109



point to its k-NN.

• pl is the lower bound on the probability derived by the average distance from a

point to its k-NN.

• k is the number of nearest neighbouring points.

The algorithm-required relations with other parameters should also be considered when

generating parameters. p′m ≥ pm since p′m corresponds to points further to the sensor

than pm. A reasonable set of the parameters of the k-NN method should satisfy:
1 > pmax ≥ 0.5 > p′m ≥ pm ≥ pmin > 0

pmax ≥ pt ≥ pmin

pu ≥ pl

. (5.1.6)

Considering the relations in (5.1.6), the number of the combinations of the parameters

in k-NN model is:

Nk = g(k)

g(pu)∑
i=1

h(pu, pl, i)

g(pmax)∑
i=1

g(p
′
m)∑

j=1

h(p
′
m,pm,j)∑
q=1

h(pm,pmin,q)∑
w=1

g(pt)

 , (5.1.7)

where the possible values of pt correspond to pmax value: min(pmax) + (i − 1)ψ(pmax)

and pmin value: min(pmin) + (w − 1)ψ(pmin).

The investigation of parameters is presented based on different data sets, the overview

of which is given in Section 3.1. Let Nd denote the number of data sets. A random

permutation of the indices of all the possible combinations of k-NN parameters is first

generated and then divided into Nd groups according to their indices. With the number

of combinations of point cloud and ORB parameters, the number of combinations for

each data set is:

Nt =
NpNkNb

Nd
. (5.1.8)

5.1.4 Analysis of the K-NN Method

When the ray-casting operation is performed, nodes with points inside may be tra-

versed by the rays from the sensor to endpoints. To make the analysis clear, here

the points whose corresponding nodes are traversed by any rays are called traversed

points. OctoMap updates a node containing traversed points with lfree as if there are

no points inside. However, such a node in the k-NN method will be updated with

both the probability derived by the average distance and the probability assigned to
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free nodes. Normally, in an occupancy map, the nodes containing points not traversed

by rays normally greatly outnumber the nodes containing traversed points. There-

fore, the impact of traversed points is ignored in this section. The update policies of

the nodes containing endpoints in OctoMap and the k-NN method will be compared

mathematically.

In the k-NN method, when pu = pl, the probability of a point is constant:

p(s) = pu . (5.1.9)

A node mi containing points will be updated with (5.1.2):

l(mi | zt) = Ni ln

(
pu

1− pu

)
, (5.1.10)

where Ni is the number of points in the node mi. While OctoMap will update nodes

containing endpoints with (2.2.34):

l(mi | zt) = ln

(
ph

1− ph

)
. (5.1.11)

In OctoMap, it is required that parameter ph ≥ 0.5. Let pu = ph and then:

Ni ln

(
pu

1− pu

)
≥ ln

(
ph

1− ph

)
≥ 0 . (5.1.12)

In this case, the probabilities of the nodes containing points in k-NN model are higher

than the probabilities of the nodes containing endpoints in OctoMap.

Let:

pu =

(
ph

1− ph

)−max (Ni)

1 +

(
ph

1− ph

)−max (Ni)
. (5.1.13)

Then:

Ni ln

(
pu

1− pu

)
≤ max (Ni) ln

(
pu

1− pu

)
= ln

(
ph

1− ph

)
. (5.1.14)

In this case, the probabilities of the nodes containing points in k-NN model are lower

than the probabilities of the nodes containing endpoints in OctoMap.

When the values of threshold pt in both mapping algorithms are identical, pu might
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exist: (
ph

1− ph

)−max (Ni)

1 +

(
ph

1− ph

)−max (Ni)
≤ pu ≤ ph , (5.1.15)

such that the numbers of occupied nodes in two mapping approaches are equal if the

map is continuous in space. However, an occupancy map is discrete in space since it

is built with a given resolution. So the number of occupied nodes in OctoMap might

never be equal to that in k-NN based approach. But at least the k-NN method has the

potential ability to compete with OctoMap.

When pu > pl and pu satisfies (5.1.13), for the nodes containing points in the k-NN

method:

l(mi | zt) =

Ni∑
j=1

ln

[
p(sj)

1− p(sj)

]
≤ Ni ln

(
pu

1− pu

)
, (5.1.16)

which means under a specific value of pu, l(mi | zt) can be further decreased. This

shows the ability of the k-NN method to potentially decrease the probability of a node

despite points being present.

5.1.5 Map Update

An example is given in Figure 5-1 to show how the proposed map update policy works.

As explained in Section 5.1.1, if the points are closer to each other, the corresponding

node will get a higher probability, and vice versa. The nodes traversed by rays will

be updated with lin and lout depending on the endpoint is within range sc or not.

Figures 5-1a and 5-1b present a point cloud and the corresponding occupancy map,

respectively.

Algorithm 2 shows the mapping process with the proposed inverse sensor model. zt

is the measurement, i.e., the point cloud at time t. The corresponding position of the

vision sensor is denoted as xt. m is the occupancy map. Lines 3 through 10 update the

nodes containing points. Lines 11 to 20 update the nodes traversed by the rays cast

from the sensor to endpoints. The traversed nodes are updated with log-odds values

lin and lout, corresponding to the probabilities of pm and p′m.
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Figure 5-1: Example of map update. (a) Point cloud. (b) Occupancy map.

