
MULTI-DIMENSIONAL OPTIMIZATION FOR CLOUD BASED
MULTI-TIER APPLICATIONS

A Thesis
Presented to

The Academic Faculty

by

Gueyoung Jung

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Computer Science

Georgia Institute of Technology
Dec. 2010

MULTI-DIMENSIONAL OPTIMIZATION FOR CLOUD BASED
MULTI-TIER APPLICATIONS

Approved by:

Professor Calton Pu, Advisor
School of Computer Science
Georgia Institute of Technology

Dr. Richard Schlichting
AT&T Labs Research

Professor Ling Liu
School of Computer Science
Georgia Institute of Technology

Professor Karsten Schwan
School of Computer Science
Georgia Institute of Technology

Professor Xue Liu
Department of Computer Science &
Engineering
University of Nebraska Lincoln

Professor Sudhakar Yalamanchili
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Date Approved: Oct. 28, 2010

To my family,

Suyeul and Eden,

Father and Mother

iii

ACKNOWLEDGEMENTS

On a long journey of my Ph.D program, I’ve met many people who deserve the credit.

Without their help, this dissertation would not have been possible. First and foremost, I

have been greatly privileged to work with an exceptional academic advisor, Prof. Calton

Pu. Calton welcomed me into his research group of excellent students from early years

in my Ph.D. program. Calton has always been a great mentor not only academically but

also personally and financially. Calton has supported me to mainly focus on my research

over my time in Elba group. More importantly, Calton has patiently believed me, inspired

me, and guided me to the way to become a good scholar through the rest of my life. I am

truly grateful to my advisor for helping me to build my own vision which would grow to

be broader and deeper over time.

I would like to thank Dr. Rick Schlichting, Dr. Matti Hiltunen, and Dr. Kaustubh Joshi

who have worked with me since I’ve joined their research group as an intern in Summer

2007. They have been great research collaborators over the last three years. Working

with them has been a pleasure during summer internships at AT&T Labs Research. While

working with them, I could always count on their sound technical feedback ranging from

building systems to editing papers. Specifically, Rick encouraged me to find ways to solve

them and do good research although he did not solve the problems for me. As one of my

thesis committee members, Rick also gave me his insightful comments on this dissertation.

Matti and Kaustubh have shared their experiences and thoughts with me during the various

stages of my research that have shaped the course of this dissertation. I am really grateful

to them for the investment they made for me.

I also thank my thesis committee members, Prof. Ling Liu, Prof. Karsten Schwan,

Prof. Sudhakar Yalamanchili, and Prof. Xue Liu, who shared their valuable time to discuss

iv

my work and research directions. Their constructive suggestions and questions have really

helped me to improve this dissertation as a more concrete work. Their technical feedback

led me to further consider how practically my work can be applied to real world issues.

I thank my friends, Galen Swint, Lenin Singaravelu, Jinpeng Wei, Younggyun Koh,

and Qinyi Wu who helped me to get through the ups and downs of the roller coaster ride

of Ph.D. program. I also thank the members of the Elba group for their friendship. I have

enjoyed working with these talented colleagues and shared all adventures of Ph.D. program

together from tedious daily happenings to discussion on researches. Simon Malkowski,

Deepal Jayasinghe, Junhee Park, Pengcheng Xiong, and Qinyang Wang deserve a special

mention.

Additionally, I thank Dr. Akhil Sahai who shaped my early research direction in the

Elba group, and Dr. Ravi Konuru and Dr. Lionel Villard who hired me as an intern in

IBM T.J. Watson Research Center. I would also like to thank Korea government, Ministry

of Information and Communication, for supporting me in the first four years of my Ph.D.

program. Their financial support allowed me to focus on my own research.

Most of all, I was able to finish this dissertation since I have been given the greatest and

deepest support from my family. Their encouragement and love have always left me in-

spired. My wife, Suyeul, deserves a special mention. I specially thank for her unbelievable

patience for such a long time, and her emotional support and encouragement was always a

source of energy to me to rebound from a setback.

Finally, I thank God for being acquainted with these people on a long journey of my

life. I believe that you are always beside me and strengthen me whenever I’m in vain or in

