130 research outputs found

    Denoising source separation

    Get PDF
    A new algorithmic framework called denoising source separation (DSS) is introduced. The main benefit of this framework is that it allows for easy development of new source separation algorithms which are optimised for specific problems. In this framework, source separation algorithms are constucted around denoising procedures. The resulting algorithms can range from almost blind to highly specialised source separation algorithms. Both simple linear and more complex nonlinear or adaptive denoising schemes are considered. Some existing independent component analysis algorithms are reinterpreted within DSS framework and new, robust blind source separation algorithms are suggested. Although DSS algorithms need not be explicitly based on objective functions, there is often an implicit objective function that is optimised. The exact relation between the denoising procedure and the objective function is derived and a useful approximation of the objective function is presented. In the experimental section, various DSS schemes are applied extensively to artificial data, to real magnetoencephalograms and to simulated CDMA mobile network signals. Finally, various extensions to the proposed DSS algorithms are considered. These include nonlinear observation mappings, hierarchical models and overcomplete, nonorthogonal feature spaces. With these extensions, DSS appears to have relevance to many existing models of neural information processing

    Morfologia e DSS (Denoising Source Separation)

    Get PDF

    Behaviourally meaningful representations from normalisation and context-guided denoising

    Get PDF
    Many existing independent component analysis algorithms include a preprocessing stage where the inputs are sphered. This amounts to normalising the data such that all correlations between the variables are removed. In this work, I show that sphering allows very weak contextual modulation to steer the development of meaningful features. Context-biased competition has been proposed as a model of covert attention and I propose that sphering-like normalisation also allows weaker top-down bias to guide attention

    From neural PCA to deep unsupervised learning

    Full text link
    A network supporting deep unsupervised learning is presented. The network is an autoencoder with lateral shortcut connections from the encoder to decoder at each level of the hierarchy. The lateral shortcut connections allow the higher levels of the hierarchy to focus on abstract invariant features. While standard autoencoders are analogous to latent variable models with a single layer of stochastic variables, the proposed network is analogous to hierarchical latent variables models. Learning combines denoising autoencoder and denoising sources separation frameworks. Each layer of the network contributes to the cost function a term which measures the distance of the representations produced by the encoder and the decoder. Since training signals originate from all levels of the network, all layers can learn efficiently even in deep networks. The speedup offered by cost terms from higher levels of the hierarchy and the ability to learn invariant features are demonstrated in experiments.Comment: A revised version of an article that has been accepted for publication in Advances in Independent Component Analysis and Learning Machines (2015), edited by Ella Bingham, Samuel Kaski, Jorma Laaksonen and Jouko Lampine

    Learning Dictionaries with Bounded Self-Coherence

    Full text link
    Sparse coding in learned dictionaries has been established as a successful approach for signal denoising, source separation and solving inverse problems in general. A dictionary learning method adapts an initial dictionary to a particular signal class by iteratively computing an approximate factorization of a training data matrix into a dictionary and a sparse coding matrix. The learned dictionary is characterized by two properties: the coherence of the dictionary to observations of the signal class, and the self-coherence of the dictionary atoms. A high coherence to the signal class enables the sparse coding of signal observations with a small approximation error, while a low self-coherence of the atoms guarantees atom recovery and a more rapid residual error decay rate for the sparse coding algorithm. The two goals of high signal coherence and low self-coherence are typically in conflict, therefore one seeks a trade-off between them, depending on the application. We present a dictionary learning method with an effective control over the self-coherence of the trained dictionary, enabling a trade-off between maximizing the sparsity of codings and approximating an equiangular tight frame.Comment: 4 pages, 2 figures; IEEE Signal Processing Letters, vol. 19, no. 12, 201

    WAVELET BASED NONLINEAR SEPARATION OF IMAGES

    Get PDF
    This work addresses a real-life problem corresponding to the separation of the nonlinear mixture of images which arises when we scan a paper document and the image from the back page shows through. The proposed solution consists of a non-iterative procedure that is based on two simple observations: (1) the high frequency content of images is sparse, and (2) the image printed on each side of the paper appears more strongly in the mixture acquired from that side than in the mixture acquired from the opposite side. These ideas had already been used in the context of nonlinear denoising source separation (DSS). However, in that method the degree of separation achieved by applying these ideas was relatively weak, and the separation had to be improved by iterating within the DSS scheme. In this paper the application of these ideas is improved by changing the competition function and the wavelet transform that is used. These improvements allow us to achieve a good separation in one shot, without the need to integrate the process into an iterative DSS scheme. The resulting separation process is both nonlinear and non-local. We present experimental results that show that the method achieves a good separation quality

    A Recurrent Encoder-Decoder Approach with Skip-filtering Connections for Monaural Singing Voice Separation

    Full text link
    The objective of deep learning methods based on encoder-decoder architectures for music source separation is to approximate either ideal time-frequency masks or spectral representations of the target music source(s). The spectral representations are then used to derive time-frequency masks. In this work we introduce a method to directly learn time-frequency masks from an observed mixture magnitude spectrum. We employ recurrent neural networks and train them using prior knowledge only for the magnitude spectrum of the target source. To assess the performance of the proposed method, we focus on the task of singing voice separation. The results from an objective evaluation show that our proposed method provides comparable results to deep learning based methods which operate over complicated signal representations. Compared to previous methods that approximate time-frequency masks, our method has increased performance of signal to distortion ratio by an average of 3.8 dB

    Bayesian factorial linear Gaussian state-space models for biosignal decomposition

    Get PDF
    corecore