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Abstract—Intrusion detection systems are developed with the
abilities to discriminate between normal and anomalous traffic
behaviours. The core challenge in implementing an intrusion
detection systems is to determine and stop anomalous traffic
behavior precisely before it causes any adverse effects to the
network, information systems, or any other hardware and digital
assets which forming or in the cyberspace. Inspired by the
biological immune system, Dendritic Cell Algorithm (DCA) is
a classification algorithm developed for the purpose of anomaly
detection based on the danger theory and the functioning of
human immune dendritic cells. In its core operation, DCA
uses a weighted sum function to derive the output cumulative
values from the input signals. The weights used in this function
are either derived empirically from the data or defined by
users. Due to this, the algorithm opens the doors for users to
specify the weights that may not produce optimal result (often
accuracy). This paper proposes a weight optimisation approach
implemented using the popular stochastic search tool, genetic
algorithm. The approach is validated and evaluated using the
KDD99 dataset with promising results generated.

Index Terms—Dendritic cell algorithm, genetic algorithm,
danger theory, network intrusion detection, KDD99 dataset

I. INTRODUCTION

Advancement in information communication technology has
led to rapidly increasing number of devices connected together
sharing information at a significant speed and affordable cost.
Internet has become among the basic human needs for both
social and business communications. Today, almost every
nation in the world is providing e-government services to
its citizens and businesses to improve the performance of
government orgnisations and departments in providing their
services. The use of internet comes with challenges and among
them intruders from the biggest threat. To make internet
communication safe, various intrusion detection systems are
employed to monitor traffics for any form of abnormalities.
The core challenge to intrusion detection systems is to detect
anomalous behavior and take actions before any adverse
effects are caused to the network or information system.

For the purpose of intrusion detection, the second generation
of artificial immune system algorithm based on biological
Danger Theory has been proposed over a decade ago [1]. Bi-
ological danger theory articulates that, human immune system
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relies not only on making a discrimination between self (own
cells) and nonself (foreign cells) antigens but rather react to
what might cause damage and waht may not [2]. The danger
model demonstrates that the key why the immune system is
able to distinguish the self and nonself antigens is because
nonself makes the body produce immune reactions different
from the human biological nature.

Dendritic Cell Algorithm (DCA) was abstracted from the
danger theory and the antigens presentation process of human
dendritic cells (DCs) [3]. Briefly, DCA is a classification
algorithm based on the danger theory and the functioning of
human immune dendritic cells. In its core operation, DCA
uses a weighted sum function to derive the output cumulative
values from the input signals and antigen data. Due to the
flexibility of using different weights that can be user-defined
or derived empirically from the data, a set of used weights
may not be optimal and thus lead to unsatisfied classification
results.

This paper proposes an approach for optimizing the DCA
weights by employing the popular search optimization tool
Genetic Algorithm (GA). GA is inspired by the natural se-
lection theory where the fittest individuals are selected for
reproduction in order to produce better individuals of the next
generation [4]. To produce the fittest individuals, GA usually
goes through five stages which are population initialization, fit-
ness evaluation, selection, crossover and mutation. Essentially,
GA is a heuristic optimization technique which attempts to find
out the individuals that produce the best output solutions or
results.

In this work, the GA is used as an optimization technique
to generate the set of optimal weights for the DCA function
in an effort to produce the optimal classification results.
Additionally, this work also investigates to what extent the
weights generated by the proposed approach improves the
abnormal behavior detection accuracy in the field of network
intrusion detection, in reference to the pre-defined signal
weights. The proposed approach is applied to the KDD99
dataset [5] for system validation and evaluation in the field
of intrusion detection.

The rest of this paper is organized as follows: Section II
introduces the basic background related to intrusion detection
systems, artificial immune systems and the DCA. Section III



describes the proposed approach, an GA-based DCA system.
Section IV presents the experiments and analyses the experi-
mental results. Section V draws the conclusion and points out
the future work directions.

II. BACKGROUND

This section provides a brief background information on
intrusion detection systems, artificial immune systems and
Dendritic cell algorithm.

A. Intrusion Detection systems

Intrusion detection systems (IDS) are software used to
monitor network traffics for suspicious activity, which could be
an attack or unauthorized activity such as exploiting vulnerable
services in a network, applications layer attacks such as SQL
injection, privilege escalation in the system, unauthorized
logins, virus attacks, malware etc. IDS are equipped with
mechanisms to alert the administrator when an anomaly be-
havior from the traffics is sensed.