pain.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . x

SUMMARY . xii

I INTRODUCTION . 1

1.1 Cloud Computing and Virtualization . 1

1.2 Research Challenges . 2

1.3 Thesis Statement . 4

1.4 Solution Approach . 5

1.5 Important Technical Contributions . 6

1.6 Organization of This Dissertation . 7

II BACKGROUND AND FOUNDATION . 8

2.1 Multi-Tier Applications . 8

2.2 Cloud Computing Infrastructure . 11

2.3 Optimization Formulation: Utility Functions 13

2.4 Model-Based Prediction . 17

2.4.1 Application Modeling: Queueing Network Models 17

2.4.2 Power Consumption Modeling 21

2.4.3 Transient Adaptation Costs . 21

2.4.4 Workload Stability Prediction: ARMA Filter 23

2.5 Summary . 24

III PERFORMANCE OPTIMIZATION . 26

3.1 Problem Statement . 26

3.1.1 Resource Provisioning: On-line vs. Off-line 27

3.2 Approach . 29

vi

3.2.1 Overview: Rule Set Generation 29

3.2.2 Performance Optimizer . 29

3.2.3 Off-line Rule Set Constructor 32

3.3 Evaluation Results . 34

3.3.1 Experimental Setup . 34

3.3.2 Application Model Validation 36

3.3.3 Accuracy of the Optimization Process 37

3.3.4 Accuracy of the Constructed Rule Set 41

3.4 Work Related to Performance Optimization 42

3.5 Summary . 45

IV COST-SENSITIVE ADAPTATION . 46

4.1 Problem Statement . 46

4.1.1 Reconfiguration Overhead: Impact on Performance 46

4.2 Approach . 48

4.2.1 Overview: Cost-Aware Optimization 48

4.2.2 Search Algorithm . 50

4.2.3 Reducing the Search Space . 53

4.3 Evaluation Results . 54

4.3.1 Experimental Setup . 54

4.3.2 Adaptation Costs: Performance Degradation 57

4.3.3 Model Prediction Accuracy . 59

4.3.4 Controller Evaluation . 61

4.4 Work Related to Cost-Sensitive Adaptation 67

4.5 Summary . 69

V MULTI-DIMENSIONAL OPTIMIZATION 71

5.1 Problem Statement . 71

5.1.1 Power-Performance Tradeoff 72

5.1.2 Reconfiguration Overhead: Impact on Power and Performance . 72

vii

5.2 Approach . 73

5.2.1 System Architecture . 74

5.2.2 Performance and Power Optimizer 76

5.2.3 Multi-Dimensional Optimizer 78

5.3 Evaluation Results . 82

5.3.1 Experimental Setup . 82

5.3.2 Experimental Model Validation 84

5.3.3 Adaptation Comparison . 89

5.3.4 Cost of Search . 94

5.3.5 Scalability of Search . 95

5.4 Work Related to Multi-Dimensional Optimization 98

5.5 Summary . 100

VI CONCLUSION AND DISCUSSION . 101

6.1 Conclusion . 101

6.2 Future Work . 103

REFERENCES . 105

VITA . 113

viii

LIST OF TABLES

1 Transaction types’ thresholds . 35

2 Execution time and accuracy. 39

3 End-to-end response time (ms) during VM migration 47

4 State space reduction . 54

5 Variance of adaptation costs for MySQL migration 59

6 Total number of actions triggered . 64

7 Cumulative utility for all strategies . 67

8 Summary of comparison . 94

9 Search durations and utilities . 96

ix

LIST OF FIGURES

1 Behaviors of two representative transaction types in a multi-tier benchmark
(RUBiS) . 9

2 SLA-based utility . 10

3 Resource hierarchy of a cloud infrastructure 11

4 Resource group as the management unit 12

5 Layered queueing network model for 3-tier RUBiS benchmark 18

6 Detailed partial view of LQN model . 19

7 Policy generation approach . 28

8 Rule set fragment generated by the off-line constructor 34

9 Step-wise pricing scheme . 35

10 Response time of model vs. experimental results 36

11 Utilization of model vs. experimental results 37

12 Simple workload scenario . 38

13 Response times of three different step sizes in the optimizer 39

14 Global quality of the optimizer . 40

15 Size of rule set . 41

16 Three different rule sets . 42

17 Cost-sensitive approach . 48

18 Control timeline . 50

19 Adaptation action search graph . 51

20 Time-of-day workload . 56

21 Flash crowd workload . 56

22 Delta response times of MySQL live-migration 57

23 Adaptation duration of MySQL live-migration 57

24 Live migration costs of various servers . 58

25 Prediction accuracy for both applications under time-of-day workload . . . 60

26 Stability interval prediction errors in time-of-day workload 61

x

27 Stability interval prediction errors in flash crowd workload 61

28 Response time comparison in time-of-day workload 62

29 Response time comparison in flash crowd workload 63

30 CPU allocations of oracle . 64

31 CPU allocations of the CS strategy . 64

32 Utility comparison in time-of-day workload 65

33 Utility comparison in flash crowd workload 66

34 Costs of a single VM live-migration . 72

35 Architecture of 4-level control hierarchy 74

36 Architecture of a single controller . 76

37 Application workloads . 84

38 Application model accuracy . 84

39 Power model fitting using Ubench . 85

40 Power model fitting using RUBiS with read-only transaction mix 86

41 Power model fitting using RUBiS with arbitrary transaction mix 87

42 Power model accuracy . 87

43 Accuracy of stability interval estimation 88

44 Adaptation costs . 89

45 Response time comparison of adaptation approaches 91

46 Power consumption comparison of adaptation approaches 92

47 Cumulative utility . 93

48 Cost of search . 95

49 Scalability of search algorithm . 97

xi

SUMMARY

Emerging trends toward cloud computing and virtualization have been opening new

avenues to meet enormous demands of space, resource utilization, and energy efficiency in

modern data centers. By being allowed to host many multi-tier applications in consolidated

environments, cloud infrastructure providers enable resources to be shared among these ap-

plications at a very fine granularity. Meanwhile, resource virtualization has recently gained

considerable attention in the design of computer systems and become a key ingredient for

cloud computing. It provides significant improvement of aggregated power efficiency and

high resource utilization by enabling resource consolidation. It also allows infrastructure

providers to manage their resources in an agile way under highly dynamic conditions.

However, these trends also raise significant challenges to researchers and practitioners

to successfully achieve agile resource management in consolidated environments. First,

they must deal with very different responsiveness and performance requirements of dif-

ferent applications, while handling dynamic changes in resource demands as applications’

workloads change over time. Second, when provisioning resources, they must consider

management costs such as power consumption and adaptation overheads (i.e., overheads in-

curred by dynamically reconfiguring resources). Dynamic provisioning of virtual resources

entails the inherent performance-power tradeoff. Moreover, indiscriminate adaptations can

result in significant overheads on power consumption and end-to-end performance. Hence,

to achieve agile resource management, it is important to thoroughly investigate various

performance characteristics of deployed applications, precisely integrate costs caused by

adaptations, and then balance benefits and costs. Fundamentally, the research question is

how to dynamically provision available resources for all deployed applications to maximize

overall utility under time-varying workloads, while considering such management costs.

xii

Given the scope of the problem space, this dissertation aims to develop an optimization

system that not only meets performance requirements of deployed applications, but also

addresses tradeoffs between performance, power consumption, and adaptation overheads.

To fulfill the goal, first, I have studied performance characteristics of enterprise multi-

tier applications, and then built an adaptation engine to optimize end-to-end performance

through dynamic resource provisioning techniques in a consolidated server environment.

Second, I have investigated the impact of adaptation overheads on end-to-end response time

and then integrated such transient adaptation costs into the adaptation engine to balance

performance benefit and cost by developing analytical models and a novel optimization

search algorithm.

This dissertation makes two distinct contributions. First, I show that adaptations applied

to cloud infrastructures can cause significant overheads on not only end-to-end response

time, but also server power consumption. Moreover, I show that such costs can vary in in-

tensity and time scale against workload, adaptation types, and performance characteristics

of hosted applications. Second, I address multi-dimensional optimization between server

power consumption, performance benefit, and transient costs incurred by various adapta-

tions. Additionally, I incorporate the overhead of the optimization procedure itself into the

problem formulation. Typically, system optimization approaches entail intensive computa-

tions and potentially have a long delay to deal with a huge search space in cloud computing

infrastructures. Therefore, this type of cost cannot be ignored when adaptation plans are

designed. In this multi-dimensional optimization work, scalable optimization algorithm

and hierarchical adaptation architecture are developed to handle many applications, host-

ing servers, and various adaptations to support various time-scale adaptation decisions.

xiii

CHAPTER I

INTRODUCTION

A key issue in the adaptive and autonomic computing vision is the automation of manag-

ing large application systems and IT infrastructures to serve millions of users with satis-

factory performance. With the advent of cloud computing, today’s enterprise computing

resources and applications are more distributed in data center environments and more dy-

namic through on-demand utility computing under rapidly changing conditions than ever

before. Additionally, various management objectives such as performance benefit, power

saving, service availability, and management costs are increasingly inter-related and often

conflicted. The growing complexity demands the automation of optimizing the utility of

IT infrastructures and addressing various tradeoffs among such management objectives.

Given these challenges, the goal of this dissertation is to develop rigorous and practical

solutions to enable the multi-dimensional optimization of such complex systems.

1.1 Cloud Computing and Virtualization

Cloud computing is revolutionizing the computing landscape by making unprecedented

levels of computing services cheaply available to millions of users. Recently, platforms

such as Amazon’s Elastic Compute Cloud (EC2) [3], AT&T’s Synaptic Hosting [6], Google’s

App Engine [33], and Salesforce’s Force.com [65] host a variety of distributed online ap-

plications including multi-tier e-commerce, social networking services, email, and CRM.

Cloud computing platforms provide the collection of these services to end users based

on negotiated service-level agreements (SLAs). To meet quality of service requirements

specified in SLAs, such platforms involve the provision of dynamically scalable and often

virtualized resources for hosted applications as a service - so called “Infrastructure as a

Service.” As the major advantage of cloud computing, cloud infrastructure providers can

1

potentially achieve the significant improvement of aggregated power efficiency and high

resource utilization by densely packing hosted applications into a small number of physical

machines. Meanwhile, infrastructure customers can amortize the cost of ownership and the

cost of computing resource management, since they can avoid capital expenditure by rent-

ing the physical infrastructure for their services from cloud infrastructure providers. Alto-

gether, cloud computing has become one of the most important future computing paradigms

[80, 10, 53].

