299 research outputs found

    Denotational, Causal, and Operational Determinism in Event Structures

    Get PDF
    Determinism is a theoretically and practically important concept in labelled transition systems and trees. We study its generalisation to event structures. It turns out that the result depends on what characterising property of tree determinism one sets out to generalise. We present three distinct notions of event structure determinism, and show that none of them shares all the pleasant properties of the one concept for trees

    Quantitative testing semantics for non-interleaving

    Full text link
    This paper presents a non-interleaving denotational semantics for the ?-calculus. The basic idea is to define a notion of test where the outcome is not only whether a given process passes a given test, but also in how many different ways it can pass it. More abstractly, the set of possible outcomes for tests forms a semiring, and the set of process interpretations appears as a module over this semiring, in which basic syntactic constructs are affine operators. This notion of test leads to a trace semantics in which traces are partial orders, in the style of Mazurkiewicz traces, extended with readiness information. Our construction has standard may- and must-testing as special cases

    Kahn Process Networks and a Reactive Extension

    Full text link
    Kahn and MacQueen have introduced a generic class of determinate asynchronous data-flow applications, called Kahn Process Networks (KPNs) with an elegant mathematical model and semantics in terms of Scott-continuous functions on data streams together with an implementation model of independent asynchronous sequential programs communicating through FIFO buffers with blocking read and non-blocking write operations. The two are related by the Kahn Principle which states that a realization according to the implementation model behaves as predicted by the mathematical function. Additional steps are required to arrive at an actual implementation of a KPN to take care of scheduling of independent processes on a single processor and to manage communication buffers. Because of the expressiveness of the KPN model, buffer sizes and schedules cannot be determined at design time in general and require dynamic run-time system support. Constraints are discussed that need to be placed on such system support so as to maintain the Kahn Principle.We then discuss a possible extension of the KPN model to include the possibility for sporadic, reactive behavior which is not possible in the standard model. The extended model is called Reactive Process Networks. We introduce its semantics, look at analyzability and at more constrained data-flow models combined with reactive behavior

    Events in computation

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre- DSC:D36018/81 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Observably Deterministic Concurrent Strategies and Intensional Full Abstraction for Parallel-or

    Get PDF
    International audienceAlthough Plotkin's parallel-or is inherently deterministic, it has a non-deterministic interpretation in games based on (prime) event structures-in which an event has a unique causal history-because they do not directly support disjunctive causality. General event structures can express disjunctive causality and have a more permissive notion of determinism, but do not support hiding. We show that (structures equivalent to) deterministic general event structures do support hiding, and construct a new category of games based on them with a deterministic interpretation of aPCFpor, an affine variant of PCF extended with parallel-or. We then exploit this deterministic interpretation to give a relaxed notion of determinism (observable determinism) on the plain event structures model. Putting this together with our previously introduced concurrent notions of well-bracketing and innocence, we obtain an intensionally fully abstract model of aPCFpor

    Metric Semantics and Full Abstractness for Action Refinement and Probabilistic Choice

    Get PDF
    This paper provides a case-study in the field of metric semantics for probabilistic programming. Both an operational and a denotational semantics are presented for an abstract process language L_pr, which features action refinement and probabilistic choice. The two models are constructed in the setting of complete ultrametric spaces, here based on probability measures of compact support over sequences of actions. It is shown that the standard toolkit for metric semantics works well in the probabilistic context of L_pr, e.g. in establishing the correctness of the denotational semantics with respect to the operational one. In addition, it is shown how the method of proving full abstraction --as proposed recently by the authors for a nondeterministic language with action refinement-- can be adapted to deal with the probabilistic language L_pr as well

    An Algebraic Theory for Shared-State Concurrency

    Get PDF
    • ā€¦
    corecore