Over the past few years network attacks have been increased
in number and severity, IDS have become a necessary measure
in addition to the security infrastructure of most organizations
[6]. There are different ways of classifying IDS based on its
analysis approach and deployment point on a network. Based
on their analysis approach, IDS fall into two classes, misuse
and anomaly detections [6]. Based on the deployment, IDS
can further be divided into host-based and network-based. In
misuse detection, the IDS searches for specific attacks that are
already documented in a large database of attack signatures
usually using some pattern matching techniques [7]. As only
knownn attack signatures are stored, the problem with misuse
detection resides on being static that it cannot detect novel
attacks, although it has very low false positives.

Anomaly intrusion detection systems use a dynamic ap-
proach by setting up a set of rules while considering the
abnormal activity on the network. This approach firstly evalu-
ates normal traffic’s behavior, and then any traffic different
with the normal ones are detected as anomaly. This class
can react to new attacks if they have abnormal behaviors
compared to the normal traffic although not all abnormal
traffic are malicious, so this approach usually leads to a large
number false positives [1]. Intelligent and classic anomaly-
based IDS can be designed using artificial immune systems,
fuzzy interpolation approaches [8]–[10], and other artificial
intelligence techniques [11]–[14].

In terms of the deployment approaches, network-Based
IDS is used to monitor the incoming and outgoing network
traffics in a particular network environment and analyzes the
traffics for suspicious activities. To capture all the data passing
through the network, IDS need to be positioned at the entry
and exit point of data from the private network to the internet.
In contrast, Host-Based IDS are installed on a host to monitor
traffics that are originating and coming to that particular hosts
for suspicious activity [6]. Apart from monitoring incoming
traffics to the host, it can also analyze the file system of a
host, users’ logon activities and running processes.

B. Artificial Immune Systems

Artificial Immune System (AIS) is the class of computa-
tional intelligence systems inspired by human immune system
(HIS), which is designed to solve engineering problems related
to anomaly detection, classifications and optimisations. When
a foreign molecules (e.g virus) is encountered for the first
time by the human immune system, the human retains their
memory to identify them when encountered again in the later
stage [15]. Since 1990s, AIS researches on intrusion detection
system have been carried out by different researchers [16].

Negative selection algorithm is an example of the first
generation of artificial immune system algorithm [17] derived
from the fact that all new born immature T cells in a HIS
must undergo a process of negative selection in the thymus
where the self-reactive T cells binding with self-proteins are
eliminated. Therefore the mature T-cells are released to the
blood circle can only bind to nonself antigens. In AIS, negative
selection algorithm collects a set of self string that define
the normal state of the monitored system and then generated
a set of detectors that only recognize nonself strings. This
detector set is used to monitor the anomaly changes of the
data in the system in order to classify them as being self
or non-self. Positive selection algorithm is an alternative to
negative selection in which the detectors for self strings are
evolved rather than for non-self. The first generation of AIS
algorithms have shown some weaknesses in detecting novel
attacks which make them unsuitable for intrusion detection
systems as network traffics change their behavior over time,
despite of the advantages of error tolerance, adaptation and
self-monitoring [18].

To overcome the shortcomings of the self-nonself AIS
algorithms, the second generation of AIS algorithm, namely
DCA [1], [19], was proposed based on HIS danger model
[2]. According to [2] in biology, the recognition of a foreign
molecule such as virus is based on environmental context
(signals) rather than the simple self-non-self discrimination
behaviour. It doesn’t matter if a damage is due to pathogens or
by a cell defect, the immune response will react against what
might cause damage to the cells. More precisely, if a foreign
molecule does not cause damage or the cells die based on
the normal programmed death process, no immune reaction is
initiated [20].

In the danger model, dendritic cells (DCs) found in the
immune system are responsible for collecting environmental
signals (antigens) and present them for immune response [2].
As antigens represent the mechanism of the DCs, they are
known as Antigen Presenting Cells (APCs). DCs are found in
tissues that are in contact with the external environment such
as the skin, lungs and stomach. DCs express Costimulatory
Molecules (CSMs) on their cell surface which is used to limit
the number of antigens they can sample and time spent to
sample those antigens while in the danger zone. The four
signals that DCs collect are pathogenic associated molecular
patterns (PAMPs), safe signals (SSs), danger signals (DSs),
and inflammatory cytokines (CKs).



PAMPs are proteins produced by pathogenic molecules such
as virus and bacteria which can be easily detected by DCs
and activate immune response. The presence of PAMP signals
expressed by an antigen indicates an anomalous situation. DSs
indicate an anomalous situation but with lower confidence than
PAMP signals. SSs indicate that, DCs have been collected in
their normal conditions. CKs are an indicator that, a great
number of DCs have been collected in the tissue under distress.

Based on the danger model in biology discussed above, the
DCA algorithm was abstracted from the following facts [21]:

1) APCs in danger model can present an appropriate
danger signal.