Virtualization technology such as Xen [7], VMware [76], and Microsoft Hyper-V [55]

has recently gained considerable attention in the design of computer systems and data cen-

ters mainly due to its capabilities of the server consolidation, secure isolation between mul-

tiple virtualized machines, and agile resource management. Virtualization allows a single

physical machine to be shared among multiple operating platforms called virtual machines

(VMs) in secure isolation from each other. It also enables dynamic resource provisioning

by allowing infrastructure providers to control and adapt the capacities of resources such

as CPU, memory, and disk space at a very fine granularity. By this means, they can allo-

cate such resources to applications only as needed and not statically allocate based on the

peak workload demand. Moreover, it provides server consolidation facilities through VM

migration and resource capping techniques. By consolidating multiple online applications

onto fewer resources, infrastructure providers can achieve higher resource utilization while

maintaining the desired quality requirements of hosted applications. Consequently, the vir-

tualized infrastructure is considered as an essential building block to leverage the emerging

cloud computing paradigms [10, 53].

1.2 Research Challenges

Although cloud computing built around virtualization is opening new avenues to meet enor-

mous demands of high resource utilization and power savings in modern data centers, it also

raises significant challenges. First, the sharing of resources by multiple applications raises

2

new resource management challenges such as ensuring responsiveness requirements of in-

dividual applications under dynamically changing workloads, and isolating applications

from demand fluctuations in co-located VMs. Despite the well-documented importance of

the responsiveness requirement to end users [29, 13, 79], today’s cloud services typically

address only availability guarantees and not SLAs based on end-to-end response times of

hosted applications. Additionally, the multi-tier architecture style of hosted applications

1 makes the resource management more challenging. Virtualization technology provides

additional flexibility to the scaling of applications by allowing the dynamic VM replication

to host additional instances of applications’ tier components. However, tier components of

each application typically have different resource demands and strong dependencies each

other for the application’s overall performance [88, 74].

Second, dynamic consolidation and provisioning of virtual resources for hosted appli-

cations entails an inherent performance-power tradeoff [26, 47, 56, 70, 34, 12]. By fa-

cilitating server consolidation technique (i.e., dynamically packing applications/VMs into

a small number of physical machines and shutting down idle machines), infrastructure

providers can achieve significant energy efficiency. However, consolidation can also have

a detrimental impact on the application performance. Hence, it must be used very carefully

in a wide array of response time-sensitive applications such as online shopping, communi-

cations, and enterprise applications, where savings cannot come at the cost of a degraded

user experience.

Third, the tradeoff between adaptation benefit and cost must be considered in the re-

source management, since runtime adaptation actions such as VM migration and replica-

tion entail performance degradation and additional power consumption for short periods

[18, 83, 75, 32, 51, 77, 50]. While virtualization technology has made great strides in

reducing the downtime during migration to a few hundred milliseconds (e.g., [20]), the

1The multi-tier architecture is a client-server architecture in which the presentation, the application pro-
cessing, and the data management are logically separate processes, and they are typically distributed over the
cluster or data center environments.

3

end-to-end performance and power consumption impacts can still be significant. In ad-

dition to these adaptation overheads, the power consumption and decision delay incurred

by the resource management system itself must also be considered - so called “consuming

power to save power.” Typically, system optimization approaches entail intensive compu-

tations and could have a long delay to deal with a huge search space. Therefore, this type

of cost cannot be ignored when adaptation plans are designed. Altogether, to achieve ad-

vantages of cloud platforms, infrastructure providers must account for not only balancing

steady-state performance and power consumption, but also balancing steady state perfor-

mance and power with overheads incurred by dynamic adaptations and decision making

procedure itself under changing workloads.

Finally, the scalability of the dynamic resource management must be considered. To

choose optimal adaptation actions to transform the current system configuration to an opti-

mal one, the resource management system must explore a number of candidate configura-

tions by applying all possible resource allocations and VM placements to available phys-

ical hosting machines for all hosted applications. Then, the optimization problem may

show an exponential increase in worst-case complexity with the rapid growth of cloud in-

frastructures in scale, in terms of hosting machines/VMs, hosted applications, and various

time-scale adaptation actions. Hence, the size of the search space poses a challenge for

centralized implementations of the resource management system to provide fast adaptation

decisions.

1.3 Thesis Statement

Given these challenges, the thesis of this dissertation is that the adaptation system through

dynamic resource provisioning can address the multi-dimensional optimization problem

inherent in maximizing adaptation benefits while minimizing management costs under

rapidly changing environments such as cloud computing.

4

1.4 Solution Approach

To this end, we have thoroughly studied the performance characteristics and responsiveness

of enterprise multi-tier applications, and used results for bottleneck detection [45, 68, 61,

44]. Then, an adaptation system has been developed to optimize end-to-end response time

through dynamic resource provisioning in a consolidated server environment [39, 41, 40].

Recently, we have investigated the impact of adaptation overheads on end-to-end response

time, and then integrated the VM migration cost into the adaptation system by developing

system models and a novel optimization search algorithm [42].

In this dissertation, we show that adaptations can cause significant overheads not only

on end-to-end performance but also on power consumption. Moreover, such costs can vary

in intensity and time scale against workload, adaptation types, and the performance char-

acteristics of hosted applications and their tier components. Then, the adaptation system

is extended to solve the multi-dimensional optimization problem that balances power con-

sumption, application performance, and accrued power/performance costs incurred over

various adaptation actions and decision making in a single unified framework.

To achieve the multi-dimensional optimization, we have developed various models and

optimization methods. First, model-based prediction is adopted. Using analytical modeling

techniques, the adaptation system can predict the application’s end-to-end response time,

CPU utilization, and power consumption for a given workload. Models enable the adap-

tation system to capture virtualization overhead and the responsiveness of the multi-tier

application that has unique features such as the synchronous resource possession between

tiers. Model construction is based on a layered queueing network model template. Model

parameters are determined by measuring the application off-line. This measurement is fully

automated, and does not require application knowledge or modification of the application

code. We also construct cost models that quantify the degradation in the application per-

formance and the additional power consumption incurred by adaptation actions using the

automatic off-line experimentation. Second, a utility function is used to convert predicted

5

performance benefit, power consumption, and accrued costs over adaptations to utility val-

ues and then, balance them on a uniform footing. Finally, by developing a scalable search

algorithm and adaptation architecture, we can efficiently choose optimal adaptation actions

to maximize the overall utility for multiple multi-tier applications under dynamic workload

conditions. The implemented approach is evaluated in a small data center setup. Espe-

cially, we evaluate the multi-dimensional optimization approach by performing extensive

experimental comparisons with three alternative strategies, each of which represents opti-

mizing the tradeoff between any two objectives among performance, power consumption,

and transient costs.

1.5 Important Technical Contributions

To achieve this multi-dimensional optimization, this dissertation makes the following unique

contributions.

