1,838 research outputs found

    A survey on mobility-induced service migration in the fog, edge, and related computing paradigms

    Get PDF
    The final publication is available at ACM via http://dx.doi.org/10.1145/3326540With the advent of fog and edge computing paradigms, computation capabilities have been moved toward the edge of the network to support the requirements of highly demanding services. To ensure that the quality of such services is still met in the event of users’ mobility, migrating services across different computing nodes becomes essential. Several studies have emerged recently to address service migration in different edge-centric research areas, including fog computing, multi-access edge computing (MEC), cloudlets, and vehicular clouds. Since existing surveys in this area focus on either VM migration in general or migration in a single research field (e.g., MEC), the objective of this survey is to bring together studies from different, yet related, edge-centric research fields while capturing the different facets they addressed. More specifically, we examine the diversity characterizing the landscape of migration scenarios at the edge, present an objective-driven taxonomy of the literature, and highlight contributions that rather focused on architectural design and implementation. Finally, we identify a list of gaps and research opportunities based on the observation of the current state of the literature. One such opportunity lies in joining efforts from both networking and computing research communities to facilitate future research in this area.Peer ReviewedPreprin

    Fog-supported delay-constrained energy-saving live migration of VMs over multiPath TCP/IP 5G connections

    Get PDF
    The incoming era of the fifth-generation fog computing-supported radio access networks (shortly, 5G FOGRANs) aims at exploiting computing/networking resource virtualization, in order to augment the limited resources of wireless devices through the seamless live migration of virtual machines (VMs) toward nearby fog data centers. For this purpose, the bandwidths of the multiple wireless network interface cards of the wireless devices may be aggregated under the control of the emerging MultiPathTCP (MPTCP) protocol. However, due to the fading and mobility-induced phenomena, the energy consumptions of the current state-of-the-art VM migration techniques may still offset their expected benefits. Motivated by these considerations, in this paper, we analytically characterize and implement in software and numerically test the optimal minimum-energy settable-complexity bandwidth manager (SCBM) for the live migration of VMs over 5G FOGRAN MPTCP connections. The key features of the proposed SCBM are that: 1) its implementation complexity is settable on-line on the basis of the target energy consumption versus implementation complexity tradeoff; 2) it minimizes the network energy consumed by the wireless device for sustaining the migration process under hard constraints on the tolerated migration times and downtimes; and 3) by leveraging a suitably designed adaptive mechanism, it is capable to quickly react to (possibly, unpredicted) fading and/or mobility-induced abrupt changes of the wireless environment without requiring forecasting. The actual effectiveness of the proposed SCBM is supported by extensive energy versus delay performance comparisons that cover: 1) a number of heterogeneous 3G/4G/WiFi FOGRAN scenarios; 2) synthetic and real-world workloads; and, 3) MPTCP and wireless connections

    Multi-dimensional optimization for cloud based multi-tier applications

    Get PDF
    Emerging trends toward cloud computing and virtualization have been opening new avenues to meet enormous demands of space, resource utilization, and energy efficiency in modern data centers. By being allowed to host many multi-tier applications in consolidated environments, cloud infrastructure providers enable resources to be shared among these applications at a very fine granularity. Meanwhile, resource virtualization has recently gained considerable attention in the design of computer systems and become a key ingredient for cloud computing. It provides significant improvement of aggregated power efficiency and high resource utilization by enabling resource consolidation. It also allows infrastructure providers to manage their resources in an agile way under highly dynamic conditions. However, these trends also raise significant challenges to researchers and practitioners to successfully achieve agile resource management in consolidated environments. First, they must deal with very different responsiveness of different applications, while handling dynamic changes in resource demands as applications' workloads change over time. Second, when provisioning resources, they must consider management costs such as power consumption and adaptation overheads (i.e., overheads incurred by dynamically reconfiguring resources). Dynamic provisioning of virtual resources entails the inherent performance-power tradeoff. Moreover, indiscriminate adaptations can result in significant overheads on power consumption and end-to-end performance. Hence, to achieve agile resource management, it is important to thoroughly investigate various performance characteristics of deployed applications, precisely integrate costs caused by adaptations, and then balance benefits and costs. Fundamentally, the research question is how to dynamically provision available resources for all deployed applications to maximize overall utility under time-varying workloads, while considering such management costs. Given the scope of the problem space, this dissertation aims to develop an optimization system that not only meets performance requirements of deployed applications, but also addresses tradeoffs between performance, power consumption, and adaptation overheads. To this end, this dissertation makes two distinct contributions. First, I show that adaptations applied to cloud infrastructures can cause significant overheads on not only end-to-end response time, but also server power consumption. Moreover, I show that such costs can vary in intensity and time scale against workload, adaptation types, and performance characteristics of hosted applications. Second, I address multi-dimensional optimization between server power consumption, performance benefit, and transient costs incurred by various adaptations. Additionally, I incorporate the overhead of the optimization procedure itself into the problem formulation. Typically, system optimization approaches entail intensive computations and potentially have a long delay to deal with a huge search space in cloud computing infrastructures. Therefore, this type of cost cannot be ignored when adaptation plans are designed. In this multi-dimensional optimization work, scalable optimization algorithm and hierarchical adaptation architecture are developed to handle many applications, hosting servers, and various adaptations to support various time-scale adaptation decisions.Ph.D.Committee Chair: Pu, Calton; Committee Member: Liu, Ling; Committee Member: Liu, Xue; Committee Member: Schlichting, Richard; Committee Member: Schwan, Karsten; Committee Member: Yalamanchili, Sudhaka
    • …
    corecore