2) The presence of signal has nothing to do with danger.
The context of the signal determine the extent of the
danger.

3) Signal may be present (positive signal) or may not be
present (negative signal).

4) In biology, danger zone is spatial which is usually not
the case for AIS. Instead, in AIS some other measure
of proximity, often temporal information, may be used.

5) Danger signals rely on concentration (not binary
matching) to cause the migration of a cell.

The second generation of AIS, that is DCA, based on the
danger module overcomes the self-nonself discrimination lim-
itations associated with the first generation. It has been demon-
strated that the AIS based on danger model, that is DCA, does
not rely on alert correlation to detect intrusion; and therefore
intrusions with no strong similarities can also be detected.

C. Dendritic Cell Algorithm

DCA is a binary classification algorithm that is developed
for the purpose of anomaly detection in computer network do-
main; and can be used as an unsupervised or semi-supervised
learning method [22]. When it is used as an unsupervised
approach, DCA acquires the knowledge to assign a label of
normal or anomalous to data instances by categorizing signals
into PAMP, DS and SS. In addition, DCA is not cursed by the
potential high dimensionality of data sets, so it can be applied
to very large datasets with very high dimensionality without
sacrificing the timeliness of data processing [22].

DCA is a population based intrusion detection system [3]
where a population of DCs is created to form a development
pool from which a number of DCs are randomly selected
to perform antigens (data instance) sampling, and thus the
number of data instances associated with a DC is not fixed.
DCs in the development pool are exposed to all the data
instances. Another DC pool only hosts the migrated DCs
which are used to determine the labels of data items associated
with the pool. The DCS takes three inputs from each data
instance:
• PAMP: An attribute indicates clearly the presence of

anomalous behaviour associated with a given data in-
stance (antigen). For instance an attribute reflecting the
number of error messages generated per second by a
failed network connection.

• DS: An attribute indicates the presence of abnormal
bahaviour but with lower confidence than PAMP. For
instance, an attribute reflecting an increase in the number
of transmitted network packets per second.

• SS: Presence of SS associated with an attribute is an
indicator of normal behavior associated with a given
antigen. For instance, an attribute reflecting a decrease
in the number of network packets per second.

The DCA generates three interim outputs for each migrated
DC, which are the concentrations of: [19]:
• Immature DCs (iDC) - Are responsible for multiple

antigens collection and are exposed to signals in the data
source;

• Semi-mature DCs (smDC) - Is a result of iDC exposure
to more safe than danger signals. Presentation of antigens
with smDC indicates normal situation; and

• Mature DCs (mDC) - Is a result of iDCs exposure
to more danger than safe signals. The presentation of
antigen with mDC indicates anomalous situation.

From this, the context of the each DC is determined, and then
the labels of data instances are finally predicted.

The DCA algorithm is outlined in Algorithm 1, which
mainly include four phases.

1) Preprocessing and Initialization: In this phase, after
feature reduction, each selected feature is assigned to a signal
category of either PAMP, DS or SS; and two DC pools are
created, including one development DC pool and a migrated
DC pool. The size of the development DC pool is specified by
the user and the size of the migrated DC pool is not limited.
Note that redundant and noisy features may be included in
the dataset and thus feature selection approaches may be used.
For instance, rough fuzzy set approaches have been used for
feature selection and signal categorization in a number DCAs
[23], [24]. In particular, The rough fuzzy set approach firstly
removes the unnecessary attributes. Then, the attribute with
the smallest total uncertainty degree is selected to form the
SSs as it is considered as the most informative feature. The
next least uncertain attribute is selected to form PAMP whilst
the rest of the selected attributes are aggregated to form the
DSs.

2) Detection: Each data instance in the dataset represents
an antigen. DCA processes the input signals, PAMP, DS
and SS, of each data instance to obtain the interim output
representing the concentrations of CSM, smDC, mDC by:

C =
(WPAMP ∗ CPAMP ) + (WSS ∗ CSS) + (WDS ∗ CDS)

WPAMP +WSS +WDS

∗1 + I

2
,

(1)

where CPMAP , CSS and CDS are the input signal values for
PAMP, SS and DS respectively, WPMAP ,WSS and WDS are
the signal weights used for PAMP, SS and DS, respectively, I
represents the CK with no sufficient effect to cause maturation
but can amplify the other three input signals (i.e., PAMP, DS
and SS). Equation 1 is used three times to calculate the interim



output of the concentrations of CSMs, mDC and smDC, but
using different sets of weights. The weights WPMAP ,WSS

and WDS are usually pre-defined or derived from experimental
observation performed on natural DCs according to [3], which
is summarized in Table I. Nevertheless, these weights may also
be derived empirically from data [19], [25].