First, our approach optimizes the application performance in a transparent and tractable

way. Since typical online controllers make adaptation decisions algorithmically using com-

plicated stochastic models, they often lack transparency and predictability. Our adaptation

system provides a mechanism that constructs adaptation policies off-line for a given range

of workload as a rule set. The rule set can be used as a guideline for online adaptation

decisions by offering the upper-bound system configuration for a given condition. The

generated rule set is represented in the form of replication levels and resource capacities

of all participating applications. Additionally, such a rule set provides the enhancement of

system manageability, since it is human readable and extensible. This allows, for instance,

further inspection or modification with additional constraints such as the consideration of

adaptation overheads by domain experts.

Second, our approach precisely incorporates adaptation overheads into the optimization

formulation. While virtualization makes reconfiguration easy, our research efforts demon-

strate that the indiscriminate use of adaptations such as VM replication and VM migration

6

can have significant impacts on the ability to satisfy response-time-based SLAs and power

savings. By developing a utility function to formulate the problem of the performance-

aware, power-aware, and cost-aware resource provisioning, we can address not only the

tradeoff between performance and power consumption at steady-state, but also balance

accrued adaptation costs and their benefits to maximize the overall utility.

Finally, our approach solves the multi-dimensional optimization problem in an efficient

way. Our adaptation system is designed to balance multiple management objectives includ-

ing performance, power consumption, and transient adaptation costs incurred by adaptation

actions and the decision making procedure itself. To balance the system optimality and

the cost of decision making, a scalable, self-aware optimization algorithm is developed.

Specifically, a best-first graph search algorithm based on the models and utility function is

developed to choose optimal sequences of adaptation actions. Additionally, a multi-level

hierarchical adaptation architecture is developed to deal with a large number of applica-

tions and hosts, and also with various adaptation decisions at multiple time-scales ranging

from a few milliseconds to hours.

1.6 Organization of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 introduces optimiza-

tion formulations and model-based prediction techniques that are developed for this re-

search. Chapter 3 introduces an off-line approach developed to optimize the application

performance, and shows some representative evaluation results. Chapter 4 describes the

cost-sensitive performance optimization that integrates adaptation overheads into the on-

line decision making process, and show evaluation results. Chapter 5 introduces some mo-

tivated observations and discusses the solution for multi-dimensional optimization problem

and evaluation results in detail. Finally, Chapter 6 outlines the contributions of this disser-

tation research and future directions of this research work.

7

CHAPTER II

BACKGROUND AND FOUNDATION

In this chapter, first, background of this dissertation is introduced. Specifically, we present

the implications of a multi-tier application architecture on dynamic resource provisioning,

and then introduce the cloud infrastructure used for the evaluation of our optimization so-

lutions. Subsequently, an optimization formulation is described in the form of a utility

function. The adaptation system is designed to optimize over dual objectives of power

and performance, and therefore, it uses a utility based model to compare both on a uni-

form footing. Finally, a set of system modeling methodologies are described. Since the

adaptation system is based on predictive adaptations, it involves model-based prediction

methodologies. These modeling methodologies include the queuing models used to pre-

dict the application performance, the analytical models used to predict the overall system’s

power consumption, the measurement-based techniques used to predict transient adaptation

costs, and the predictive filter used to estimate how long the system workload will remain

approximately at its current status.

2.1 Multi-Tier Applications

In this dissertation, a shared resource pool hosting multiple multi-tier enterprise applica-

tions is considered. While the multi-tier architecture style has become an industry standard

in modern data centers, the separation of application into multiple tiers makes resource

management under changing workload conditions more challenging. A multi-tier applica-

tion typically consists of a Web server (e.g., Apache), an application container (e.g., PHP,

Java-based application servers), and a backend database (e.g., MySQL, Oracle). Specif-

ically, resources for tiers have to be provisioned separately since each tier has different

8

1 1 102

ViewUserInfo Transaction

1

Home Transaction

Clients

Clients

Apache Tomcat MySQL

Apache

Figure 1: Behaviors of two representative transaction types in a multi-tier benchmark (RU-
BiS)

performance characteristics and thus, different resource demands. Additionally, the per-

formance bottleneck often shifts from one tier to another as the workload changes over

time [88, 74]. For instance, increasing CPU allocation for the application server tier due

to an observation of resource shortage at the tier may merely shift the bottleneck to the

database tier. Therefore, the adaptation mechanism must balance resource demands effi-

ciently among tiers as well as among the different hosted applications to optimize overall

performance.

The workload of such applications is complex as well. The number of concurrent ses-

sions may change over time, and a client session to these applications consists of differ-

ent types of transactions with potentially very different characteristics and resource re-

quirements. More specifically, different transactions utilize different subsets of the tiers

and the interactions between tiers caused by a transaction may vary greatly as illustrated

in Figure 1. This example shows two different types of transactions called “Home” and

“ViewUserInfo” of RUBiS benchmark that emulates an online auction system with a 3-tier

architecture consisting of Apache Web server, Tomcat application container, and MySQL

database server. The “Home” transaction involves only a call to Apache to request a static

HTML page but for the “ViewUserInfo” transaction, Apache makes a single call to Tomcat,

which in turn makes an average of 102 calls to MySQL.

9

-80
-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70
80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Pe
na

lty
 /

R
ew

ar
d

Request rate (per second)

Reward

Penalty

Figure 2: SLA-based utility

Each application has an SLA that provides a mapping from the quality of service pro-

vided by an infrastructure provider to a reward or penalty owed to or from the infrastructure

provider, respectively. A simple pricing scheme is employed in this research, in which the

infrastructure customer (i.e., the application owner) pays the infrastructure provider when

the end-to-end mean response time is smaller than a threshold (i.e., a target response time),

and the infrastructure provider pays the infrastructure customer when the mean response

time is larger than the threshold. Each hosted application may have its own rewards, penal-

ties, and response time thresholds. We assume that the target response time can be derived

experimentally as the mean response time across all transactions of a single hosted appli-

cation running in isolation in the initial configuration driven by a constant workload equal

to half of the design workload. Furthermore, it is assumed that rewards and penalties are

affected by workload (i.e., request rates) as illustrated in Figure 2. For example, as the

workload of an application increases, the infrastructure provider should receive a higher

reward or a lower penalty to compensate for the increased amount of work. Finally, we

assume that the maximum request rate of each application is specified in its SLA, and that

the system has an admission control mechanism capable of enforcing this maximum re-

quest rate. This makes it possible to ensure the load never increases beyond anticipated

workloads. However, the infrastructure provider has a financial incentive to host as many

10

WAN Data Center Level
N/W Latency = 100ms

Rack Level
N/W Latency = 5ms

Machine Level
N/W Latency = 0.01ms

Figure 3: Resource hierarchy of a cloud infrastructure

applications as possible to maximize its revenue.

2.2 Cloud Computing Infrastructure

In this dissertation, a consolidated data center environment is considered, in which a set of

multi-tier applications are to be deployed across a set of physical hosting machines located

across multiple data centers. Each hosting machine in our environment is virtualized with

Xen [7]. As is typical in such environments, we assume that the hosting machines are

organized into hierarchical groupings such as racks, clusters, and data centers to facilitate

networking and management. These groupings are represented by a resource hierarchy that

includes a set of “resource levels” (e.g., machine, rack, data center levels), and a hosting

relation between them (e.g., a data center hosts multiple racks, each of which hosts multiple

machines). Figure 3 shows an example resource hierarchy that includes three levels with 16

machines distributed across four racks in two data centers. Hosting machines are assumed

to be inter-connected by a data center network. We also assume that the network does not

need to be implemented in any particular way, but inter-machine latency increases as one

moves higher up the resource hierarchy. For example, machines placed in the same rack

have a lower network latency between them than machines across different racks, which

have a lower latency than machines distributed across different data centers.