Algorithm 2: Map Update

Input: zt, xt, k, m, µ, σ
Output: m

1 zin ← GetInnerPoints(zt, xt, sc)
2 zout ← GetOuterPoints(zt, xt, sc)

3 m′ ← ∅
4 for Pi ∈ zin do
5 si ← GetAverageDistance(zin, Pi, k)

6 m′.UpdateNode (Pi, l (p(si)))

7 for mi ∈ m
′ do

8 Pi ← mi.GetNodeCentreCoordinates()
9 li ← mi.GetLogOddsProbability()

10 m.UpdateNode(Pi, li)

11 min ← m.GetTraversedNodes(zin, xt)
12 for mi ∈ min do
13 m.UpdateNode(mi, lin)

14 mout ← m.GetTraversedNodes(zout, xt)

15 m′out ← ∅
16 for mi ∈ mout do
17 if mi /∈ min then

18 m′out.insert(mi)

19 for mi ∈ m
′
out do

20 m.UpdateNode(mi, lout)
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5.1.6 Time Estimation Model

The run time of k-NN mapping is proportional to parameter k and the number of

points N . So the run time can be derived by:

Φk(k,N) = (ak + b)N + c , (5.1.17)

where a, b and c are coefficients.

5.2 Random Down Sampling Based on the K-NN Method

This section presents a point cloud down sampling approach using the k-NN method.

To find out proper down sampling level of point clouds, a simulation is used to analyse

the approximate relationship between the occupancy probability and the number of

points in a node.

5.2.1 Simulation Design

Figure 5-2 shows the relationship of multiple coordinate systems when the camera

observes a node. Ob−xbybzb and Oc−xcyczc are the cube frame and the camera frame,

respectively. Plane κ1 contains Ob and is perpendicular to axis zc. Plane κ2 contains Oc

and is parallel to plane κ1. The camera can move in plane κ2 and rotate about axis zc.

By controlling distance sd between two planes and the corresponding pixel coordinates

of the intersection point of axis zc and plane κ1, the movement of the camera in plane

κ2 can be controlled. A sphere centred on the cube centre is created. Since the cube

can be observed by the camera from any direction, zc axis may be parallel to any radius

of the sphere. So the direction of the radius of the sphere can be used to control the

direction of axis zc. Due to the symmetrical characteristics of the cube, only one eighth

of the sphere needs to be considered.

In the cube frame, the direction of the radius of the one eighth sphere surface is:

n = (sin θ cosϕ, sin θ sinϕ, cos θ) , (5.2.1)

where ϕ is the rotation about zb axis and θ is the rotation about yb axis. The respective

ranges of these two angles are 0 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ π/2. Then plane κ1 and plane

κ2 can be denoted as:

axb + byb + czb = 0 (5.2.2)
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Figure 5-2: Points in a cube.

and

axb + byb + czb − d = 0, (5.2.3)

where a = sin θ cosϕ, b = sin θ sinϕ, c = cos θ and d = −sd
√
a2 + b2 + c2.

In Figure 5-2, axis zr and the radius of the sphere are co-linear, then the transformation

matrix from Or − xryrzr to Ob − xbybzb is:

Tbr =

[
Rz(ϕ)Ry(θ) 0

0 1

]
, (5.2.4)

where

Ry(x) =

 cosx 0 sinx

0 1 0

− sinx 0 cosx

 (5.2.5)

and

Rz(x) =

cosx − sinx 0

sinx cosx 0

0 0 1

 . (5.2.6)

The origin of the frame Os − xsyszs is in the plane κ2 and axis zs is co-linear with zr.

Axes xs and ys are parallel to yr and xr, respectively. Then the transformation from
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Os − xsyszs to Or − xryrzr can be denoted as:

Trs =


0 1 0 0

1 0 0 0

0 0 −1 sd

0 0 0 1

 . (5.2.7)

The camera frame moves in plane κ2 and the transformation from frame Oc − xcyczc
to Os − xsyszs is:

Tsc =

[
Rsc tsc

0 1

]
, (5.2.8)

where Rsc = Rz(α), α is the rotation angle about axis zc, tsc is the translation matrix,

and tsc =
[
sx sy 0

]>
.

Since a rectangle has 2 lines of symmetry, only a quarter of the rotation needs to be

considered, i.e., 0 ≤ α ≤ π/2. For any point in the camera frame, its coordinates in

the cube frame can be denoted as:

P̄b = Tbr Trs Tsc P̄c := Tbc P̄c . (5.2.9)

With the pinhole camera model [88], the homogeneous coordinates of the intersection

point of plane κ1 and the ray cast from pixel (u, v) in the image can be denoted as:

P̄c =

[
sd
fp

(u− cx)
sd
fp

(v − cy) sd 1
]>

, (5.2.10)

where 0 ≤ u ≤ umax, 0 ≤ v ≤ vmax and umax and umax are maximum values in pixel

coordinates. All the intersection points in plane κ1 are within a rectangle. The vertices

of the bounding rectangle in the camera frame are:

P̄c 1 =

[
−sdcx

fp
−
sdcy
fp

sd 1
]>

P̄c 2 =

[
sd
fp

(umax − cx) −
sdcy
fp

sd 1
]>

P̄c 3 =

[
sd
fp

(umax − cx)
sd
fp

(vmax − cy) sd 1
]>

P̄c 4 =

[
−sdcx

fp

sd
fp

(vmax − cy) sd 1
]>

. (5.2.11)
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The centre of the cube should be guaranteed to be inside the bounding rectangle.

