4,730 research outputs found

    Dendritic Cell Algorithm with Optimised Parameters using Genetic Algorithm

    Get PDF
    Intrusion detection systems are developed with the abilities to discriminate between normal and anomalous traffic behaviours. The core challenge in implementing an intrusion detection systems is to determine and stop anomalous traffic behavior precisely before it causes any adverse effects to the network, information systems, or any other hardware and digital assets which forming or in the cyberspace. Inspired by the biological immune system, Dendritic Cell Algorithm (DCA) is a classification algorithm developed for the purpose of anomaly detection based on the danger theory and the functioning of human immune dendritic cells. In its core operation, DCA uses a weighted sum function to derive the output cumulative values from the input signals. The weights used in this function are either derived empirically from the data or defined by users. Due to this, the algorithm opens the doors for users to specify the weights that may not produce optimal result (often accuracy). This paper proposes a weight optimisation approach implemented using the popular stochastic search tool, genetic algorithm. The approach is validated and evaluated using the KDD99 dataset with promising results generated

    Evolving Dendritic Morphologies Highlight the Impact of Structured Synaptic Inputs on Neuronal Performance

    Get PDF
    Acknowledgements I would like to express my sincere gratitude to Dr. Rene te Boekhorst for his valued support and guidance extended to me.Postprin

    A Comparative Study of Genetic Algorithm and Particle Swarm optimisation for Dendritic Cell Algorithm

    Get PDF
    Dendritic cell algorithm (DCA) is a class of artificial immune systems that was originally developed for anomaly detection in networked systems and later as a general binary classifier. Conventionally, in its life cycle, the DCA goes through four phases including feature categorisation into artificial signals, context detection of data items, context assignment, and finally labeling of data items as either abnormal or normal class. During the context detection phase, the DCA requires users to manually pre-define the parameters used by its weighted function to process the signals and data items. Notice that the manual derivation of the parameters of the DCA cannot guarantee the optimal set of weights being used, research attention has thus been attracted to the optimisation of the parameters. This paper reports a systematic comparative study between Genetic algorithm (GA) and Particle Swarm optimisation (PSO) on parameter optimisation for DCA. In order to evaluate the performance of GADCA and PSO-DCA, twelve publicly available datasets from UCI machine learning repository were employed. The performance results based on the computational time, classification accuracy, sensitivity, F-measure, and precision show that, the GA-DCA overall outperforms PSO-DCA for most of the datasets

    Proceedings of Abstracts Engineering and Computer Science Research Conference 2019

    Get PDF
    Ā© 2019 The Author(s). This is an open-access work distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. For further details please see https://creativecommons.org/licenses/by/4.0/. Note: Keynote: Fluorescence visualisation to evaluate effectiveness of personal protective equipment for infection control is Ā© 2019 Crown copyright and so is licensed under the Open Government Licence v3.0. Under this licence users are permitted to copy, publish, distribute and transmit the Information; adapt the Information; exploit the Information commercially and non-commercially for example, by combining it with other Information, or by including it in your own product or application. Where you do any of the above you must acknowledge the source of the Information in your product or application by including or linking to any attribution statement specified by the Information Provider(s) and, where possible, provide a link to this licence: http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/This book is the record of abstracts submitted and accepted for presentation at the Inaugural Engineering and Computer Science Research Conference held 17th April 2019 at the University of Hertfordshire, Hatfield, UK. This conference is a local event aiming at bringing together the research students, staff and eminent external guests to celebrate Engineering and Computer Science Research at the University of Hertfordshire. The ECS Research Conference aims to showcase the broad landscape of research taking place in the School of Engineering and Computer Science. The 2019 conference was articulated around three topical cross-disciplinary themes: Make and Preserve the Future; Connect the People and Cities; and Protect and Care

    Optimal Design Approach of Solar Powered Rural Water Distribution Systems in Developing Countries

    Get PDF
    This is the author accepted manuscript.In many rural parts of the developing world reliable access to clean water and electrical power is constrained. In this study, methods of integrating estimations of power outputs from solar photovoltaic arrays into gravity-fed water distribution network modelling are investigated. The effects of powering a rural water distribution system that is replenished with groundwater pumps that use solar power, and the effect of this on other network design decisions, are investigated. A rural community of an estimated 2,800 people with 28 standpipes from a borehole was chosen to develop the optimisations. The water storage tank and pipework were the focus on the water distribution system. EPANET and generic algorithms were used to run network optimisation simulations of: water tank location, elevation and volume; pipe diameter and configuration; and optimal system design in terms of cost. Different scenarios were included producing supply, demand and required water storage curves, which could have practical application for rural water distribution system design. Indicative costs for theoretical water distribution networks for rural communities in The Gambia were generated

    An Integrated Optimal Approach for Solar Powered Rural Water Distribution Systems in the Gambia

    Get PDF
    This is the final version. Available on open access from Scientific Research Publishing via the DOI in this recordIn the Gambia and across sub-Saharan Africa, reliable access to clean water and electrical power is constrained. As many rural water supply systems are already built, enhanced understanding of efficiencies and optimisation is required. Here, methods of integrating estimations of power outputs from solar photovoltaic arrays into gravity-fed water distribution network modelling are investigated. The effects of powering a rural water distribution system that is replenished with groundwater pumps that use solar power are investigated, along with the effect of this on other network design decisions. The water storage tank and pipework of a rural community with an estimated 2800 people and 28 standpipes from a borehole was selected. EPANET modelling software and genetic algorithms were used to run network optimisation simulations of: water tank location, elevation and volume; pipe diameter and configuration; and optimal system design in terms of cost. Different scenarios included producing supply, demand and required water storage curves, which could have practical application for rural water distribution system design. Indicative costs for theoretical water distribution networks will be useful for decision makers and planners
    • ā€¦
    corecore