Table I
DCA PRE-DEFINED WEIGHTS

Weight PAMP DS SS
CSM 2 2 1

smDC 0 0 3

smDC 2 1 -3

Based on a given sampling ratio s, each data instance is
associated with s randomly selected DCs from the develop-
ment DC pool. A migration threshold is pre-defined by the
user, which is used to limit the time spent on sampling the
data by a DC. The concentration of CSM for each selected
DC is computed and compared with the pre-defined migration
threshold θm. If the CSM concentration of a DC is greater
than the migration threshold, the DC is moved from the
development pool to the migrated DC pool, and the removed
DC is replaced by a newly initialized one such that the
population in the development DC pool is fixed.

3) Context Assessment: In this phase, the contexts of the
DCs in the migrated pool are determined. The DCA processes
its three input signals to get two cumulative output signal
values of smDC and mDC using the signal processing as stated
in Equation 1. If a data instance collected by a DC has a greater
mDC value than the smDC value, then the data instance is
assigned a binary value of 1; otherwise, 0 is assigned.

4) Classification: All the data instances (or antigen) asso-
ciated with the migrated DCs are analysed and the Mature
Context Antigen Value (MCAV) for each data instance (i.e.,
antigen) is derived. The MCAV is used to assess the degree of
anomaly of a given data instance. For a given data instance,
its MCAV value is calculated by dividing the number of times
the data instance found in the mature context to the total
number of associations with migrated DCs. A pre-specified
MCAV threshold is derived from the testing dataset, which is
the division of the total number of data instance labelled with
abnormal by the total data items in the dataset. Data instances
with greater MCAVs than the anomaly threshold are classified
as anomalous while the others are classified as normal.

Upon migration, Every DC evaluates the total data items
it has sampled in either smDC or mDC context. Greater data
items with mDC results into DC-context of 1, otherwise 0.

III. DCA WITH OPTIMISED PARAMETERS

The parameters as shown in Table I used in Equation 1
by the DCA are usually specified by users, which might not
lead to the optimal performance. In this work, GA is used to
search for an optimal set of parameters based on the testing
dataset which is used by the DCA in learning the thresholds.
The framework of the proposed system is illustrated in Figure

Algorithm 1 DCA
input: dataset D, DC pool size n, sampling ratio s, migra-
tion threshold θm, anomaly-threshold θc
output: benign or malignant for data items
/** Pre-processing & Initialization phase**/
Create development DC pool Pd with n DC cells
Create migrated DC pool Pm with unlimited size
signal categorization;
/** Detection phase**/
for each d in D do

calculate the concentrations of CSM, mDC and smDC
for 1 to s do

randomly select a DC from Pd

associate d with DC
if cumulative CSM > θm then

migrate DC
create new DC

end if
end for

end for
/*Context Assessment phase */
for each DC in Pm do

if cumulative smDC ≤ cumulative mDC then
DC-context=1;

else
DC-context=0;

end if
end for
/* Classification phase */
for each d in D do

calculate MCAV
if MCAV > θc then

assign malignant
else

assign benign
end if

end for

1. For a given training dataset, the approach firstly performs
feature selection, and only the most significant feature values
are retained in the training data set. The selected features are
categorised into three input signals namely PAMP, DS and SS,
as introduced in the last section. Each data instance, which
is modeled by an antigen in biology, is assigned an ID for
identification by DCs. The training dataset in which each data
instance associated with an ID is taken by the DCA and GA.
Then, the GA searches for the optimal set of parameters, which
is sent to the DCA for performing classification tasks. The
comprising components of the proposed approach is detailed
in the following subsections.

A. Feature Selection

When a given training dataset has a large number of
features, it is necessary to select the most significant features
to achieve the computational efficiency. The use of irrelevant



Figure 1. The proposed permater optimisation approach

or redundant features may cause two problems in the learning
process [26]. The first one is an induction of greater compu-
tational cost which slows down the performance of the DCA.
Secondly, there is a higher chance of overfiting introduced
by the irrelevant features. This work therefore applies feature
selection first.

There are a number of methods available in the literature
for performing feature selection tasks using statistics and
machine learning approaches. In particular, this study adopts
an entropy-based approach for feature selection. In this ap-
proach, the information gain of each attribute is calculated
first, which estimates the amount of information with respect
to the classification that a particular attribute provides when
the value of the attribute is known [27]. Given a sample dataset
D, the information gain of an attribute x can be calculated as
[28]:

G(D,x) = E(D)−
∑

v∈V alues(x)

|Dv|
|D|
∗ E(Dv), (2)

where V alues(x) represents the set of all the possible values
that attribute x may take, Dv is a subset of D that the attribute
x of each element takes value v, G represents the information
gain, and E is the Entropy.