With (5.2.9) and (5.2.11), the variables sx, sy and α should satisfy:

−sd
fp

(umax cosα− vmax sinα) ≤ sx ≤
sd
fp

(umax cosα− vmax sinα)

0 ≤ α ≤ π

2

−sdcx
fp
≤ −sx cosα− sy sinα ≤ sd

fp
(umax − cx)

−
sdcy
fp
≤ sx sinα− sy cosα ≤ sd

fp
(vmax − cy)

. (5.2.12)

When the camera observes the cube, point Ob can appear in any position of an image.

By controlling the corresponding coordinates, i.e., u and v, of Ob in the pixel frame

and the distance, i.e., sd, between two planes, the relative position of Ob and Oc can

be controlled. In addition, the relative pose of the cube and the camera frame can be

changed through three angles, i.e. θ, ϕ and α. For any given set of u, v, sd, θ, ϕ and

α, the translation matrix tsc can be derived by (5.2.4) (5.2.7) (5.2.8) and (5.2.9). Then

the coordinates of Oc in the cube frame can be derived. Assume the coordinates of Ob

and Oc in the cube frame are (x0, y0, z0) and (x1, y1, z1), respectively. Then the line

through Ob and Oc can be denoted with the following parametric representation:

Ω(ξ) =

x0y0
z0

+

x1 − x0y1 − y0
z1 − z0

 ξ , (5.2.13)

where ξ is the parameter.

The surface of the object intersects the cube is simulated by a plane. A plane which

contains Ob is used to cut the cube. The plane can be denoted with (5.2.1) and (5.2.2).

However, the ranges of two angles are 0 ≤ θ ≤ π and 0 ≤ ϕ < 2π, respectively.

Together with (5.2.13), the intersection points of the randomly generated plane and

the lines projected from the camera centre can be obtained.

The cube is bounded by three pairs of parallel planes:
xb ±

sl
2

= 0

yb ±
sl
2

= 0

zb ±
sl
2

= 0

. (5.2.14)
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To make sure the points in the cube have enough neighbourhood points, another bound-

ing box is implemented: 
xb ±

3

2
sl = 0

yb ±
3

2
sl = 0

zb ±
3

2
sl = 0

. (5.2.15)

The intersection points within this bounding box will be preserved for the calculation

of the normal distribution. While the points within the cube will be used to analyse

the relation of the number of points to occupancy probability.

Since the noise in measurements can cause the fluctuation of points, a noise model

should be implemented when generating points. In [136], the noise model of the ZED

camera has been investigated and defined as:

Ψ(zc) = a exp(bzc) , (5.2.16)

where a, b are two coefficients and zc is the depth. In [136], the coefficients correspond-

ing to the resolution of HD720 are a = 0.0184 and b = 0.2986.

5.2.2 Simulation Results

As introduced in Section 5.2.1, the relative position of the cube and the camera are

controlled by u, v, sd, θ, ϕ and α. The configuration of the pixel coordinates and three

angles are shown in Table 5.1.

Table 5.1: Configuration of simulation.

Minimum Maximum Step

u 100 1180 270
v 100 620 130

θ 0
2

3
π

π

6

ϕ 0
2

3
π

π

6

α 0
π

2

π

6

sd 4 4 N/A

To determine how many points should be preserved in a cube, the k-NN method is

implemented with pmax, pmin = 0.02, pu = 0.98 and pl = 0.5. Figure 5-3 presents
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the simulated relationship of the occupancy probability and the number of points in

the cube using the configuration in Table 5.1. The simulation result shows that the

occupancy probability will increase with the number of points. The upper limit will

be reached with three or four points. If the down sampling of point clouds is uniform,

the relationship will still apply to the down sampled point cloud. It is unnecessary to

preserve hundreds of points in a cube. To make sure the probability of the cube can

be changed quickly, it is better to choose the number whose corresponding probability

is not close to the maximum clamping threshold.
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(c) k=5.
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(d) k=7.

Figure 5-3: Probability against the number of points in the cube. (a) k=1. (b) k=3.
(c) k=5. (d) k=7.

In Figure 5-3, results are similar when parameter k varies, which is consistent with the

results in Section 5.4. If a point is noise, it is normally far away from its neighbouring

points in the point cloud. Since a noise point is isolated from other points, the change

in parameter k does not make a big difference in the average distance from the point
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to its neighbours. If a point is on the external surfaces of an object, it is much closer

to its neighbours than a noise point. The points on an objects often form clusters.

In this case, parameter k will not cause significant change in the average distance. In

summary, no matter a point is noise or on the surface of objects, the average distance

from a point to its k-NN does not change much when parameter k is different. Since

the occupancy probability of a point is defined by its corresponding average distance,

the probability in Figure 5-3 shows similar trends when k varies.

