1,613 research outputs found

    Exploring Cyber Security Issues and Solutions for Various Components of DC Microgrid System

    Get PDF
    Nowadays, considering the growing demand for the DC loads and simplified interface with renewable power generation sources, DC microgrids could be cost effective solution for the power supply in small scale area. the supervisory control and data acquisition (SCADA) system maintain the bidirectional power communication through the internet connectivity with the microgrid. However, this intelligent and interactive feature may pose a cyber-security threat to the power grid. this work aims to exploring cyber-security issues and their solutions for the DC microgrid system. To mitigate the adverse effects of various cyber-attacks such as the False Data Injection (FDI) attack, Distributed Denial of Service (DDoS) attack etc., two new techniques based on non-linear and proportional-integral (PI) controllers have been proposed. Simulation results obtained from MATLAB/Simulink software demonstrate the effectiveness of the proposed methods in mitigating the adverse effects of cyber-attacks on the DCMG system performance

    Enhancing Cyber-Resiliency of DER-based SmartGrid: A Survey

    Full text link
    The rapid development of information and communications technology has enabled the use of digital-controlled and software-driven distributed energy resources (DERs) to improve the flexibility and efficiency of power supply, and support grid operations. However, this evolution also exposes geographically-dispersed DERs to cyber threats, including hardware and software vulnerabilities, communication issues, and personnel errors, etc. Therefore, enhancing the cyber-resiliency of DER-based smart grid - the ability to survive successful cyber intrusions - is becoming increasingly vital and has garnered significant attention from both industry and academia. In this survey, we aim to provide a systematical and comprehensive review regarding the cyber-resiliency enhancement (CRE) of DER-based smart grid. Firstly, an integrated threat modeling method is tailored for the hierarchical DER-based smart grid with special emphasis on vulnerability identification and impact analysis. Then, the defense-in-depth strategies encompassing prevention, detection, mitigation, and recovery are comprehensively surveyed, systematically classified, and rigorously compared. A CRE framework is subsequently proposed to incorporate the five key resiliency enablers. Finally, challenges and future directions are discussed in details. The overall aim of this survey is to demonstrate the development trend of CRE methods and motivate further efforts to improve the cyber-resiliency of DER-based smart grid.Comment: Submitted to IEEE Transactions on Smart Grid for Publication Consideratio

    Cybersecurity Vulnerabilities in Smart Grids with Solar Photovoltaic: A Threat Modelling and Risk Assessment Approach

    Get PDF
    Cybersecurity is a growing concern for smart grids, especially with the integration of solar photovoltaics (PVs). With the installation of more solar and the advancement of inverters, utilities are provided with real-time solar power generation and other information through various tools. However, these tools must be properly secured to prevent the grid from becoming more vulnerable to cyber-attacks. This study proposes a threat modeling and risk assessment approach tailored to smart grids incorporating solar PV systems. The approach involves identifying, assessing, and mitigating risks through threat modeling and risk assessment. A threat model is designed by adapting and applying general threat modeling steps to the context of smart grids with solar PV. The process involves the identification of device assets and access points within the smart grid infrastructure. Subsequently, the threats to these devices were classified utilizing the STRIDE model. To further prioritize the identified threat, the DREAD threat-risk ranking model is employed. The threat modeling stage reveals several high-risk threats to the smart grid infrastructure, including Information Disclosure, Elevation of Privilege, and Tampering. Targeted recommendations in the form of mitigation controls are formulated to secure the smart grid’s posture against these identified threats. The risk ratings provided in this study offer valuable insights into the cybersecurity risks associated with smart grids incorporating solar PV systems, while also providing practical guidance for risk mitigation. Tailored mitigation strategies are proposed to address these vulnerabilities. By taking proactive measures, energy sector stakeholders may strengthen the security of their smart grid infrastructure and protect critical operations from potential cyber threats

    Cyber Physical System Security — DoS Attacks on Synchrophasor Networks in the Smart Grid