Suppose there are two classification classes, the entropy
E(D) in Equation 2 is defined as follows:

E(D) =

2∑
i=1

−pi ∗ log2pi, (3)

where pi is the probability of D belonging to class i. After
evaluating the information gain of each attribute, a number of
significant attributes can be selected. A refined training data
set is then formed by taking only the selected features, which
is then utilized by the DCA and the GA as detailed below.

B. Parameter Optimization by GA

The GA uses operations inspired by biological evolution,
such as selection, mutation, crossover, and reproduction, for
search and optimization problems. A GA algorithm starts
with a population of individuals which are often randomly
generated, and the population evolves from one generation to
another through evolution operations. In this work, the GA
is employed to produce an optimal set of weights for the
weighted sum equation as expressed in Equation 1, such that

the DCA can have the best classification accuracy. The pre-
defined weights as shown in Table I include nine entries. The
nine entries are used to calculate the interim cumulative output
values for the concentrations of CSM, smDC and mDC from
the three input signals PAMP, DS and SS from the pool of the
migrated DCs.

The proposed parameter optimization system is outlined in
Algorithm 2. The algorithm firstly randomly generate a num-
ber of individuals to form the population, and each individual
is 9 number which suppose to represent the 9 weights in Table
I. Then the fitness of each individual is evaluated using a
fitness function. The fitness function in a GA algorithm drives
the search process towards the location of the best solution
based on the current solution and the training data set. In this
work the fitness function is defined as the accuracy of the
DCA based on the training dataset D.

Suppose that individual i is formed by 9 weights
(w0, w1, ..., w8), which are fed into the DCA in calculating
the interim outputs using Equation 1. The nine weights are
divided into three groups to support CSM, smDC and mDC
respectively, where w0, w3 and w6 are used for the calculation
for the PAMP signal, w1, w4 and w7 are for DS signals, and
w2, w5 and w8 are for SS signals. In this work, the migration
threshold for the DCA is set to 10, and each data items are
allowed to be sampled by 10 DCs. The accuracy computed by
DCA, which is the fitness of individual i is then forwarded
back to the GA.

Algorithm 2 DCA parameter optimization
input: the dataset D
output: the optimized weights
Population initialization P ;
for each individual i in the population do

fitness evaluation which is the accuracy led by the DCA
using the weights represented by i;

end for
while termination condition is not met do

selection
crossover
mutation
for each modified individuals do

fitness evaluation which is the accuracy led by the DCA
using the weights represented by i;

end for
next generation formation

end while
return the best individual

Based on their fitness values, a number of individuals are
selected for reproduction, which is implemented in this work
by the fitness proporionate selection approach, or the roulette
mechanism [29]. The higher the accuracy of an individual is,
the higher the probability of it being selected for reproduction.
Once a number of parents are selected, they then breed some
individuals for the next generation using the genetic opera-
tors corssover and mutation. In particular, crossover swaps



contiguous parts of genes of two individuals to produce two
new individuals that are added to the population poll. More
precisely, for each pair of the selected individuals, a crossover
point is chosen randomly and the tails of its parents’ weights
are swapped to get two new individuals to be added to the new
generation. Note that there are a number of crossover operators
available for use, but the simplest single point crossover
approach is adopted in this work.

In order to ensure genetic diversity within the population,
the second genetic operator mutation is applied. Mutation
alters one gene value in a chromosome from its initial state. A
pre-defined mutation rate is used to control the percentage of
occurrence of mutations. In this work, the mutation rate is set
to 5%. Mutation rate is set to a low value in order to make sure
that, individuals do not converging to the local minima while
it speeds up identification of individual which can generate the
optimal accuracy. The fittest individuals with best weights of
each generation are allowed to pass automatically to the next
generation to ensure that the better combination of weights
will be preserved.

The selection and reproduction processes are iterated until
a pre-specified a termination is satisfied. The termination
condition can be in one of the two situations: 1) the optimal
fitness accuracy has not been reached for the population but the
GA does not produce any further better classification accuracy
for a number of generations, and 2) an optimal accuracy
level is realized when the generated weights produce greater
classification accuracy than the target accuracy. Subsequently,
the final combination of the fittest individual, i.e., the optimal
set of weights, is sent to the optimized DCA for performing
classification tasks.

IV. EXPERIMENTATION

The KDD99 data set was used in the experimentation for
system validation and evaluation.