5.2.3 Down Sampling Level

The following function is defined to decide the down sampling level of point clouds:

Ns =
s2dNeN0

f2p s
2
l

, (5.2.17)

where N0 and Ns are the respective numbers of points in a point cloud before and

after down sampling, Ne is the expected point number in the node of resolution sl at

a distance of sd. A proper Ne is chosen based on the simulation.

Each point in the point cloud has its own index. For a finite sequence, Fisher-Yates

shuffle is an effective way to generate a random permutation [137]. The modern form

algorithm proposed in [138] reduces the time complexity and is popular in computer use.

Based on the Fisher-Yates shuffle, the point cloud can be down sampled. However, in

this implementation, rather than get the whole permutation, the sequence only needs

to be shuffled for Ns times if Ns points are picked from a point cloud of N0 points

(Ns < N0). Ne is set to 1.5 based on the simulation results in Section 5.2.2.

5.3 Experimental Method

In this section, the best performance of OctoMap and the k-NN method through grid

search will be compared to illustrate the effectiveness of the k-NN method.

5.3.1 Design of Experiments

Point cloud parameters, mapping parameters and ORB parameters will affect the map-

ping performance. However, less important parameters can be reduced to accelerate

computation. As introduced in Section 4.8, mapping parameters have a higher impact

on the mapping performance other parameters. This section only focuses on mapping

parameters. The k-NN parameters are first reduced and then the mapping performance

achieved by optimising the residual most significant parameters will be compared with
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the best OctoMap performance derived by searching all the possible combinations of

parameters. K-NN parameter reduction follows the procedure introduced in Chapter 4.

The workflow to compare two mapping algorithms is shown in Figure 5-4.

Camera

ORB SLAM OpenCV

Down sampling

Non-parametric
approach

Map evaluation

Point cloud
selection

K-NN method
or OctoMap

Map evaluation

ORB parameters

Image

Dense point cloudsPose

Down sampled point clouds

Occupancy maps

Metrics

Selected point clouds

Point cloud parameters

Ground truth

Occupancy maps

Metrics

Mapping parameters

Ground truth

Time estimation
(k-NN only)

Time model

Figure 5-4: Experimental method for comparing the k-Nearest Neighbours (k-NN)
method and OctoMap.

The method introduced in Section 4.7.1 will be used to generate point clouds. Dense

point clouds are generated by the StereoSGBM algorithm in OpenCV and down sam-

pled by the VoxelGrid filter in PCL as per Section 4.7.1. In the k-NN method, the

octree module in PCL will be used to search the nearest neighbours of a specific point
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in a point cloud.

For k-NN parameter reduction, the combination of point cloud parameters remains

same on different data sets. Point cloud sets are chosen with FDR derived by the non-

parametric naive mapping approach proposed in Section 4.4.2 based on their ranks.

The choice of the point cloud set or the combination of point cloud parameters for

k-NN parameter reduction will be given in Section 5.3.2. For each combination of k-

NN parameters, an occupancy map can be generated. By comparing the map with

the ground truth, the nodes in the map can be classified into four categories using

the method in Section 4.3. Metrics TPR and FDR are computed from the number

of nodes in each category. NCA feature selection proposed in [36] will be applied to

analyse parameter weights, which has been introduced in Section 4.4.1. For the ease of

comparison, the weights derived by different data sets are normalised as per [36].

Parameters can be optimised by grid search in the parameter space defined by the

method in Section 5.1.3. Based on the above k-NN parameter reduction results and the

optimisation results of OctoMap parameters in Section 4.8, parameters to be optimised

can be determined and will be introduced in Section 5.3.2. The AUC of TPR-FDR

variant is used as the performance metric. Three point cloud sets in each data set

will be selected using the non-parametric approach to search the parameters which can

achieve the best performance among all the combinations. The best AUC of the k-NN

method will be compared with that of OctoMap.

The time estimation model for the k-NN method will be verified. The down sampling

approach based on the k-NN method will be compared with the VoxelGrid filter in

PCL in terms of the number of the nodes in occupancy maps as well.

5.3.2 Parameter Space for Analysis

The default ORB parameters are used to generate poses. In Section 4.7.2, there are

1600 combinations of point cloud parameters, which means 1600 point cloud sets can

be generated for each data set. As specified in Section 5.3.1, for the reduction of k-NN

parameters, the combination of point cloud parameters can be fixed since they are less

important than mapping parameters in performance. The combination of parameters

corresponds to the 800th ranked point cloud set of the data set collected with I layout

Voronoi boxes in front of buildings. For the optimisation of mapping parameters, the

1st, 800th, and 1600th (lower number indicates better quality, i.e., cleaner point clouds)

ranked point cloud sets are chosen from each data set to compare the performance of

the k-NN method and OctoMap.

122



The configuration of mapping parameters is shown in Table 5.2. pmax, pm, pt and pmin

are shared by two mapping approaches. The choice of the step of OctoMap parameters

has been discussed in Section 4.7.2. 0.12 is a reasonable step and will not affect results.

To investigate k-NN parameter weights, pmax, pmin and k are varied with corresponding

steps, and pt changes with pmax and pmin. With (5.1.7), the total number of the com-

binations is 112 500. To optimise k-NN parameters, based on the results in Section 5.4,

k is constant since it has a lower impact on the performance metrics. pmax and pmin

are set to 0.98 and 0.02 since these values show highest frequencies in Section 4.7.2.

