2,214 research outputs found

    Lazy Model Expansion: Interleaving Grounding with Search

    Full text link
    Finding satisfying assignments for the variables involved in a set of constraints can be cast as a (bounded) model generation problem: search for (bounded) models of a theory in some logic. The state-of-the-art approach for bounded model generation for rich knowledge representation languages, like ASP, FO(.) and Zinc, is ground-and-solve: reduce the theory to a ground or propositional one and apply a search algorithm to the resulting theory. An important bottleneck is the blowup of the size of the theory caused by the reduction phase. Lazily grounding the theory during search is a way to overcome this bottleneck. We present a theoretical framework and an implementation in the context of the FO(.) knowledge representation language. Instead of grounding all parts of a theory, justifications are derived for some parts of it. Given a partial assignment for the grounded part of the theory and valid justifications for the formulas of the non-grounded part, the justifications provide a recipe to construct a complete assignment that satisfies the non-grounded part. When a justification for a particular formula becomes invalid during search, a new one is derived; if that fails, the formula is split in a part to be grounded and a part that can be justified. The theoretical framework captures existing approaches for tackling the grounding bottleneck such as lazy clause generation and grounding-on-the-fly, and presents a generalization of the 2-watched literal scheme. We present an algorithm for lazy model expansion and integrate it in a model generator for FO(ID), a language extending first-order logic with inductive definitions. The algorithm is implemented as part of the state-of-the-art FO(ID) Knowledge-Base System IDP. Experimental results illustrate the power and generality of the approach

    A Single-Query Manipulation Planner

    Full text link
    In manipulation tasks, a robot interacts with movable object(s). The configuration space in manipulation planning is thus the Cartesian product of the configuration space of the robot with those of the movable objects. It is the complex structure of such a "Composite Configuration Space" that makes manipulation planning particularly challenging. Previous works approximate the connectivity of the Composite Configuration Space by means of discretization or by creating random roadmaps. Such approaches involve an extensive pre-processing phase, which furthermore has to be re-done each time the environment changes. In this paper, we propose a high-level Grasp-Placement Table similar to that proposed by Tournassoud et al. (1987), but which does not require any discretization or heavy pre-processing. The table captures the potential connectivity of the Composite Configuration Space while being specific only to the movable object: in particular, it does not require to be re-computed when the environment changes. During the query phase, the table is used to guide a tree-based planner that explores the space systematically. Our simulations and experiments show that the proposed method enables improvements in both running time and trajectory quality as compared to existing approaches.Comment: 8 pages, 7 figures, 1 tabl

    Termination Proofs for Logic Programs with Tabling

    Full text link
    Tabled logic programming is receiving increasing attention in the Logic Programming community. It avoids many of the shortcomings of SLD execution and provides a more flexible and often extremely efficient execution mechanism for logic programs. In particular, tabled execution of logic programs terminates more often than execution based on SLD-resolution. In this article, we introduce two notions of universal termination of logic programming with Tabling: quasi-termination and (the stronger notion of) LG-termination. We present sufficient conditions for these two notions of termination, namely quasi-acceptability and LG-acceptability, and we show that these conditions are also necessary in case the tabling is well-chosen. Starting from these conditions, we give modular termination proofs, i.e., proofs capable of combining termination proofs of separate programs to obtain termination proofs of combined programs. Finally, in the presence of mode information, we state sufficient conditions which form the basis for automatically proving termination in a constraint-based way.Comment: 48 pages, 6 figures, submitted to ACM Transactions on Computational Logic (TOCL

    Conditions, constraints and contracts: On the use of annotations for policy modeling

    Get PDF
    Organisational policies express constraints on generation and processing of resources. Application domains, however, rely on transformation processes, which are in principle orthogonal to policy specifications, so that domain rules and policies may evolve in a non-synchronised way. In previous papers, we proposed annotations as a flexible way to model aspects of some kinds of policy. Annotations could be used to impose constraints on domain configurations, and we showed how to derive application conditions on transformations, and how to annotate complex patterns. We extend the approach here in different directions: we allow domain model elements (individual resources or collections thereof) to be annotated with collections of elements; we propose an original construction to solve the problem of orphan annotations, when annotated resources are consumed; we introduce a notion of contract, used by a policy to impose additional pre-conditions and postconditions on rules for deriving new resources. We also show how contracts for refined rules can be derived from contract schemes defined on some rule kernel. We discuss a concrete case study of linguistic resources, annotated with information on the licenses under which they can be used. The annotation framework allows forms of reasoning such as identifying conflicts among licenses, enforcing the presence of licenses, or ruling out some modifications of a licence configuration

    Partial Orders for Efficient BMC of Concurrent Software

    Get PDF
    This version previously deposited at arXiv:1301.1629v1 [cs.LO]The vast number of interleavings that a concurrent program can have is typically identified as the root cause of the difficulty of automatic analysis of concurrent software. Weak memory is generally believed to make this problem even harder. We address both issues by modelling programs' executions with partial orders rather than the interleaving semantics (SC). We implemented a software analysis tool based on these ideas. It scales to programs of sufficient size to achieve first-time formal verification of non-trivial concurrent systems code over a wide range of models, including SC, Intel x86 and IBM Power

    Graph Transformation with Symbolic Attributes via Monadic Coalgebra Homomorphisms

    Get PDF
    We show how a coalgebraic approach leads to more natural representations of many kinds of graph structures that in the algebraic approach are frequently dealt with using ad-hoc constructions. For the case of symbolically attributed graphs, we demonstrate how using substituting coalgebra homomorphisms in double-pushout rewriting steps yields a powerful and easily understandable transformation mechanism

    Symbolic Attributed Graphs for Attributed Graph Transformation

    Get PDF
    In this paper we present a new approach to deal with attributed graphs and attributed graph transformation. This approach is based on working with what we call symbolic graphs, which are graphs labelled with variables together with a formula that constrains the possible values that we may assign to these variables. In particular, in this paper we will compare in detail this new approach with the standard approach to attributed graph transformation
    corecore