22,584 research outputs found

    Quantum Nucleation of Vortex String Loops

    Full text link
    We investigate quantum nucleation of vortex string loops in the relativistic quantum field theory of a complex scalar field by using the Euclidean path integral. Our initial metastable homogeneous field dominated by the O(3)O(3) symmetric bounce solution. The nucleation rate and the critical vortex loop size are obtained approximately. Gradually the initial current will be reduced to zero as the induced current inside vortex loops is opposite to the initial current. We also discuss a similar process in Maxwell-Higgs systems and possible physical implications.Comment: phyzzx.tex, 13 pages: A correction to the final state of the nucleation of local vortex string

    Cosmic String Loop Microlensing

    Get PDF
    Cosmic superstring loops within the galaxy microlens background point sources lying close to the observer-string line of sight. For suitable alignments, multiple paths coexist and the (achromatic) flux enhancement is a factor of two. We explore this unique type of lensing by numerically solving for geodesics that extend from source to observer as they pass near an oscillating string. We characterize the duration of the flux doubling and the scale of the image splitting. We probe and confirm the existence of a variety of fundamental effects predicted from previous analyses of the static infinite straight string: the deficit angle, the Kaiser-Stebbins effect, and the scale of the impact parameter required to produce microlensing. Our quantitative results for dynamical loops vary by O(1) factors with respect to estimates based on infinite straight strings for a given impact parameter. A number of new features are identified in the computed microlensing solutions. Our results suggest that optical microlensing can offer a new and potentially powerful methodology for searches for superstring loop relics of the inflationary era.Comment: 20 pages, 19 figure

    The use of Pauli-Villars' regularization in string theory

    Get PDF
    The proper-time regularization of bosonic string reproduces the results of canonical quantization in a special scaling limit where the length in target space has to be renormalized. We repeat the analysis for the Pauli-Villars regularization and demonstrate the universality of the results. In the mean-field approximation we compute the susceptibility anomalous dimension and show it equals 1/2. We discuss the relation with the previously known results on lattice strings.Comment: 1+22 p

    Semiclassical Equations for Weakly Inhomogeneous Cosmologies

    Full text link
    The in-in effective action formalism is used to derive the semiclassical correction to Einstein's equations due to a massless scalar quantum field conformally coupled to small gravitational perturbations in spatially flat cosmological models. The vacuum expectation value of the stress tensor of the quantum field is directly derived from the renormalized in-in effective action. The usual in-out effective action is also discussed and it is used to compute the probability of particle creation. As one application, the stress tensor of a scalar field around a static cosmic string is derived and the backreaction effect on the gravitational field of the string is discussed.Comment: 35 pages, UAB-FT 316, Latex (uses a4wide.sty, a4.sty included in the file)(replaced due to tex problems

    Sub-subleading Soft Graviton Theorem in Generic Theories of Quantum Gravity

    Full text link
    We analyze scattering amplitudes with one soft external graviton and arbitrary number of other finite energy external states carrying arbitrary mass and spin to sub-subleading order in the momentum of the soft graviton. Our result can be expressed as the sum of a universal part that depends only on the amplitude without the soft graviton and not the other details of the theory and a non-universal part that depends on the amplitude without the soft graviton, and the two and three point functions of the theory. For tree amplitudes our results are valid in all space-time dimensions while for loop amplitudes, infrared divergences force us to restrict our analysis to space time dimensions five or more. With this restriction the results are valid to all orders in perturbation theory. Our results agree with known results in quantum field theories and string theory.Comment: 52 pages, 7 figures v2: Proved that the non-universal sub-subleading corrections depend only on on-shell 3-point function

    String Theoretical Interpretation for Finite N Yang-Mills Theory in Two-Dimensions

    Full text link
    We discuss the equivalence between a string theory and the two-dimensional Yang-Mills theory with SU(N) gauge group for finite N. We find a sector which can be interpreted as a sum of covering maps from closed string world-sheets to the target space, whose covering number is less than N. This gives an asymptotic expansion of 1/N whose large N limit becomes the chiral sector defined by D.Gross and W.Taylor. We also discuss that the residual part of the partition function provides the non-perturbative corrections to the perturbative expansion.Comment: 15 pages, no figures, LaTeX2e, typos corrected, final version to appear in Modern Physics Letters

    Thermal history of the string universe

    Full text link
    Thermal history of the string universe based on the Brandenberger and Vafa's scenario is examined. The analysis thereby provides a theoretical foundation of the string universe scenario. Especially the picture of the initial oscillating phase is shown to be natural from the thermodynamical point of view. A new tool is employed to evaluate the multi state density of the string gas. This analysis points out that the well-known functional form of the multi state density is not applicable for the important region TTHT \leq T_H, and derives a correct form of it.Comment: 39 pages, no figures, use revtex.sty, aps.sty, aps10.sty & preprint.st

    Asymptotic Analysis of the Boltzmann Equation for Dark Matter Relics

    Full text link
    This paper presents an asymptotic analysis of the Boltzmann equations (Riccati differential equations) that describe the physics of thermal dark-matter-relic abundances. Two different asymptotic techniques are used, boundary-layer theory, which makes use of asymptotic matching, and the delta expansion, which is a powerful technique for solving nonlinear differential equations. Two different Boltzmann equations are considered. The first is derived from general relativistic considerations and the second arises in dilatonic string cosmology. The global asymptotic analysis presented here is used to find the long-time behavior of the solutions to these equations. In the first case the nature of the so-called freeze-out region and the post-freeze-out behavior is explored. In the second case the effect of the dilaton on cold dark-matter abundances is calculated and it is shown that there is a large-time power-law fall off of the dark-matter abundance. Corrections to the power-law behavior are also calculated.Comment: 15 pages, no figure

    On Consistent Boundary Conditions for c=1 String Theory

    Get PDF
    We introduce a new parametrisation for the Fermi sea of the c=1c = 1 matrix model. This leads to a simple derivation of the scattering matrix, and a calculation of boundary corrections in the corresponding 1+11+1--dimensional string theory. The new parametrisation involves relativistic chiral fields, rather than the non-relativistic fields of the usual formulations. The calculation of the boundary corrections, following recent work of Polchinski, allows us to place restrictions on the boundary conditions in the matrix model. We provide a consistent set of boundary conditions, but believe that they need to be supplemented by some more subtle relationship between the space-time and matrix model. Inspired by these boundary conditions, some thoughts on the black hole in c=1c=1 string theory are presented.Comment: 13 pages, 2 postscript figures include

    Post-Wick theorems for symbolic manipulation of second-quantized expressions in atomic many-body perturbation theory

    Full text link
    Manipulating expressions in many-body perturbation theory becomes unwieldily with increasing order of the perturbation theory. Here I derive a set of theorems for efficient simplification of such expressions. The derived rules are specifically designed for implementing with symbolic algebra tools. As an illustration, we count the numbers of Brueckner-Goldstone diagrams in the first several orders of many-body perturbation theory for matrix elements between two states of a mono-valent system.Comment: J. Phys. B. (in press); Mathematica packages available from http://wolfweb.unr.edu/homepage/andrei/WWW-tap/mathematica.htm
    corecore