Also, pmax and pmin are the upper and lower bounds on the probability but not the

parameters for inverse senor models, and shared by both the k-NN method and Oc-

toMap. Therefore, locking these two parameters does not benefit any approach but can

decrease the number of the combinations of parameters to reduce the computational

time. Besides pmax and pmin, the setup of other OctoMap parameters is depending on

the configuration in Section 4.7.2. To compare the k-NN method and OctoMap, the

combinations of parameters for two mapping algorithms are 4050 and 180, respectively.

Table 5.2: Configuration of mapping parameters.

Parameter Minimum Maximum Step Method

pmax
a 0.5 0.98 0.12 K-NN

pmax
b 0.98 0.98 N/A Both

ph 0.5 0.98 0.12 OctoMap
pm 0.02 0.38 0.12 Both

p′m 0.02 0.38 0.12 K-NN
pmin

a 0.02 0.38 0.12 K-NN

pmin
b 0.02 0.02 N/A Both

pt pmin pmax 0.12 Both
pu 0.02 0.98 0.12 K-NN
pl 0.02 0.98 0.12 K-NN
k a 1 7 2 K-NN

k b 1 1 N/A K-NN

a Configuration for parameter reduction.
b Configuration for parameter optimisation.

5.4 Results and Analysis

Firstly, the results of the average distance fitted by different distributions, i.e., GEV

distribution, Log-logistic distribution, Rayleigh distribution, KDE and Normal distri-

bution, are presented. An example is given by the average distance derived by 800th
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point cloud set of I layout Voronoi boxes in front of buildings. Corresponding CDF is

presented in Figure 5-5. Results show that the CDF of the average distance is nonsen-

sitive to types of distribution. Given the CDF is implemented to define the relationship

between the average distance and the change in the occupancy probability, a parametric

distribution can be used for the ease of adjusting k-NN model.
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Figure 5-5: Cumulative Density Function (CDF) of the average distance fitted by
different distributions.

Then the results of the weights of k-NN parameters under performance metrics TPR

and FDR are presented. As specified in Section 5.3.2, point cloud parameters are

consistent in 20 data sets. With the configuration of mapping parameters in Table 5.2,

the weights of k-NN parameters are computed by implementing NCA feature selection

on TPR and FDR derived by node classification results. With (5.1.7) and (5.1.8), the

number of parameter combinations for each data set is 5625. The normalised weight of

each k-NN parameter is shown in Figure 5-6. Overall, among all the k-NN parameters,

parameter k has a lower impact on the performance metrics and thus can be fixed

to reduce computational time. In addition, based on the optimisation of OctoMap

parameters in Section 4.8, pmax and pmin can be set as constants to further reduce the

computational complexity.

The collected data sets are used to simulate different conditions in the real world to

offer reliable evaluation results when comparing two mapping algorithms. Data sets

are adequate due to the following considerations and settings:

• In real applications, objects can be of rich features or lack of features. This is
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Figure 5-6: Normalised weights of k-Nearest Neighbours (k-NN) parameters on perfor-
mance metrics. (a) True positive rate (TPR). (b) False discovery rate (FDR).
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simulated by different textures, i.e., Voronoi diagrams and the plain box texture.

• Since a scene in the real world can be full or empty, data sets are collected in two

environments, i.e., in front of buildings and in a parking lot.

• As the obstacles in the real world come in different shapes and sizes, the boxes

are arranged in different layouts to create different test scenes.

• The quality of the point clouds produced by different sensors can be different. In

the experiments, 1st, 800th and 1600th ranked point cloud sets generated from

each data set are selected to simulate this.

With the above data sets, the optimisation results of two mapping algorithms will be

compared. The configuration of parameters has been explained in Section 5.3.2. All the

parameters except pmax, pmin, pt and k will be optimised by searching the best AUC of

TPR-FDR variant using the grid parameter space defined with Table 5.2. pt is varied

to generate points on TPR-FDR curve. For any combination of parameters, 9 points

will be produced. Figure 5-7 shows the improvement achieved by the k-NN method

over the AUC derived by OctoMap through grid search on 20 data sets. The im-

provement increases as the best AUC achieved by searching OctoMap parameter space

decreases, but can be negative. With the parameter configuration in Table 5.2, the

best improvements are normally achieved by pu > pl when the best AUC of OctoMap

is lower, while by pu = pl when the AUC of OctoMap is higher. By implementing

the k-NN method, an improvement up to 10% can be achieved. Overall, the mapping

performance of Voronoi boxes is better than that of plain boxes. The details of the

results in Figure 5-7 are shown in Table 5.3.