11

D
om

ai
n-

0

W
eb

 S
er

ve
r

A
pp

. S
er

ve
r

D
B

 S
er

ve
r

VM1 VM2 VM

D
om

ai
n-

0

W
eb

 S
er

ve
r

A
pp

. S
er

ve
r

D
B

 S
er

ve
r

VM1 VM2 VM

D
om

ai
n-

0

W
eb

 S
er

ve
r

A
pp

. S
er

ve
r

D
B

 S
er

ve
r

VM1 VM2 VM

Adaptation Engine

Workload
Monitor

Virtual Machine Pool

Model
Solvers Controller

Active Hosting Machines

D
om

ai
n-

0

Hypervisor

W
eb

 S
er

ve
r

A
pp

. S
er

ve
r

D
B

 S
er

ve
r

VM VM VM

D
or

m
an

t
D

B
 S

er
ve

r
D

or
m

an
t

D
B

 S
er

ve
r

D
or

m
an

t
A

pp
. S

er
ve

r

D
om

ai
n-

0
Hypervisor

VM VM VM

Shared Storage

Disk
Image

Figure 4: Resource group as the management unit

Given the resource hierarchy, the adaptation system is designed to deploy multiple in-

stances of controllers in the form of a multi-level hierarchical control scheme. Each con-

troller manages different subsets of hosting machines by communicating model solvers and

workload monitor and then generating a set of adaptation actions. The lowest level con-

trollers manage a small number of machines (e.g., a single rack). At the next higher level,

a controller manages machines owned by multiple lower level controllers. The complete

control architecture is described in Chapter 5.

Figure 4 illustrates one of the low resource groups that consists of a cluster of commod-

ity machines inter-connected by a local Ethernet in our Xen-based virtualization test-bed.

Several machines are used to actively host a set of multi-tier applications. Tier components

of each application can be distributed across physical machines and VMs. As shown in

the figure, we assume that each VM executes a single application tier component (e.g.,

Web, application, or database server) at any given time for the sake of convenience. The

controller is deployed on a separate machine with a workload monitor. At runtime, the

controller periodically reads current workloads from the workload monitor and generates a

12

set of adaptation actions such as increase/decrease the CPU allocation of a VM, change the

replication level of a tier component, and migrate a tier component from one physical ma-

chine to another. These actions are triggered by the distinguished VM, called Domain-0, on

each Xen-based hosting machine that manages the other VMs. One machine in the resource

group is dedicated to hosting dormant VMs used in server replication. The replication level

of an application component is increased by migrating a dormant VM from the VM pool to

the target hosting machine, allocating it a CPU capacity, configuring the application, and

starting the VM. Similarly, the replication level is decreased by deactivating the VM and

migrating it back to the VM pool. Finally, as is common in data center environments, a

shared storage network is used, so all VMs on the resource group use disk images stored

on the same shared storage machine.

2.3 Optimization Formulation: Utility Functions

To describe our utility formulations, we begin by formally defining configuration. A pool

of computing resources R and a set of multi-tier applications S are considered. For each

application s ∈ S, letN s be the set of its constituent component types (e.g., Web server, ap-

plication server, and database server), and for each component type n ∈ N s, let repset(n)

be a set of allowed replication levels. Let N s
k denote the set of nodes in the system, where

a node may be a component (for non-replicated components) or a component replica. For

example, a 3-tier application consisting of Apache with up to 2 replicas, Tomcat with up

to 3 replicas, and an unreplicated MySQL database server has repset(apache) = {1, 2},

repset(tomcat) = {1, 2, 3}, and repset(mysql) = {1}. If Tomcat is replicated twice in a

particular configuration, then the set of nodesN s
k = {apache1, tomcat1, tomcat2, mysql1}.

Each application s may also support multiple transaction types T s = {ts1, . . . , ts|T s|}. The

workload for the application can then be characterized by the set of request rates for each

of its transactions, or ws = {ws
t |t ∈ T s}, and the workload for the entire system by

W = {ws|s ∈ S}.

13

Given this, the goal of an adaptation system is to configure the target system such that

for a given workloadW , the utility U of the entire system is maximized. This maximization

is carried out over the space of all possible system configurations C, where each c ∈ C

specifies: (a) the replication level c.rep(n) of each node n of each application s from the set

repset(n), (b) the assignment of each replica nk ∈ N s
k to a physical resource c.r(nk), and

(c) the fractional allocation (i.e.,capacity) c.cap(nk) ∈ [0, 1] of the resource. A constraint

applied to the definition is that the sum of the fractional allocations across all nodes of all

applications in a single hosting machine is at most 1 for each resource.

To decide when and how to adapt configuration at runtime, the adaptation system esti-

mates the potential benefit of each adaptation action a as well as its cost in terms of changes

in power and performance utility values. The cost of each adaptation action a depends on

its duration d(a) and impact on response time and power consumption. Then, the total cu-

mulative cost is the sum of costs incurred by all adaptation actions applied to transform the

current configuration into a new configuration. Meanwhile, the total benefit of adaptation

actions depends on how long the system remains in the new configuration. Thus, the over-

all system utility U consists of the power utility Upwr in the new configuration, the sum of

individual application s’s performance utilities U s
RT based on the end-to-end response time

in the new configuration, and the sum of individual action a’s transient adaptation cost in-

cluding performance degradation URT (c, a) and additional power consumption Upwr(c, a).

To compute performance utility, each application has its own performance objective

in the form of a target mean response time TRT s(ws) computed over fixed monitoring

window M , a reward R(ws) for meeting the target response time in a single monitoring

period, and a penalty P (ws) for missing it. The response time targets, rewards, and penal-

ties are defined to depend on the request rate, thus arbitrary application utility functions are

allowed to be defined. As described in Chapter 2.1, our adaptation system uses a function

in which the reward increases and the penalty decreases as the workload increases. Given

the measured or predicted request rate for application s at time-step i as W s
i , the system

14

configuration as ci, the measured or predicted mean response time RT s
i , the target response

time TRT s(W s
i), reward Rs(W s

i), and penalty P s(W s
i), the application utility accrual rate

is given as:

U s
RTi

(ci) =


Rs(W s

i)/M if RT s
i ≤ TRT s

P s(W s
i)/M otherwise

(1)

The total performance utility for the new configuration is then simply the sum of perfor-

mance utility values of all applications.

To incorporate the performance degradation as a adaptation cost factor into the opti-

mization formulation, it is converted to a utility value. The adaptation system computes the

instantaneous rate at which an application accrues utility during the execution of a series

of adaptation actions in an interval. Let RT s(ci, a) be the measured or predicted mean

response time of application s of the system, when adaptation action a is executed in con-

figuration ci. By plugging this value into Equation 1, the corresponding utility accrual rate

U s
RTi

(ci, a) during execution of action a starting from a configuration ci can be computed.

