33 research outputs found

    A systematic review of machine learning techniques related to local energy communities

    Get PDF
    In recent years, digitalisation has rendered machine learning a key tool for improving processes in several sectors, as in the case of electrical power systems. Machine learning algorithms are data-driven models based on statistical learning theory and employed as a tool to exploit the data generated by the power system and its users. Energy communities are emerging as novel organisations for consumers and prosumers in the distribution grid. These communities may operate differently depending on their objectives and the potential service the community wants to offer to the distribution system operator. This paper presents the conceptualisation of a local energy community on the basis of a review of 25 energy community projects. Furthermore, an extensive literature review of machine learning algorithms for local energy community applications was conducted, and these algorithms were categorised according to forecasting, storage optimisation, energy management systems, power stability and quality, security, and energy transactions. The main algorithms reported in the literature were analysed and classified as supervised, unsupervised, and reinforcement learning algorithms. The findings demonstrate the manner in which supervised learning can provide accurate models for forecasting tasks. Similarly, reinforcement learning presents interesting capabilities in terms of control-related applications.publishedVersio

    Emerging business models in local energy markets: A systematic review of peer-to-peer, community self-consumption, and transactive energy models

    Get PDF
    The emergence of peer-to-peer, collective or community self-consumption, and transactive energy concepts gives rise to new configurations of business models for local energy trading among a variety of actors. Much attention has been paid in the academic literature to the transition of the underlying energy system with its macroeconomic market framework. However, fewer contributions focus on the microeconomic aspects of the broad set of involved actors. Even though specific case studies highlight single business models, a comprehensive analysis of emerging business models for the entire set of actors is missing. Following this research gap, this paper conducts a systematic literature review of 135 peer-reviewed journal articles to examine business models of actors operating in local energy markets. From 221 businesses in the reviewed literature, nine macro-actor categories are identified. For each type of market actor, a business model archetype is determined and characterised using the business model canvas. The key elements of each business model archetype are discussed, and areas are highlighted where further research is needed. Finally, this paper outlines the differences of business models for their presence in the three local energy market models. Focusing on the identified customers and partner relationships, this study highlights the key actors per market model and the character of the interactions between market participants

    Transitioning power distribution grid into nanostructured ecosystem : prosumer-centric sovereignty

    Get PDF
    PhD ThesisGrowing acceptance for in-house Distributed Energy Resource (DER) installations at lowvoltage level have gained much significance in recent years due to electricity market liberalisations and opportunities in reduced energy billings through personalised utilisation management for targeted business model. In consequence, modelling of passive customers’ electric power system are progressively transitioned into Prosumer-based settings where presidency for Transactive Energy (TE) system framework is favoured. It amplifies Prosumers’ commitments into annexing TE values during market participations and optimised energy management to earn larger rebates and incentives from TE programs. However, when dealing with mass Behind-The-Meter DER administrations, Utility foresee managerial challenges when dealing with distribution network analysis, planning, protection, and power quality security based on Prosumers’ flexibility in optimising their energy needs. This dissertation contributes prepositions into modelling Distributed Energy Resources Management System (DERMS) as an aggregator designed for Prosumer-centered cooperation, interoperating TE control and coordination as key parameters to market for both optimised energy trading and ancillary services in a Community setting. However, Prosumers are primarily driven to create a profitable business model when modelling their DERMS aggregator. Greedy-optimisation exploitations are negative concerns when decisions made resulted in detrimental-uncoordinated outcomes on Demand-Side Response (DSR) and capacity market engagements. This calls for policy decision makers to contract safe (i.e. cooperative yet competitive tendency) business models for Prosumers to maximise TE values while enhancing network’s power quality metrics and reliability performances. Firstly, digitalisation and nanostructuring of distribution network is suggested to identify Prosumer as a sole energy citizen while extending bilateral trading between Prosumer-to- Prosumer (PtP) with the involvements of other grid operators−TE system. Modelling of Nanogrid environment for DER integrations and establishment of local area network infrastructure for IoT security (i.e. personal computing solutions and data protection) are committed for communal engagements in a decentralise setting. Secondly, a multi-layered Distributed Control Framework (DCF) is proposed using Microsoft Azure cloud-edge platform that cascades energy actors into respective layers of TE control and coordination. Furthermore, modelling of flexi-edge computing architecture is proposed, comprising of Contract-Oriented Sensor-based Application Platform (COSAP) employing Multi-Agent System (MAS) to enhance data-sharing privacy and contract coalition agreements during PtP engagements. Lastly, the Agents of MAS are programmed with cooperative yet competitive intelligences attributed to Reinforcement Learning (RL) and Neural Networks (NN) algorithms to solve multimodal socio-economical and uncertainty problems that corresponded to Prosumers’ dynamic energy priorities within the TE framework. To verify the DERMS aggregator operations, three business models were proposed (i.e. greedy-profit margin, collegial-peak demand, reserved-standalone) to analyse comparative technical/physical and economic/social dimensions. Results showed that the proposed TE-valued DERMS aggregator provides participation versatility in the electricity market that enables competitive edginess when utilising Behind-The-Meter DERs in view of Prosumer’s asset scheduling, bidding strategy, and corroborative ancillary services. Performance metrics were evaluated on both domestic and industrial NG environments against IEEE Standard 2030.7-2017 & 2030.8-2018 compliances to ensure deployment practicability. Subsequently, proposed in-house protection system for DER installation serves as an add-on monitoring service which can be incorporated into existing Advance Distribution Management System (ADMS) for Distribution Service Operator (DSO) and field engineers use, ADMS aggregator. It provides early fault detections and isolation processes from allowing fault current to propagate upstream causing cascading power quality issues across the feeder line. In addition, ADMS aggregator also serves as islanding indicator that distinguishes Nanogrid’s islanding state from unintentional or intentional operations. Therefore, a Overcurrent Current Relay (OCR) is proposed using Fuzzy Logic (FL) algorithm to detect, profile, and provide decisional isolation processes using specified OCRs. Moreover, the proposed expert knowledge in FL is programmed to detect fault crises despite insufficient fault current level contributed by DER (i.e. solar PV system) which conventional OCR fails to trigger

    New Pathways for Community Energy and Storage

    Get PDF

    New Pathways for Community Energy and Storage

    Get PDF

    New Pathways for Community Energy and Storage

    Get PDF

    New Pathways for Community Energy and Storage

    Get PDF
    Local communities are increasingly taking on active roles and emerging as new actors in energy systems. Community energy and energy storage may enable effective energy system integration and ensure maximum benefits of local generation, leading to more flexible and resilient energy supply systems and playing an important role in achieving renewable energy and climate policy objectives. In this book, we summarize the different topics covered in the international conference on new pathways for community energy and storage in the form of the 14 articles published in this Special Issue on the same topic. It addresses important developments and challenges related to local energy transitions and the role of community energy and energy storage therein
    corecore