Figures 5-8 and 5-9 show two examples of occupancy maps derived by OctoMap and

the k-NN method. Figure 5-8 corresponds to improvement of the 1st point cloud set

of O layout Voronoi boxes in the parking lot in Figure 5-7. Figure 5-9 corresponds to

the 800th point cloud set of O layout plain boxes in the parking lot. For each example,

two points of similar FDR on the curves derived by different mapping approaches are

selected, corresponding maps are presented. In Figure 5-7, improvements by the k-NN

method against OctoMap can be observed on most data sets in terms of AUC. However,

when the k-NN method achieves highest improvement, TPR-FDR curves derived by

two mapping algorithms may intersect, i.e., the points on the curve derived by the

k-NN method is always better than those on the curve derived by OctoMap when FDR

is smaller than that of the intersection point, while worse when FDR is larger than

that of the intersection point. But normally a combination of k-NN parameters can be

found whose improvement against the AUC derived by searching OctoMap parameter
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Figure 5-7: Improvement through grid search over the k-Nearest Neighbours (k-NN)
method over the area under the curve (AUC) of OctoMap. (a) Building. (b) Parking
lot.
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Table 5.3: Improvement by the k-Nearest Neighbours (k-NN) method over OctoMap.

Environment Texture Layout
Point
Cloud

Ranking

AUC Improvement

OctoMap
K-NN

method
AUC %

Building Plain I 1 0.8799 0.9107 0.0308 3.50
Building Plain I 800 0.8493 0.9084 0.0591 6.96
Building Plain I 1600 0.8235 0.8509 0.0274 3.33
Building Plain O 1 0.9213 0.9330 0.0116 1.26
Building Plain O 800 0.9379 0.9413 0.0034 0.36
Building Plain O 1600 0.9010 0.9290 0.0280 3.10
Building Plain T 1 0.8958 0.9019 0.0061 0.68
Building Plain T 800 0.8984 0.9176 0.0192 2.14
Building Plain T 1600 0.8689 0.8985 0.0296 3.41
Building Plain L 1 0.9049 0.9095 0.0046 0.51
Building Plain L 800 0.8893 0.8936 0.0043 0.48
Building Plain L 1600 0.8627 0.9021 0.0394 4.56
Building Plain S 1 0.9279 0.9335 0.0055 0.60
Building Plain S 800 0.9289 0.9300 0.0010 0.11
Building Plain S 1600 0.9234 0.9431 0.0197 2.13
Building Voronoi I 1 0.8863 0.8837 -0.0026 -0.29
Building Voronoi I 800 0.8897 0.8841 -0.0056 -0.63
Building Voronoi I 1600 0.8637 0.8548 -0.0090 -1.04
Building Voronoi O 1 0.9668 0.9558 -0.0110 -1.14
Building Voronoi O 800 0.9766 0.9668 -0.0098 -1.00
Building Voronoi O 1600 0.9423 0.9339 -0.0084 -0.89
Building Voronoi T 1 0.9890 0.9897 0.0007 0.07
Building Voronoi T 800 0.9871 0.9873 0.0001 0.01
Building Voronoi T 1600 0.9662 0.9754 0.0092 0.95
Building Voronoi L 1 0.9917 0.9916 -0.0001 -0.01
Building Voronoi L 800 0.9938 0.9956 0.0018 0.18
Building Voronoi L 1600 0.9841 0.9936 0.0095 0.96
Building Voronoi S 1 0.9431 0.9543 0.0112 1.18
Building Voronoi S 800 0.9127 0.9500 0.0373 4.09
Building Voronoi S 1600 0.8432 0.8803 0.0371 4.40
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Table 5-3 (continued): Improvement by the k-Nearest Neighbours (k-NN) method over
OctoMap.

Environment Texture Layout
Point
Cloud

Ranking

AUC Improvement

OctoMap
K-NN

method
AUC %

Parking lot Plain I 1 0.8725 0.8905 0.0180 2.06
Parking lot Plain I 800 0.8419 0.8644 0.0225 2.68
Parking lot Plain I 1600 0.8353 0.8510 0.0157 1.88
Parking lot Plain O 1 0.8935 0.9256 0.0322 3.60
Parking lot Plain O 800 0.8743 0.9289 0.0546 6.25
Parking lot Plain O 1600 0.8080 0.8885 0.0806 9.97
Parking lot Plain T 1 0.8865 0.9284 0.0419 4.73
Parking lot Plain T 800 0.8436 0.9187 0.0751 8.90
Parking lot Plain T 1600 0.8223 0.8730 0.0508 6.18
Parking lot Plain L 1 0.8723 0.8910 0.0187 2.15
Parking lot Plain L 800 0.8448 0.8802 0.0354 4.19
Parking lot Plain L 1600 0.8314 0.8638 0.0324 3.89
Parking lot Plain S 1 0.8635 0.8798 0.0164 1.89
Parking lot Plain S 800 0.8395 0.8773 0.0378 4.51
Parking lot Plain S 1600 0.8276 0.8478 0.0202 2.44
Parking lot Voronoi I 1 0.9345 0.9331 -0.0014 -0.14
Parking lot Voronoi I 800 0.9200 0.9212 0.0012 0.13
Parking lot Voronoi I 1600 0.8984 0.9012 0.0027 0.31
Parking lot Voronoi O 1 0.9263 0.9357 0.0094 1.02
Parking lot Voronoi O 800 0.9203 0.9359 0.0156 1.69
Parking lot Voronoi O 1600 0.9071 0.9314 0.0243 2.68
Parking lot Voronoi T 1 0.9436 0.9500 0.0064 0.68
Parking lot Voronoi T 800 0.9370 0.9479 0.0109 1.16
Parking lot Voronoi T 1600 0.9209 0.9334 0.0125 1.36
Parking lot Voronoi L 1 0.9300 0.9400 0.0100 1.08
Parking lot Voronoi L 800 0.9278 0.9371 0.0093 1.00
Parking lot Voronoi L 1600 0.9127 0.9222 0.0095 1.04
Parking lot Voronoi S 1 0.9224 0.9313 0.0089 0.97
Parking lot Voronoi S 800 0.9223 0.9418 0.0195 2.11
Parking lot Voronoi S 1600 0.9117 0.9276 0.0159 1.74
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space is less significant than that achieves in Figure 5-7 such that for each point on the

TPR-FDR curve of OctoMap a point of better performance can be found on the curve

derived by the k-NN method.