Then, the adaptation system puts together these components to obtain the overall utility

accrued between two invocations of a controller. Let the initial configuration be ci, and

let CWi−1 be the stability interval as defined earlier. Let W s
i represent the fixed work-

load during the stability interval. The stability interval ends when the workload deviates

from a band of width Bs, called the workload band, centered around this fixed value (i.e.,

(W s
i − Bs/2,W s

i + Bs/2)). When that happens, the controller is invoked to evaluate the

need for adaptation and may execute a sequence of adaptation actionsAi = a1, a2, a3, . . . an

to transform ci into a new configuration ci+1. We anticipate that this new configuration is

retained until the end of the new stability interval CWi. Let d(a1), d(a2), . . . , d(an) be the

length of each adaptation action, and let c1, c2, . . . , cn be intermediate configurations gen-

erated by applying the actions starting from ci. Let c0 be the initial configuration ci and cn

be the final configuration ci+1. Then, the overall utility at time i is given by

15

Ui =
∑

ak∈Ai

d(ak) ·
(∑

s∈S

U s
RTi

(ck−1, ak)
)

+
(
CWi −

∑
ak∈Ai

d(ak)
)(∑

s∈S

U s
RTi

(ci+1)
)

(2)

The first term of the equation sums up the utility accrued by each application during each

action in the adaptation sequence over a period equal to its action length, and second term

sums the utility of the resulting configuration over the remainder of the control interval.

For the (negative) utility accrued due to power consumption, in this dissertation, the

adaptation system focuses on power consumed by the physical hosts. While power con-

sumed by cooling infrastructure is also a major concern in typical data centers, this adap-

tation system does not consider it explicitly since cooling overheads can be approximately

modeled as a fixed percentage of the power consumed by the computing infrastructure [25].

We convert the energy cost per Watts-hour PCWh to the instantaneous rate at which utility

is accrued using the equation

Upwr(ci) = −pwr(ci) · PCWh (3)

where pwr(ci) is the predicted or measured mean power consumption (in Watts) of the

system in configuration ci over the monitoring interval M .

Similar with the performance degradation above, the power consumption incurred by an

adaptation can be converted to a utility value as following. The adaptation system computes

the instantaneous rate at which an application accrues utility during the execution of a se-

ries of adaptation actions in an interval. Let pwr(ci, a) be the predicted power consumption

of the system, when adaptation action a is executed in configuration ci. The correspond-

ing power utility accrual rate Upwr(ci, a) incurred by action a from ci can be obtained by

applying the value into Equation 3. Finally, the adaptation system plugs the power utilities

accrued both over adaptations and during the rest of the interval into Equation 2. Then, the

overall utility is given by

16

Ui =
∑

ak∈Ai

d(ak) ·
(
Upwr(c

k−1, ak) +
∑
s∈S

U s
RTi

(ck−1, ak)
)

+
(
CWi −

∑
ak∈Ai

d(ak)
)(
Upwr(c

i+1) +
∑
s∈S

U s
RTi

(ci+1)
)

(4)

The first term sums the system-wide power utility and application specific performance

utilities accrued during each adaptation action execution (i.e., the action costs), while the

second term sums the power and application utilities of the resulting configuration ci+1

until the end of the stability interval. By maximizing this utility, the adaptation system

can balance the cost accrued over the duration of an adaptation with the benefit accrued

between its completion and the next adaptation.

2.4 Model-Based Prediction
2.4.1 Application Modeling: Queueing Network Models

To estimate the benefit of a configuration, the end-to-end response time of each application

needs to be estimated for a given workload. In this dissertation research, layered queuing

network modeling (LQNM) techniques [84] are adopted.

Queueing models have been used for modeling multi-tier applications in a number of

research projects including [59, 72, 73, 69], but unlike these efforts we choose LQNM. The

primary reason is that in consolidated server environments with fine-grained CPU control

and multiple applications, models need to be accurate over a wide range of workloads, high

resource utilization, and even in configurations that might be very unbalanced in terms of

resource allocation among tiers. Thus, a blocking phenomenon must be explicitly modeled

although the phenomenon is insignificant in well-provisioned environments such as a bot-

tleneck due to the blocking of front-end server threads by a highly overloaded back-end

server. Unlike standard queuing models, layered queuing networks enable such modeling

by allowing multiple resources to be consumed by a request at the same time. Such ex-

tended queuing networks can be solved through a number of algorithms based on mean

17

Apache Server 0.5

Tomcat Server

MySQL ServerTomcat Server

Net

CPU

VMM

Apache

DiskDisk
sdisk

sapache

sint

1 10.5

1

ndisk

ntomcat

Net

CPU

VMM

Tomcat

DiskDisk
sdisk

stomcat

sint

1

1

ndisk

ntomcat

Net

CPU

VMM

MySQL

DiskDisk
sdisk

stomcat

sint

1

1

ndisk

1Client

LD_PRELOAD Instrumentation

Servlet.jar Instrumentation

Network Ping Measurement

Legend

Function Call

Instrumentation
Resource Use

Figure 5: Layered queueing network model for 3-tier RUBiS benchmark

value analysis (MVA) (e.g., [38]). The LQNS modeling tool introduced by [28] is used as

a black-box model solver.

An additional complication with the model is accounting for the overhead imposed by

a virtualization architecture that allows hosted VMs to share resources. In particular, since

Xen places device drivers for physical devices into a designated guest VM, referred to

as Domain-0, all incoming and outgoing network communications pass through this extra

domain and incur additional latency. Moreover, since Domain-0 shares the CPU with the

other VMs, this latency depends on both the CPU utilization and the number of messages.

This additional step is an intrinsic problem with virtualization techniques, and although

system level methods to alleviate this problem have been proposed recently in (e.g., [35]),

the problem is still an open research issue. Therefore, we explicitly model this VM monitor

delay. Note that if virtualization overhead is not modeled explicitly, CPU utilization and

response time predictions will be inaccurate.

A high-level diagram of the resulting model for a single example application is shown

in Figure 5, and a more detailed portion of the model is shown in Figure 6 for two exam-

ple transaction types that comprise the benchmark application. In the figures, the layered

queuing models are specified in terms of tasks formed by software components (depicted

by parallelograms) and queues that are formed by the hardware resources (depicted by cir-

cles) that are used by the tasks. When tasks use hardware resources (depicted by dotted

18

Figure 6: Detailed partial view of LQN model

arrows with the label specifying the service time), or when they make synchronous calls to

other tasks (depicted by solid arrows with the label specifying the average number of calls

made), both the caller and the callee servers are blocked. Finally, as the detailed model

shows, each task comprises of a number of entries (depicted as rectangles), each of which

correspond to a single transaction type in the system. These entries actually place demands

on resources and make calls to other entries. Therefore, they are associated with parame-

ters for service time and mean number of calls made to other entries. Note that the figures

sometimes show only a single parameter value for all the entries in a task for brevity.

A pre-deployment training phase is used to collect all the parameters required by the

model. This phase is fully automated and does not require any modification of the applica-

tion code. During this phase, each application is measured in isolation with only a single

component per tier, and is subjected to a workload that consists of a single transaction at a

time. Multiple repetitions are done to compute mean values of the parameters. The process

is then repeated for each transaction and in two environments, a virtualized environment in

which each tier executes in its own VM and a native environment where each tier is given

its own native OS without virtualization. The solid black boxes in the figures represent the

points where measurements are made. A description of each task and how its parameters

19

are computed using these measurements is as follows.