A. The Dataset and Performance Measurement

KDD99 is an intrusion detection dataset [5], the goal of
which was to build a network intrusion detector as a predictive
model with an ability of distinguishing between bad (intrusion
or attack) and good (normal) network connections. There are
four attacks categories in the KDD99 dataset which affect a
large number of networked devices globally daily, which are:

1) DOS: Denial of service attacks which attempt to shut
down the system to make it inaccessible to its intended
users, such as SYN flooding, teardrop and smurf attack.

2) Probes: An attempt of gaining access to a computer
and its files by exploiting the weak points available
through surveillance and other probing techniques, e.g.
port scanning.

3) U2R: Unauthorized attempt to gain super user priv-
ileges by exploiting vulnerabilities that allow normal
user to gain a root privileges, e.g. buffer overflow and
rootkit attacks.

4) R2L: Unauthorized access of a computer resources
from a remote machine, e.g. password guessing and
ftp write attacks.

For computational efficiency, this study was carried out
based on the 10% of the KDD99 training data set, which was
a common practice in a number of studies, such as [22], [30].
This data set consist of 494,021 records among which 97,277
(19.69%) are normal, 391,458 (79.24%) DOS, 4,107 (0.83%)
Probe, 1,126 (0.23%) R2L and 52 (0.01%) U2R connections.
Each connection has 41 attributes describing different features
of the connection and labeled as either normal or an anomaly
(attack). The 41 features can be classified into four groups
[27]:

1) Basic features: This class consists of all features that
can be extracted from a TCP/IP connection.

2) Time-based Traffic Features: These features are used
to capture properties that mature over a 2 seconds
temporal window, such as the number of connections
to the same host over the 2 second interval.

3) Host-based Traffic Features: These features use a his-
torical window estimated over a number of connections
instead of time for example 100. The attacks which
span intervals longer than 2 seconds are analysed using
these features.

4) Content features: The payload of the original TCP
packets is analysed based on the domain knowledge.
Example of these features include the number of failed
login attempts.

For any IDS, the network traffic classification results may
fall in one of the following classes:

• True Positive (TP): The IDS system is able to identify
an intrusion that is being performed and it is actually an
attack.

• True Negative (TN): The IDS system classifies an
activity as acceptable and it is real acceptable behavior.

• False Positive (FP): The IDS identifies an activity as an
attack but the activity is acceptable behavior.

• False Negative (FN): The IDS notifies an activity as
acceptable while it is actually an attack. This is the most
dreadful one.

To evaluate the performance of the proposed approach, for
each experiment, the rates of True Positive (TPR), False
Negative (FNR), False Positive (FPR) and True Negative
(TNR) are calculated in addition to the total accuracy. These
parameters can be determined as follows: TPR=TP/(TP+FN),
TNR=TN/(TN+FP), FPR=FP/(TP+FN), FNR=FN/(TN+FP),
and the Total Accuracy(TA)=((Number of correctly classified
data items)/(Total number of items))*100.

B. Experiment Setup

All experiments are performed on a laptop with Intel Core
i5 6200U 2.4GHz - 8GB RAM-HP running windows 8. Both
DCA and GA algorithms are implemented in Java using
NetBeans IDE.



After evaluating the information gain of each attribute from
KDD99 dataset, twelve attributes are selected to form the three
input signals categorised as follows:

• PAMP: serror rate, srv serror rate, same srv rate,
dst host serror rate, dst host rerror rate, rerror rate
and srv rerror rate.

• DS: count and srv count.
• SS: logged in, srv different host rate and

dst host count.

Data instance (i.e., antigen in biology terminology) IDs
are created by combining three nominal attributes, which are
protocol, service and flag as used by [22]. This helps to
trace a particular data item in the system since one antigen
is processed by multiple DCs at the same time, in both the
development and migration pools, and antigen ID also helps
during the MCAV evaluation process.

To determine the value of each signal category, all selected
attributes are normalized into the range of 0 to 1 using max-
min normalization. Then the values of each signal category is
equal to the average of all attributes that form this signal. Sub-
sequently these values are combined with the corresponding
antigens and become the inputs to the DCA.

The development pool has a population of 100 DCs, and
each data instance can be sampled by 10 DCs. The DC
migration threshold is set to 10. To perform classification of
data instances, a threshold (anomaly threshold) is applied to
the MCAVs. The anomaly threshold is calculated by dividing
the number of anomaly data items (396743) present in the
10% of KDD99 dataset by number of the total data items
(494021). The anomaly threshold is set to 0.8. The MCAV
value is used to assess the degree of anomaly of a given
data instance. Hence, if the MCAV value is greater than
the anomaly threshold (0.8), the data instance is classified
as anomalous, otherwise classified as normal. For each data
instance, the MCAV value is computed by dividing the total
number presented as an anomalous by the total number of
presentations in DCs.