In Figures 5-8 and 5-9, the improvements are mostly observed in the ground areas. For

the point clouds used for generating occupancy maps, a mapping algorithm processes

the points on the ground and the points on the boxes in the same way, no matter the

points are produced by the ground or the targets. In other words, for the mapping

algorithm, the ground and the boxes are both obstacles. Since the area of the ground

is larger than that of the external surfaces of the boxes, more points in the point clouds

belong to the ground areas. When an occupancy map is generated using such point

clouds, the number of the nodes in the ground areas is greater than that of the nodes

on the boxes. Therefore, the improved nodes mainly show in the ground areas.

The AUC of k-NN shows an improvement up to 10% over that of OctoMap using

grid search. The improvement achieved by the k-NN method increases as the AUC of

OctoMap decreases. Although for Voronoi boxes of I and O layouts in front of buildings,

OctoMap outperforms the k-NN method up to 1%, this is unlikely to happen in the real

world since the textures of objects are more like the pattern on plain boxes rather than

the regular Voronoi pattern. In addition, the k-NN method still performs better in

other Voronoi cases. Overall, mapping performance is better in the environment with

buildings since there are more image features on the objects nearby and the quality of

point clouds is better. In each environment, mapping performance is normally better

when targets are covered with Voronoi diagrams due to the extra features introduced

by the diagrams. There is no obvious trend among different layouts.

Figure 5-10 verifies the time model proposed in Section 5.1.6. In each data set, 5% of

the k-NN parameter reduction results are randomly selected and used to estimate the

time model. The coefficients in the model are a = 7.3915 × 10−7, b = 2.7630 × 10−5

and c = 1.5373. The result shows that run time is proportional to parameter k and

the number of points used for k-NN mapping.

The last result compares the sampling approaches in terms of the number of the nodes

in the map produced by down sampled point clouds. StereoSGBM parameters to

generate disparity correspond to 800th ranked down sampled point cloud set generated

by VoxelGrid filter. The OctoMap algorithm with default parameters is implemented

to generate occupancy maps. The number of the nodes in the map generated by each

sampling method with different data sets are shown in Figure 5-11. In each data set,

the node number of VoxelGrid filter is greater than that of random sampling using
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(a) True positive rate (TPR)-false positive rate (FDR).

(b) OctoMap.

(c) K-Nearest Neighbours (k-NN) method.

Figure 5-8: Occupancy maps derived by different algorithms using the data set of O
layout Voronoi boxes in the parking lot. (a) Receiver Operating Characteristic (ROC)
variant true positive rate (TPR)-false positive rate (FDR). (b) Occupancy map derived
by OctoMap. Blue: TPs, red: FPs and yellow: FNs. TNs are not included for clarity.
(c) Occupancy map derived by the k-Nearest Neighbours (k-NN) method.
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Figure 5-9: Occupancy maps derived by different algorithms using the data set of
O layout plain boxes in the parking lot. (a) Receiver Operating Characteristic (ROC)
variant true positive rate (TPR)-false positive rate (FDR). (b) Occupancy map derived
by OctoMap. Blue: TPs, red: FPs and yellow: FNs. TNs are not included for clarity.
(c) Occupancy map derived by the k-Nearest Neighbours (k-NN) method.
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Figure 5-10: Polynomial regression for the run time of the k-Nearest Neighbours (k-NN)
method.
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Figure 5-11: Node numbers of random sampling based on the k-Nearest Neighbours
(k-NN) method and VoxelGrid filter. Indices 1 to 5: I, O, T, L and S layout boxes
with Voronoi diagrams in front of buildings. Indices 6 to 10: I, O, T, L and S layout
plain boxes in front of buildings. Indices 11 to 15: I, O, T, L and S layout boxes with
Voronoi diagrams in the parking lot. Indices 16 to 20: I, O, T, L and S layout plain
boxes in the parking lot.

133



the k-NN method, which means random sampling loses information. So the VoxelGrid

filter is used for sampling point clouds in the previous chapters to preserve as much

information as possible.

5.5 Summary

In this chapter, an inverse sensor model for occupancy mapping using the context of

neighbouring points is presented. The occupancy information of a point is represented

with the average distance to its k-NN. The relationship between the average distance

and the occupancy probability is defined with the corresponding CDF. By implement-

ing NCA, the parameter which has a lower impact on the mapping performance can be

reduced. In addition, by considering the most frequent OctoMap parameters, the num-

ber of the parameters to be investigated can be further reduced. Through searching

the grid parameter space, the residual most important parameters can be optimised

to achieve better performance. The k-NN method is implemented on the point clouds

derived by different data sets. Results show that the k-NN method is effective in im-

proving performance over OctoMap. The time estimation model is verified as well.

