624 research outputs found

    Field-Trial of a high-budget, filterless, lambda-to-the-user, UDWDM-PON enabled by an innovative class of low-cost coherent transceivers

    Get PDF
    ©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.We experimentally demonstrate an innovative ultradense wavelength division multiplexing (UDWDM) passive optical networks (PON) that implements the full ¿-to-the-user concept in a filterless distribution network. Key element of the proposed system is a novel class of coherent transceivers, purposely developed with a nonconventional technical approach. Indeed, they are designed and realized to avoid D/A-A/D converter stages and digital signal processing in favor of simple analog processing so that they match system, cost, and power consumption requirements of the access networks without sacrificing the overall performance. These coherent transceivers target different use case scenarios (residential, business, fixed, wireless) still keeping perfect compatibility and co-existence with legacy infrastructures installed to support gray, time division multiplexed PON systems. Moreover, the availability of coherent transceivers of different cost/performance ratios allows for deployments of different quality service grades. In this paper, we report the successful field trial of the proposed systems in a testbed where 14 UDWDM channels (and one legacy E-PON system) are transmitted simultaneously in a dark-fiber network deployed in the city of Pisa (Italy), delivering real-time and/or test traffic. The trial demonstrated filterless operations (each remote node selects individually its own UDWDM channel on a fine 6.25-GHz grid), real-time GbE transmissions (by using either fully analog or light digital signal processing), multirate transmission (1.25 and 10 Gb/s), high optical distribution network loss (18-40 dB) as well as a bidirectional channel monitoring system.Peer ReviewedPostprint (author's final draft

    Optical Networks and Interconnects

    Full text link
    The rapid evolution of communication technologies such as 5G and beyond, rely on optical networks to support the challenging and ambitious requirements that include both capacity and reliability. This chapter begins by giving an overview of the evolution of optical access networks, focusing on Passive Optical Networks (PONs). The development of the different PON standards and requirements aiming at longer reach, higher client count and delivered bandwidth are presented. PON virtualization is also introduced as the flexibility enabler. Triggered by the increase of bandwidth supported by access and aggregation network segments, core networks have also evolved, as presented in the second part of the chapter. Scaling the physical infrastructure requires high investment and hence, operators are considering alternatives to optimize the use of the existing capacity. This chapter introduces different planning problems such as Routing and Spectrum Assignment problems, placement problems for regenerators and wavelength converters, and how to offer resilience to different failures. An overview of control and management is also provided. Moreover, motivated by the increasing importance of data storage and data processing, this chapter also addresses different aspects of optical data center interconnects. Data centers have become critical infrastructure to operate any service. They are also forced to take advantage of optical technology in order to keep up with the growing capacity demand and power consumption. This chapter gives an overview of different optical data center network architectures as well as some expected directions to improve the resource utilization and increase the network capacity

    Artificial intelligence (AI) methods in optical networks: A comprehensive survey

    Get PDF
    ProducciĂłn CientĂ­ficaArtificial intelligence (AI) is an extensive scientific discipline which enables computer systems to solve problems by emulating complex biological processes such as learning, reasoning and self-correction. This paper presents a comprehensive review of the application of AI techniques for improving performance of optical communication systems and networks. The use of AI-based techniques is first studied in applications related to optical transmission, ranging from the characterization and operation of network components to performance monitoring, mitigation of nonlinearities, and quality of transmission estimation. Then, applications related to optical network control and management are also reviewed, including topics like optical network planning and operation in both transport and access networks. Finally, the paper also presents a summary of opportunities and challenges in optical networking where AI is expected to play a key role in the near future.Ministerio de EconomĂ­a, Industria y Competitividad (Project EC2014-53071-C3-2-P, TEC2015-71932-REDT