Three experiments were conducted. The first experiment
(Basic DCA) used 10% of the KDD99 dataset and the basic
DCA with the pre-defined weights as specified in Table I.
The experimental results are shown in table III on the Basic
DCA row. The second experiment (GA-DCA optimization)
employed the proposed approach for perimeter optimization
based on 1% of the KDD99 dataset. As the DCA requires
a considerable amount of time to process 10% of KDD99
dataset (about 3 minutes), only 1% of the KDD99 dataset was
used for the GA optimization process. Subsequently, 10% of
KDD99 dataset and the basic DCA were used to compute the
total accuracy of the final fittest individual’s weights.

The resulted optimal parameters are shown in Table II. The
experiment was repeated five times. Although different optimal
parameters are produced every time, but the same training
accuracy was always generated for the five times (97.29%) as
listed Table II. Interestingly, these weights also led the same
TPR, FPR, TNR and FNR.

Table II
THE ACCURACY FOR THE FIVE REPEATED TRAINING

Outputs Weights Exp.1 Exp.2 Exp.3 Exp.4 Exp.5

CSM
W0 4 4 2 1 2
W1 2 2 1 4 1
W2 4 6 2 2 2

smDC
W3 5 5 0 -2 5
W4 6 3 4 5 6
W5 3 2 4 2 4

mDC
W6 4 6 4 2 3
W7 3 3 5 2 2
W8 -2 -3 -2 -3 2

Accuracy(%) 97.29 97.29 97.29 97.29 97.29

The third experiment (Validation) was performed using the
optimal parameters generated by the GA on a different 10%
of the KDD99 dataset, to validate the proposed system. This
experiment was performed to make sure that the best optimal
set of weights depend neither on the GA nor on the training
dataset when using the DCA alone after the training phase. The
experimental results are shown in Table III on the Validation
row.

Table III
CLASSIFICATION ACCURACY ON TESTING DATASET

TPR FPR TNR FNR TA

Accuracy (%)
Basic DCA 92.71 7.27 93.07 6.93 92.78
Validation 98.52 1.48 92.29 7.71 97.29

C. Results Analysis and Comparison

The experiments evaluated the proposed system and com-
pared it with the traditional one using the pre-defined weights.
The power of the proposed system is confirmed by the experi-
ments with the results presented in Table III and Figure 2. The
weights generated using the GA optimization generally led
to higher total classification accuracy (97.29%) compared to
the pre-defined weights (92.78%). This indicates an improved
percentage of successful classified data items by 4.51%. Also
the true positive rate is increased from 92.71% to 98.52%,
indicating a positive improvement of 5.81%. Comparing with
the results by other studies attempted to use DCA and 10%
of KDD99 dataset, the results led by the proposed approach
are also better. For instance,, the total classification accuracy
reported in [22] is 86.88%. The work of [30]uses the GA
to optimize the probabilities of SS and DS (i.e., p safe and
p danger), the total accuracy recorded is 95.23%.

Unfortunately, for True Negative and False Negative rates,
the proposed approach has shown less positive results. True
negative rate is decreased by 0.78% whilst false negative rate
is increased by the same magnitude. This needs to be further
investigated in determining how to configure the GA in such a
way that it can search for the best weights without negatively
affecting the rest of other classification parameters.



Figure 2. Classification Accuracy

Note that after determining the optimal weights, the basic
DCA is used without altering its basic implementation, run-
ning time or computational required. More importantly, the
GA is only utilised during the model optimisation process, so
the fast online performance of classical DCA, as one of its
most important advantages, is not affected or influenced by
the GA in its implementation.

V. CONCLUSIONS

This paper proposes an approach for parameter optimisation
for the DCA algorithm by employing the popular AI tool GA.
As the GA is only used during the training stage to generate
the optimal set of weights and therefore no large computational
effort is imposed against the benefits of DCA (i.e., fast online
in-time performance). Additionally, this approach does not
have any dependency on the training dataset after getting
the best weights as demonstrated in the third experiment, so
the quality of the original DCA is not compromised. The
experimental results shown that the proposed approach is
very efficient in terms of true positive, false positive and the
overall classification accuracy, although further investigation
is required for the improvement on true negative and false
negative rates. This initial work can be furthered developed
to adaptively derive weights from data stream in real time.
Moreover, the proposed approach needs to be further validated
using larger scale data sets.

REFERENCES

[1] Uwe Aickelin, Peter Bentley, Steve Cayzer, Jungwon Kim, and Julie
McLeod. Danger theory: The link between ais and ids? Artificial immune
systems, pages 147–155, 2003.

[2] Polly Matzinger. The danger model: a renewed sense of self. Science,
296(5566):301–305, 2002.