    Get PDF
    With the rapid increase of network-enabled sensors, switches, and relays, cyber-physical system security in the smart grid has become important. The smart grid operation demands reliable communication. Existing encryption technologies ensures the authenticity of delivered messages. However, commonly applied technologies are not able to prevent the delay or drop of smart grid communication messages. In this dissertation, the author focuses on the network security vulnerabilities in synchrophasor network and their mitigation methods. Side-channel vulnerabilities of the synchrophasor network are identified. Synchrophasor network is one of the most important technologies in the smart grid transmission system. Experiments presented in this dissertation shows that a DoS attack that exploits the side-channel vulnerability against the synchrophasor network can lead to the power system in stability. Side-channel analysis extracts information by observing implementation artifacts without knowing the actual meaning of the information. Synchrophasor network consist of Phasor Measurement Units (PMUs) use synchrophasor protocol to transmit measurement data. Two side-channels are discovered in the synchrophasor protocol. Side-channel analysis based Denial of Service (DoS) attacks differentiate the source of multiple PMU data streams within an encrypted tunnel and only drop selected PMU data streams. Simulations on a power system shows that, without any countermeasure, a power system can be subverted after an attack. Then, mitigation methods from both the network and power grid perspectives are carried out. From the perspective of network security study, side-channel analysis, and protocol transformation has the potential to assist the PMU communication to evade attacks lead with protocol identifications. From the perspective of power grid control study, to mitigate PMU DoS attacks, Cellular Computational Network (CCN) prediction of PMU data is studied and used to implement a Virtual Synchrophasor Network (VSN), which learns and mimics the behaviors of an objective power grid. The data from VSN is used by the Automatic Generation Controllers (AGCs) when the PMU packets are disrupted by DoS attacks. Real-time experimental results show the CCN based VSN effectively inferred the missing data and mitigated the negative impacts of DoS attacks. In this study, industry-standard hardware PMUs and Real-Time Digital Power System Simulator (RTDS) are used to build experimental environments that are as close to actual production as possible for this research. The above-mentioned attack and mitigation methods are also tested on the Internet. Man-In-The-Middle (MITM) attack of PMU traffic is performed with Border Gateway Protocol (BGP) hijacking. A side-channel analysis based MITM attack detection method is also investigated. A game theory analysis is performed to give a broade

    Cybersecurity Challenges of Power Transformers

    Full text link
    The rise of cyber threats on critical infrastructure and its potential for devastating consequences, has significantly increased. The dependency of new power grid technology on information, data analytic and communication systems make the entire electricity network vulnerable to cyber threats. Power transformers play a critical role within the power grid and are now commonly enhanced through factory add-ons or intelligent monitoring systems added later to improve the condition monitoring of critical and long lead time assets such as transformers. However, the increased connectivity of those power transformers opens the door to more cyber attacks. Therefore, the need to detect and prevent cyber threats is becoming critical. The first step towards that would be a deeper understanding of the potential cyber-attacks landscape against power transformers. Much of the existing literature pays attention to smart equipment within electricity distribution networks, and most methods proposed are based on model-based detection algorithms. Moreover, only a few of these works address the security vulnerabilities of power elements, especially transformers within the transmission network. To the best of our knowledge, there is no study in the literature that systematically investigate the cybersecurity challenges against the newly emerged smart transformers. This paper addresses this shortcoming by exploring the vulnerabilities and the attack vectors of power transformers within electricity networks, the possible attack scenarios and the risks associated with these attacks.Comment: 11 page

    Deep Learning -Powered Computational Intelligence for Cyber-Attacks Detection and Mitigation in 5G-Enabled Electric Vehicle Charging Station

    Get PDF
    An electric vehicle charging station (EVCS) infrastructure is the backbone of transportation electrification. However, the EVCS has various cyber-attack vulnerabilities in software, hardware, supply chain, and incumbent legacy technologies such as network, communication, and control. Therefore, proactively monitoring, detecting, and defending against these attacks is very important. The state-of-the-art approaches are not agile and intelligent enough to detect, mitigate, and defend against various cyber-physical attacks in the EVCS system. To overcome these limitations, this dissertation primarily designs, develops, implements, and tests the data-driven deep learning-powered computational intelligence to detect and mitigate cyber-physical attacks at the network and physical layers of 5G-enabled EVCS infrastructure. Also, the 5G slicing application to ensure the security and service level agreement (SLA) in the EVCS ecosystem has been studied. Various cyber-attacks such as distributed denial of services (DDoS), False data injection (FDI), advanced persistent threats (APT), and ransomware attacks on the network in a standalone 5G-enabled EVCS environment have been considered. Mathematical models for the mentioned cyber-attacks have been developed. The impact of cyber-attacks on the EVCS operation has been analyzed. Various deep learning-powered intrusion detection systems have been proposed to detect attacks using local electrical and network fingerprints. Furthermore, a novel detection framework has been designed and developed to deal with ransomware threats in high-speed, high-dimensional, multimodal data and assets from eccentric stakeholders of the connected automated vehicle (CAV) ecosystem. To mitigate the adverse effects of cyber-attacks on EVCS controllers, novel data-driven digital clones based on Twin Delayed Deep Deterministic Policy Gradient (TD3) Deep Reinforcement Learning (DRL) has been developed. Also, various Bruteforce, Controller clones-based methods have been devised and tested to aid the defense and mitigation of the impact of the attacks of the EVCS operation. The performance of the proposed mitigation method has been compared with that of a benchmark Deep Deterministic Policy Gradient (DDPG)-based digital clones approach. Simulation results obtained from the Python, Matlab/Simulink, and NetSim software demonstrate that the cyber-attacks are disruptive and detrimental to the operation of EVCS. The proposed detection and mitigation methods are effective and perform better than the conventional and benchmark techniques for the 5G-enabled EVCS