Net represents the latency introduced by the network. Since the network is not assumed as

a bottleneck resource, it is modeled as a pure delay server (i.e., no resource sharing). The

service time is measured using ICMP ping measurements in the native environment across

the resource hierarchy.

Disk represents the delay due to disk I/O. To measure the service time transparently, each

application tier is wrapped with an interception library using the LD PRELOAD environ-

ment variable. The library intercepts each read and write call made by the application

to compute the mean number of I/O calls ndisk and their service time.

Component (e.g., Apache, Tomcat, and MySQL) represents the processing performed

by the tier component. The task is modeled using an M/M/n queue, where n is set to the

maximum number of software threads for each component (or 1 in the case of MySQL,

which creates threads on demand). The threads execute on a CPU queue with the processor

sharing discipline to approximate time-slice OS scheduling. To measure the service time of

the Java-based application server transparently, we use binary rewriting to instrument the

Servlet.jar file that is used by every application based on Java servlets. The instru-

mentation timestamps each incoming request from and response to the Web server. Logs

are used to measure the service times of Web and database servers. The logging module

of MySQL is modified to measure query service time and the number of calls per transac-

tion. In addition, the client measures end-to-end response time for the entire transaction.

Performing the experiment with only a single user at a time ensures that no queuing delay

is present in the system, and the measurements at each server can be correlated.

Virtual Machine Monitor (VMM) represents the interaction delay induced by the vir-

tualization environment. The service time for this task is assumed to be equal across all

machines since it is dependent on virtualization layer and not on the application. To esti-

mate this time, we first compute the difference between the service times of each tier in the

virtualization environment with the VMM task, and in the native environment without the

20

VMM task. Then, using knowledge of the measurement points and how many times the

VMM is included in each measurement, the VMM service time can be computed.

Client generates the workload for the queuing model. Since our controller uses the mea-

sured rates of individual transaction types at runtime, we use the workload model proposed

in [88] that allows the typical Markov transition workload matrices to be converted into vec-

tors of stationary probabilities of each transaction type. Using this approach, the workload

for each application s can be modeled as a set of |T s| independent open Poisson processes.

2.4.2 Power Consumption Modeling

To estimate power consumption of a configuration c for a given workload W , a utilization-

based power model is adopted that has been validated in previous studies (e.g., [25, 50]).

Specifically, for a physical machine, an empirical non-linear model is used as following,

pwr = pwridle + (pwrbusy − pwridle) ∗ (2ρ− ρr) (5)

where pwridle represents the power consumption of the machine at standby state and pwrbusy

represents the maximum power consumption of the physical machine observed in our work-

load scenarios, and ρ is the CPU utilization of the machine estimated by the LQN models at

the current workload. A tuning parameter r is used to minimize the square error. It can be

obtained at a model calibration phase. Through offline experiments, the non-linear model

is calibrated to fit into actual power consumption observed using a power meter. The total

power usage of the system is simply the sum of all participating physical machines’ power

usages including active VMs and shared domains (i.e., Domain-0s).

In Chapter 5.3.2, we will illustrate the power model fitting process and its accuracy with

a real world world.

2.4.3 Transient Adaptation Costs

In this dissertation work, various time-varying adaptation actions are considered. They

include increase/decrease a VM’s CPU capacity by a fixed amount, addition/removal of a

21

VM containing an application tier’s replica, live-migration of a VM between hosting ma-

chines located across the resource hierarchy, shutting down/restarting physical machines,

and disk image migration. Addition of a VM replica is implemented by migrating a dor-

mant VM from a pool of VMs to the target hosting machine and activating it by allocating

CPU capacity. A replica is removed by migrating it back to the standby pool. Some actions

also require additional coordination in other tiers. For example, changing the replication

degree of the application server tier requires updating the front-end Web servers with new

membership.

Our approach for the cost prediction is based on approximate models. Costs of these

adaptation actions are measured experimentally off-line for different workloads and con-

figurations and are stored in a mapping tables used at runtime. Specifically, the measure-

ment is conducted for the following attributes of each adaptation: (a) adaptation duration,

(b) change in response time for the application being adapted as well as applications co-

located with the application being adapted, and (c) change in power consumption during

the adaptation.

The following process to measure these costs is used. For each application s, workload

ws, and adaptation action a, we set up the target application along with a background ap-

plication s′ such that all replicas from both applications are allocated equal CPU capacity

(40% in our experiments). Then, we run multiple experiments, each with a random place-

ment of all VMs across all the physical hosting machines. During each experiment, we

subject both the target and background application to the workload ws and ws′ , and after

a warm-up period of 1 minute, measure response times of two applications RT s and RT s′

and the total power usage of corresponding physical machines pwr. Then, we execute the

adaptation action a, and measure the duration of the action, d(a), the response time of each

application during adaptation,RT s(a) andRT s′(a), and the power usage on affected physi-

cal machines pwr(a). If none of application’s VMs are co-located with the VM impacted by

22

a, no background application measurements are made. We use these measurements to cal-

culate delta response times ∆RT s(a) = RT s(a)−RT s and ∆RT s′(a) = RT s′(a)−RT s′ ,

and the delta power usage ∆pwr(a) = pwr(a) − pwr. These deltas along with the action

duration are averaged across all random configurations, and their values are encoded in a

cost table indexed by the workload.

When a controller requires an estimate of adaptation costs at runtime, it measures the

current workload W and looks up the cost table entry with the closest workload W ′. To

determine the impact of the adaptation action a on its target application s, it measures the

current response time of the application asRT s and estimates the new response time during

adaptation as RT s(a) = RT s + ∆RT s(a). For each application s′ whose components

are hosted on the same machine targeted by a, it calculates the new response times as

RT s′(a) = RT s′+∆RT s′(a). The power consumption can be calculated with similar way.

Although this technique does not capture fine-grained variations due to the difference

between configurations or workloads, we will show that the estimates are sufficiently ac-

curate for making good decisions.

2.4.4 Workload Stability Prediction: ARMA Filter

Given that our approach balances immediate adaptation costs versus their potential future

benefits, the ability to estimate workload changes is crucial. The approach we have chosen

is to estimate how long the workload stays approximately at its current level based on the

history of workload changes. The stability interval for an application s at time t is the

period of time for which its workload remains within ±b/2 of the measured workload W s
t

at time t, where b is a user-specified threshold. This band [W s
t - b/2, W s

t + b/2] is called

the workload band Bs
t . When an application’s workload exceeds the workload band, the

controller must re-evaluate the system configuration. When the workload falls below the

band, the controller must check if other applications might benefit from the resources that

could be freed up.

23

At each unit monitoring interval i, the controller checks if the current workload W s
i is

within the current workload band Bs
j . If one or more application workloads are not within

their band, the estimator estimates a new stability interval CW e
j+1 for the next control

window and updates the bands based on the current application workloads. To estimate the

stability intervals, we employ an auto-regressive moving average (ARMA) filter commonly

used for time-series analysis (e.g. [9]). The filter uses a combination of the last measured

stability interval CWm
j and an average of the k previously measured stability intervals to

predict the next stability interval using the equation:

CW e
j+1 = (1− β) · CWm

j + β · 1/k
k∑

i=1

CWm
j−i (6)

Here, the factor β determines how much the estimator weighs the current measurement

against past historical measurements. It is calculated using an adaptive filter to quickly

respond to large changes in the stability interval while remaining robust against small vari-

ations. To calculate β, the estimator first calculates the error εj between the current stability

interval measurementCWm
j and the estimationCW e

j using both current measurements and

the previous k error values as,

εj = (1− γ) · |CW e
j − CWm

j |+ γ · 1/k
k∑

i=1

εj−i (7)

Then, β of Equation 6 can be computed by 1 − εj/maxi=0...k εj−i. This technique

dynamically gives more weight to the current stability interval measurement by generating

a low value for β when the estimated stability interval at time i is close to the measured

value. Otherwise, it increases β to emphasize past history.