    Control Plane Strategies for Elastic Optical Networks

    Get PDF

    Radio over fiber enabling PON fronthaul in a two-tiered cloud

    Get PDF
    Avec l’avĂšnement des objets connectĂ©s, la bande passante nĂ©cessaire dĂ©passe la capacitĂ© des interconnections Ă©lectriques et interface sans fils dans les rĂ©seaux d’accĂšs mais aussi dans les rĂ©seaux coeurs. Des systĂšmes photoniques haute capacitĂ© situĂ©s dans les rĂ©seaux d’accĂšs utilisant la technologie radio sur fibre systĂšmes ont Ă©tĂ© proposĂ©s comme solution dans les rĂ©seaux sans fil de 5e gĂ©nĂ©rations. Afin de maximiser l’utilisation des ressources des serveurs et des ressources rĂ©seau, le cloud computing et des services de stockage sont en cours de dĂ©ploiement. De cette maniĂšre, les ressources centralisĂ©es pourraient ĂȘtre diffusĂ©es de façon dynamique comme l’utilisateur final le souhaite. Chaque Ă©change nĂ©cessitant une synchronisation entre le serveur et son infrastructure, une couche physique optique permet au cloud de supporter la virtualisation des rĂ©seaux et de les dĂ©finir de façon logicielle. Les amplificateurs Ă  semi-conducteurs rĂ©flectifs (RSOA) sont une technologie clĂ© au niveau des ONU(unitĂ© de communications optiques) dans les rĂ©seaux d’accĂšs passif (PON) Ă  fibres. Nous examinons ici la possibilitĂ© d’utiliser un RSOA et la technologie radio sur fibre pour transporter des signaux sans fil ainsi qu’un signal numĂ©rique sur un PON. La radio sur fibres peut ĂȘtre facilement rĂ©alisĂ©e grĂące Ă  l’insensibilitĂ© a la longueur d’onde du RSOA. Le choix de la longueur d’onde pour la couche physique est cependant choisi dans les couches 2/3 du modĂšle OSI. Les interactions entre la couche physique et la commutation de rĂ©seaux peuvent ĂȘtre faites par l’ajout d’un contrĂŽleur SDN pour inclure des gestionnaires de couches optiques. La virtualisation rĂ©seau pourrait ainsi bĂ©nĂ©ficier d’une couche optique flexible grĂące des ressources rĂ©seau dynamique et adaptĂ©e. Dans ce mĂ©moire, nous Ă©tudions un systĂšme disposant d’une couche physique optique basĂ© sur un RSOA. Celle-ci nous permet de façon simultanĂ©e un envoi de signaux sans fil et le transport de signaux numĂ©rique au format modulation tout ou rien (OOK) dans un systĂšme WDM(multiplexage en longueur d’onde)-PON. Le RSOA a Ă©tĂ© caractĂ©risĂ© pour montrer sa capacitĂ© Ă  gĂ©rer une plage dynamique Ă©levĂ©e du signal sans fil analogique. Ensuite, les signaux RF et IF du systĂšme de fibres sont comparĂ©s avec ses avantages et ses inconvĂ©nients. Finalement, nous rĂ©alisons de façon expĂ©rimentale une liaison point Ă  point WDM utilisant la transmission en duplex intĂ©gral d’un signal wifi analogique ainsi qu’un signal descendant au format OOK. En introduisant deux mĂ©langeurs RF dans la liaison montante, nous avons rĂ©solu le problĂšme d’incompatibilitĂ© avec le systĂšme sans fil basĂ© sur le TDD (multiplexage en temps duplexĂ©).With the advent of IoT (internet of things) bandwidth requirements triggered by aggregated wireless connections have exceeded the fundamental limitation of copper and microwave based wireless backhaul and fronthaul networks. High capacity photonic fronthaul systems employing radio over fiber technology has been proposed as the ultimate solution for 5G wireless system. To maximize utilization of server and network resources, cloud computing and storage based services are being deployed. In this manner, centralized resources could be dynamically streamed to the end user as requested. Since on demand resource provision requires the orchestration between the server and network infrastructure, a smart photonic (physical layer)PHY enabled cloud is foreseen to support network virtualization and software defined network. RSOAs (Reflective Semiconductor Optical Amplifier) are being investigated as key enablers of the colorless ONU(Optical Network Unit) solution in PON (Passive Optical Network). We examine the use of an RSOA in radio over fiber systems to transport wireless signals over a PON simultaneously with digital data. Radio over fiber systems with flexible wavelength allocation could be achieved thanks to the colorless operation of the RSOA and wavelength reuse technique. The wavelength flexibility in optical PHY are inline with the paradigm of software defined network (SDN) in OSI layer 2/3. The orchestration between optical PHY and network switching fabric could be realized by extending the SDN controller to include optical layer handlers. Network virtualization could also benefit from the flexible optical PHY through dynamic and tailored optical network resource provision. In this thesis, we investigate an optical PHY system based on RSOA enabling both analog wireless signal and digital On-Off Keying (OOK) transportation within WDM (Wavelength Division Multiplexing) PON architecture. The RSOA has been characterized to show its potential ability to handle high dynamic range analog wireless signal. Then the RF and IF radio over fiber scheme is compared with its pros and cons. Finally we perform the experiment to shown a point to point WDM link with full duplex transmission of analog WiFi signal with downlink OOK signal. By introducing two RF mixer in the uplink, we have solved the incompatible problem with TDD (Time Division Duplex) based wireless system

    5G RAN architecture based on analog radio-over-fiber fronthaul over UDWDM-PON and phased array fed reflector antennas

    Get PDF
    This manuscript introduces a 5G radio access network architecture concept based on ultra-dense wavelength division multiplexing (UDWDM) and incorporating an optical fronthaul network that uses a novel wireless antenna system for radio frequency transmission and reception. A ring topology is proposed where optical signals travel within the 5G UDWDM passive optical networks and millimeter waves are generated in the optical line terminals by optical heterodyning. The wireless transmission of the millimeter waves is conducted by an innovative phased array fed reflector antenna approach for mobile communications that grants high antenna gain due to highly focused radiation characteristics, as well as multiplexing gain by multiple beam generation. Furthermore, beam steering is provided by a radio frequency analog beamformer network. Finally, implementation options synthesizing the total system are discussed
    • 

    corecore