[3] Julie Greensmith, Uwe Aickelin, and Jamie Twycross. Articulation and
clarification of the dendritic cell algorithm. Artificial immune systems,
pages 404–417, 2006.

[4] John H Holland. Genetic algorithms. Scientific american, 267(1):66–73,
1992.

[5] KDD Cup 1999 Data. ”http://kdd.ics.uci.edu/databases/kddcup99/
kddcup99.html/. Accessed: 2017-12-13.

[6] Rebecca Bace and Peter Mell. Nist special publication on intrusion
detection systems. Technical report, BOOZ-ALLEN AND HAMILTON
INC MCLEAN VA, 2001.

[7] Stuart Staniford, James A Hoagland, and Joseph M McAlerney. Practical
automated detection of stealthy portscans. Journal of Computer Security,
10(1-2):105–136, 2002.

[8] Longzhi Yang, Fei Chao, and Qiang Shen. Generalized adaptive fuzzy
rule interpolation. IEEE Transactions on Fuzzy Systems, 25(4):839–853,
2017.

[9] Longzhi Yang and Qiang Shen. Closed form fuzzy interpolation. Fuzzy
Sets and Systems, 225:1–22, 2013.

[10] Nitin Naik, Ren Diao, and Qiang Shen. Dynamic fuzzy rule interpolation
and its application to intrusion detection. IEEE Transactions on Fuzzy
Systems, 2017.

[11] Anna L Buczak and Erhan Guven. A survey of data mining and
machine learning methods for cyber security intrusion detection. IEEE
Communications Surveys & Tutorials, 18(2):1153–1176, 2016.

[12] Jungwon Kim, Peter J Bentley, Uwe Aickelin, Julie Greensmith, Gianni
Tedesco, and Jamie Twycross. Immune system approaches to intrusion
detection–a review. Natural computing, 6(4):413–466, 2007.

[13] Longzhi Yang, Jie Li, Gerhard Fehringer, Phoebe Barraclough, Graham
Sexton, and Yi Cao. Intrusion detection system by fuzzy interpolation.
In Fuzzy Systems (FUZZ-IEEE), 2017 IEEE International Conference
on, pages 1–6. IEEE, 2017.

[14] Jie Li, Longzhi Yang, Yanpeng Qu, and Graham Sexton. An extended
takagi–sugeno–kang inference system (tsk+) with fuzzy interpolation
and its rule base generation. Soft Computing, pages 1–16, 2017.

[15] Ian R. Tizard. Immunology: An Introduction. Saunders College Pub.,
1995.

[16] Dipankar DasGupta. An overview of artificial immune systems and their
applications. In Artificial immune systems and their applications, pages
3–21. Springer, 1993.

[17] Stephanie Forrest, Alan S Perelson, Lawrence Allen, and Rajesh
Cherukuri. Self-nonself discrimination in a computer. In Research in
Security and Privacy, 1994. Proceedings., 1994 IEEE Computer Society
Symposium on, pages 202–212. Ieee, 1994.

[18] Jungwon Kim and Peter J Bentley. An evaluation of negative selection
in an artificial immune system for network intrusion detection. In
Proceedings of the 3rd Annual Conference on Genetic and Evolutionary
Computation, pages 1330–1337. Morgan Kaufmann Publishers Inc.,
2001.

[19] Julie Greensmith, Uwe Aickelin, and Steve Cayzer. Introducing dendritic
cells as a novel immune-inspired algorithm for anomaly detection. In
ICARIS, volume 3627, pages 153–167. Springer, 2005.

[20] Polly Matzinger. An innate sense of danger. In Seminars in immunology,
volume 10, pages 399–415. Elsevier, 1998.

[21] Uwe Aickelin and Steve Cayzer. The danger theory and its application
to artificial immune systems. arXiv preprint arXiv:0801.3549, 2008.

[22] Feng Gu, Julie Greensmith, and Uwe Aickelin. Further exploration of the
dendritic cell algorithm: Antigen multiplier and time windows. Artificial
immune systems, pages 142–153, 2008.

[23] Zeineb Chelly and Zied Elouedi. Fdcm: A fuzzy dendritic cell method.
In ICARIS, volume 2010, pages 102–115. Springer, 2010.

[24] Zeineb Chelly and Zied Elouedi. Hybridization schemes of the fuzzy
dendritic cell immune binary classifier based on different fuzzy cluster-
ing techniques. New Generation Computing, 33(1):1–31, 2015.

[25] Zeineb Chelly and Zied Elouedi. A survey of the dendritic cell algorithm.
Knowledge and Information Systems, 48(3):505–535, 2016.
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