Random sampling based on the k-NN method and VoxelGrid filter in PCL are com-

pared. Although random sampling may lose information, it can be potentially useful.

Through analysis, the key findings are:

• The k-NN model is nonsensitive to different types of distributions.

• Parameter k is of lower impact than other k-NN parameters.

• Through grid search optimisation, the performance of OctoMap can be improved

by the k-NN method.
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Chapter 6

Conclusions and Future Work

The main contribution of the work in this thesis is the optimisation and extension

of the octree base occupancy mapping. The novelty can be mainly decomposed into

two parts, i.e., parameter reduction and optimal parameter searching, and a k-NN

based mapping approach. This chapter summarises the thesis and makes suggestions

on future work.

6.1 Conclusions

A principled methodology for reducing point cloud parameters and ORB parameters

using NCA, and optimising OctoMap occupancy mapping parameters using grid search

is proposed in Chapter 4. Experiments are conducted on 20 data sets introduced in

Chapter 3, with specially designed targets providing precise ground truths, allowing to

investigate the impacts of environments and the patterns on the external surfaces of the

targets. The proposed methodology is verified on the point clouds sets generated by

the StereoSGBM algorithm and selected by a non-parametric mapping approach. Pixel

connectivity in image processing is implemented in the node classification procedure

to tolerate the fluctuation of the points in point clouds. The ROC variant TPR-FDR

is applied as performance metrics to deal with unbalanced data sets in which the

elements in one class is more than in others due to empty space in the environments.

By implementing NCA, parameters of lower impacts can be reduced. The residual most

important parameters can be optimised by searching the grid parameter space defined

by algorithm-required relations. The analysis on the results derived by 20 data sets

shows that the proposed method is effective in improving the mapping performance

of OctoMap. In Chapter 4, it has been found that mapping parameters are more
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important than point cloud parameters and ORB parameters, and an improvement

over default OctoMap parameters in mapping performance can be achieved through

the two-step framework, i.e., first reducing parameters with NCA and then optimising

mapping parameters with grid search.

Chapter 5 introduces a mapping approach using the context of neighbouring points

to overcome the limitations in the update policy of OctoMap. The new method is

built on the relationship between the probability and the average distance from a point

to its k-NN. The probability of a point is effectively defined by the CDF of average

distances. The parameter reduction method introduced in Chapter 4 is used to reduce

the dimension of k-NN parameters and the less important parameter is identified.

Along with the analysis of parameter weights in Chapter 4, parameters to be optimised

to achieve better mapping performance are determined. Optimisation is performed

on OctoMap and the k-NN method using the point cloud sets generated by 20 data

sets to compare the performance of two mapping algorithms. Through the analysis

in Chapter 5, it has been found that the k-NN method is nonsensitive to types of

distributions and the k-NN method can outperform OctoMap in most cases. The

proposed mapping approach is an effective extension to improve the performance of

occupancy mapping.

Overall, the results in Chapters 4 and 5 have demonstrated the effectiveness and benefits

of the parameter searching and the k-NN method as an extension of OctoMap. The

key findings are:

• Mapping parameters are of higher impacts on the quality of the final map than

point cloud parameters and pose generation parameters.

• A better performance of OctoMap can be achieved over default parameters through

grid parameter searching.

• As the extension of OctoMap, the k-NN based mapping approach can outperform

OctoMap.

• The k-NN model is nonsensitive to types of distributions and parameter k is less

important than other parameters.

6.2 Future Work

Although the work presented in this thesis can improve the performance of the octree

based occupancy mapping algorithm, current work can be improved in the future.
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Firstly, the computation time can be optimised. One limitation of the proposed pa-

rameter searching method in Chapter 4 is that when the step is decreased, the number

of combinations of parameters will increase exponentially. With certain steps, the

approach is computationally prohibitive. However, it has been demonstrated in Sec-

tion 4.7.2 that the results do not benefit from decreasing the step.

Secondly, the methodology in this work can be tested on point clouds generated with

other methods to strengthen its usefulness. In this thesis, experiments are only con-

ducted on the point clouds produced by the StereoSGBM algorithm in OpenCV. Other

algorithms generating point clouds from stereo images can be considered. Also, other

types of sensors such as LIDAR can also be used for point cloud generation to verify

the methods in this thesis. Unlike StereoSGBM algorithm parameters, parameters of

LIDAR, e.g., motor speed and sample rate, control the operation of hardware.

Finally, the performance metrics for optimisation can be further extended. In this

thesis, the AUC of the ROC variant TPR-FDR is used as the performance metric. As

specified in Chapter 5, when comparing the k-NN method with OctoMap, the k-NN

method is better than OctoMap in terms of the absolute values of AUC; however, the

ROC curves derived by two mapping approaches can intersect at a certain point, making

the performance of the k-NN method better when the FDR is smaller than that of the

intersection point while worse when FDR is larger. The parameter searching method

can be potentially improved to produce more reliable results.
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[57] K. Leung, D. Lühr, H. Houshiar, F. Inostroza, D. Borrmann, M. Adams,
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