507,830 research outputs found

    The Star Formation Rate - Dense Gas Relation in the Nuclei of Nearby Galaxies

    Full text link
    We investigate the relationship between the star formation rate (SFR) and dense molecular gas mass in the nuclei of galaxies. To do this, we utilize the observed 850 micron luminosity as a proxy for the infrared luminosity and SFR, and correlate this with the observed CO (J=3-2) luminosity. We find tentative evidence that the LIR-CO (J=3-2) index is similar to the Kennicutt-Schmidt (KS) index (N ~ 1.5) in the central ~1.7 kpc of galaxies, and flattens to a roughly linear index when including emission from the entire galaxy. This result may imply that the volumetric Schmidt relation is the underlying driver behind the observed SFR-dense gas correlations, and provides tentative confirmation for recent numerical models. While the data exclude the possibility of a constant LIR-CO (J=3-2) index for both galaxy nuclei and global measurements at the ~80% confidence level, the considerable error bars cannot preclude alternative interpretations.Comment: Accepted at ApJ Letter

    Negative refraction with tunable absorption in an active dense gas of atoms

    Full text link
    Applications of negative index materials (NIM) presently are severely limited by absorption. Next to improvements of metamaterial designs, it has been suggested that dense gases of atoms could form a NIM with negligible losses. In such gases, the low absorption is facilitated by quantum interference. Here, we show that additional gain mechanisms can be used to tune and effectively remove absorption in a dense gas NIM. In our setup, the atoms are coherently prepared by control laser fields, and further driven by a weak incoherent pump field to induce gain. We employ nonlinear optical Bloch equations to analyze the optical response. Metastable Neon is identified as a suitable experimental candidate at infrared frequencies to implement a lossless active negative index material.Comment: 10 pages, 9 figure

    Link between K-absorption edges and thermodynamic properties of warm-dense plasmas established by improved first-principles method

    Full text link
    A precise calculation that translates shifts of X-ray K-absorption edges to variations of thermodynamic properties allows quantitative characterization of interior thermodynamic properties of warm dense plasmas by X-ray absorption techniques, which provides essential information for inertial confinement fusion and other astrophysical applications. We show that this interpretation can be achieved through an improved first-principles method. Our calculation shows that the shift of K-edges exhibits selective sensitivity to thermal parameters and thus would be a suitable temperature index to warm dense plasmas. We also show with a simple model that the shift of K-edges can be used to detect inhomogeneity inside warm dense plasmas when combined with other experimental tools

    ASTE observations of nearby galaxies: A tight correlation between CO(J=3-2) emission and Halpha

    Get PDF
    Star formation rates (SFRs) obtained via extinction corrected H alpha are compared to dense gas as traced by CO(J=3-2) emission at the centers of nearby galaxies, observed with the ASTE telescope. It is found that, although many of the observed positions are dusty and therefore heavily absorbed at H alpha, the SFR shows a striking correlation with dense gas in the form of the Schmidt law with an index 1.0. The correlation is also compared between gas traced by CO(J=1-0) and application of H alpha extinction correction. We find that dense gas produces a far better correlation with SFR in view of surface density values.Comment: 6 pages, PASJ accepte

    Isogenies of elliptic curves and the Morava stabilizer group

    Get PDF
    Let MS_2 be the p-primary second Morava stabilizer group, C a supersingular elliptic curve over \br{FF}_p, O the ring of endomorphisms of C, and \ell a topological generator of Z_p^x (respectively Z_2^x/{+-1} if p = 2). We show that for p > 2 the group \Gamma \subseteq O[1/\ell]^x of quasi-endomorphisms of degree a power of \ell is dense in MS_2. For p = 2, we show that \Gamma is dense in an index 2 subgroup of MS_2.Comment: 16 pages, to appear in J. Pure Appl. Al

    Fat tissue accretion in children and adolescents : interplay between food responsiveness, gender, and the home availability of snacks

    Get PDF
    The appetitive trait "food responsiveness" is assumed to be a risk factor for adiposity gain primarily in obesogenic environments. So far, the reported results are inconsistent in school-aged children, possibly because these studies did not take into account important moderators such as gender and the food-environment. In order to better inform caregivers, clinicians and the developers of targeted obesity-prevention interventions on the conditions in which food responsiveness precedes adiposity gain, the current study investigated if this relationship is stronger in girls and in children exposed to a higher home availability of energy-dense snacks. Age- and sex-independent Fat and Lean Mass Index z-scores were computed based on air-displacement plethysmography at baseline and after 2 years in a community sample of 129 children (48.8% boys) aged 7.5-14 years at baseline. Parents reported at baseline on children's food responsiveness and the home availability of energy-dense snacks. Food responsiveness was a significant predictor of increases in Fat Mass Index z-scores over 2 years in girls but not boys. The home availability of energy-dense snacks did not significantly moderate the relation of food responsiveness with Fat Mass Index z-score changes. The results suggest that food responsiveness precedes accelerated fat tissue accretion in girls, and may inform targeted obesity-prevention interventions. Further, future research should investigate to which food-environmental parameters children high in food responsiveness mainly respond

    On the physical origins of the negative index of refraction

    Full text link
    The physical origins of negative refractive index are derived from a dilute microscopic model, producing a result that is generalized to the dense condensed phase limit. In particular, scattering from a thin sheet of electric and magnetic dipoles driven above resonance is used to form a fundamental description for negative refraction. Of practical significance, loss and dispersion are implicit in the microscopic model. While naturally occurring negative index materials are unavailable, ferromagnetic and ferroelectric materials provide device design opportunities.Comment: 4 pages, 1 figur

    Cherenkov Radiation from Jets in Heavy-ion Collisions

    Full text link
    The possibility of Cherenkov-like gluon bremsstrahlung in dense matter is studied. We point out that the occurrence of Cherenkov radiation in dense matter is sensitive to the presence of partonic bound states. This is illustrated by a calculation of the dispersion relation of a massless particle in a simple model in which it couples to two different massive resonance states. We further argue that detailed spectroscopy of jet correlations can directly probe the index of refraction of this matter, which in turn will provide information about the mass scale of these partonic bound states.Comment: 4 pages, 5 figures, revte
    • …
    corecore