    Data-driven cyber attack detection and mitigation for decentralized wide-area protection and control in smart grids

    Get PDF
    Modern power systems have already evolved into complicated cyber physical systems (CPS), often referred to as smart grids, due to the continuous expansion of the electrical infrastructure, the augmentation of the number of heterogeneous system components and players, and the consequential application of a diversity of information and telecommunication technologies to facilitate the Wide Area Monitoring, Protection and Control (WAMPAC) of the day-to-day power system operation. Because of the reliance on cyber technologies, WAMPAC, among other critical functions, is prone to various malicious cyber attacks. Successful cyber attacks, especially those sabotage the operation of Bulk Electric System (BES), can cause great financial losses and social panics. Application of conventional IT security solutions is indispensable, but it often turns out to be insufficient to mitigate sophisticated attacks that deploy zero-day vulnerabilities or social engineering tactics. To further improve the resilience of the operation of smart grids when facing cyber attacks, it is desirable to make the WAMPAC functions per se capable of detecting various anomalies automatically, carrying out adaptive activity adjustments in time and thus staying unimpaired even under attack. Most of the existing research efforts attempt to achieve this by adding novel functional modules, such as model-based anomaly detectors, to the legacy centralized WAMPAC functions. In contrast, this dissertation investigates the application of data-driven algorithms in cyber attack detection and mitigation within a decentralized architecture aiming at improving the situational awareness and self-adaptiveness of WAMPAC. First part of the research focuses on the decentralization of System Integrity Protection Scheme (SIPS) with Multi-Agent System (MAS), within which the data-driven anomaly detection and optimal adaptive load shedding are further explored. An algorithm named as Support Vector Machine embedded Layered Decision Tree (SVMLDT) is proposed for the anomaly detection, which provides satisfactory detection accuracy as well as decision-making interpretability. The adaptive load shedding is carried out by every agent individually with dynamic programming. The load shedding relies on the load profile propagation among peer agents and the attack adaptiveness is accomplished by maintaining the historical mean of load shedding proportion. Load shedding only takes place after the consensus pertaining to the anomaly detection is achieved among all interconnected agents and it serves the purpose of mitigating certain cyber attacks. The attack resilience of the decentralized SIPS is evaluated using IEEE 39 bus model. It is shown that, unlike the traditional centralized SIPS, the proposed solution is able to carry out the remedial actions under most Denial of Service (DoS) attacks. The second part investigates the clustering based anomalous behavior detection and peer-assisted mitigation for power system generation control. To reduce the dimensionality of the data, three metrics are designed to interpret the behavior conformity of generator within the same balancing area. Semi-supervised K-means clustering and a density sensitive clustering algorithm based on Hieararchical DBSCAN (HDBSCAN) are both applied in clustering in the 3D feature space. Aiming to mitigate the cyber attacks targeting the generation control commands, a peer-assisted strategy is proposed. When the control commands from control center is detected as anomalous, i.e. either missing or the payload of which have been manipulated, the generating unit utilizes the peer data to infer and estimate a new generation adjustment value as replacement. Linear regression is utilized to obtain the relation of control values received by different generating units, Moving Target Defense (MTD) is adopted during the peer selection and 1-dimensional clustering is performed with the inferred control values, which are followed by the final control value estimation. The mitigation strategy proposed requires that generating units can communicate with each other in a peer-to-peer manner. Evaluation results suggest the efficacy of the proposed solution in counteracting data availability and data integrity attacks targeting the generation controls. However, the strategy stays effective only if less than half of the generating units are compromised and it is not able to mitigate cyber attacks targeting the measurements involved in the generation control

    Communication and Cyber Security issues in Smart Grid

    Full text link
    Smart Grid is an Information and Communication Technology (ICT) enabled Power grid. It is efficient, secure, reliable and self-healing power grid. Integration of micro grids, electric vehicles and other utilities make it more interesting. The deregulation of electricity sector has necessitated the use of many advanced software and embedded technologies to handle the size and complexity of power network. Smart grid needs to be supported by efficient and secure communication architecture design and implementation. At the same time it is necessary to ensure the security and privacy of data and information moving or stored in the smart grid system to have near 100% uptime of the power grid. This paper presents a comprehensive analysis of the various communication and cyber security issues involved with the successful operation of Smart Grid
    • …
    corecore