2.5 Summary

In this chapter, first, we have introduced the environment, where our approach is applied.

The architecture of the multi-tier application and its complexity have been introduced.

24

Then, a cloud infrastructure as the form of hierarchical resource structure has been pre-

sented. We consider that multiple multi-tier applications are deployed across resource lev-

els of the hierarchical structure. Under the dynamic changes of applications’ workloads,

this research aims to optimize the overall utility of cloud infrastructures by provisioning

resources. In order to identify an optimized configuration for a given workload, we should

estimate the utility of each possible configuration. We have described a utility function

that contains power consumption, performance benefit obtained by adaptations and cost

incurred by adaptations. Finally, we have introduced analytical modeling techniques that

are integrated into the utility function. The autoregressive moving average technique has

been presented. It is used to estimate the period that the current workload will remain ap-

proximately as its current status. In each period, we should estimate each adaptation’s cost,

and the final configuration’s performance and power consumption. We have introduced the

queuing network models used to predict the application performance, the non-linear uti-

lization based power model used to predict the overall system’s power consumption, and

the measurement-based techniques used to predict transient adaptation cost. The accuracy

of these models described in this chapter is shown in the following three chapters.

25

CHAPTER III

PERFORMANCE OPTIMIZATION

As the first part of this dissertation research, an off-line approach has been developed to

optimize the application performance in a Xen-based virtualized environment that hosts

multiple multi-tier applications. By constructing adaptation policies off-line, this approach

can support online policy-driven adaptation systems to efficiently and transparently provi-

sion available resources under time-varying workloads. This approach supports the multi-

dimensional adaptation system by providing the upper-bound performance utility that is

used in the multi-dimensional optimization process.

3.1 Problem Statement

A management challenge in data center environments that host distributed multi-tier appli-

cations is dealing with rapidly changing execution conditions such as time-varying applica-

tion workloads. The ideal solution to this problem is to reallocate resources dynamically at

a fine grained level using adaptive or autonomic system techniques, yet support for creating

adaptation policies that guide when and how to change allocations is often lacking. The

challenge in this environment is even more severe given the wide range of application types

that have to be supported and the complex nature of multi-tier applications.

The recent trend towards consolidated server environments based on virtualized re-

sources provides a unique opportunity to enhance the autonomic management capabilities

of data centers hosting such applications. It becomes easier, for example, to allocate re-

sources to a given component of a multi-tier application by changing the percentage of the

CPU allocated to VM executing that component or by replicating the VM onto a second

physical machine. Virtualized environments also enable the sharing of resources across

applications in ways not previously possible, which potentially allows higher utilization

26

of resources such as CPU and memory. The fundamental issue, then, is how to change

the allocation of resources to applications dynamically to optimize the overall performance

under changing conditions, while considering resource availability and application-specific

characteristics such as SLAs and workloads.

3.1.1 Resource Provisioning: On-line vs. Off-line

Many approaches have been proposed for dynamically adapting system behavior to opti-

mize resource usage and application performance, including techniques based on stochastic

models (e.g., [27, 8, 72, 22, 71, 88]), reinforcement learning (e.g., [69]), and control the-

ory (e.g., [59, 58, 57]). Although the details are different, each follows a similar pattern:

construct a parametric model of the target system (e.g., a queuing model); fix some model

parameters through experimental measurement or learning; devise a strategy for optimiz-

ing the remaining parameters using the runtime state as input; implement the strategy in an

online controller that is periodically provided with the measured runtime system state; and

use the recommendations of the controller to adapt the system configuration.

The disadvantage of online controllers is that by generating decisions algorithmically

and only on demand, they may give rise to undesirable emergent properties, impede the

ability of administrators to understand system behaviors, and ultimately, reduce the pre-

dictability of the target system. While some techniques - most notably control-theoretic

ones - attempt to remedy concerns of unpredictable and undesired behaviors by proving

stability properties of the control algorithms, by doing so they limit the system models in

significant ways (e.g., through linearity assumptions) or run the risk that the guarantees are

invalidated if the assumptions are not met. In contrast, rule-based expert systems address

autonomic management using rules written by domain experts and executed using engines

such as HP Openview [36] and IBM Tivoli [37]. Unlike online approaches, the use of

pre-determined rule bases provides predictability, but with the drawback that the rules are

often hard to write and cumbersome to maintain given their tight linkage to the underlying

27

system.

In this work, we have proposed a novel hybrid approach for enabling autonomic be-

havior that provides the best of both worlds. It uses a utility function and an analytical

modeling technique along with optimization algorithm to predict system performance and

automatically generate optimal system configurations. Rather than producing these config-

urations on demand at runtime, they are produced off-line to feed a decision-tree learner

that produces a compact rule set (or adaptation policy). This rule set can be directly used

in rule engines, audited, combined with other human-produced rules, or simply used to aid

domain experts in writing and maintaining management policies. This approach of pro-

ducing entire decision rule sets off-line has another benefit as well - the modeling solution

and optimization is entirely removed from the critical path of the system during runtime.

Therefore, it is possible to model and optimize ever larger and more complex systems.

The utility function and queueing network models introduced in Chapter 2 are used as the

prediction models.

Model solver
(LQNS)

Optimizer

Rule
constructor

(1) workload W optimized
configuration Copt

response time,
utilization

W, candidate
configuration c

Rule
Set

Weka

(2){W,Copt}

Models

Parameters

Figure 7: Policy generation approach

28

3.2 Approach
3.2.1 Overview: Rule Set Generation

Our off-line approach for automatically generating adaptation rule sets is outlined in Fig-

ure 7. A queueing model ma ∈ M for each application a ∈ A has been developed, and

these models are fed into the model solver. Using the model solver, the optimizer generates

a raw rule set, which is a list of pairs matching a condition predicate with the corresponding

target configuration. To determine a point in the raw rule set, the rule set constructor ran-

domly selects a workload (i.e., a set of request rates) within workload ranges specified in

SLAs and passes it to the optimizer. Given this workload, the optimizer determines an op-

timized configuration by searching over the possible set of candidate configurations until it

finds the best (or near-optimal) configuration. For each candidate configuration, it uses the

model solver to compute a set of expected mean response times of each transaction type

and utilization of each component of the applications. This process runs until it collects

enough entries for the raw rule set. Finally, the rule constructor generates an “if-then-else”

policy rule set from the raw rule set using a decision tree learner of Weka tool.

3.2.2 Performance Optimizer

The configuration optimizer uses the queueing models described in Chapter 2.4.1 and the

performance utility function described in Equation 1 in Chapter 2.3 to search for a system

configuration that maximizes the overall performance utility for a given workload. This

task includes replication level selection and CPU allocation for all components, and place-

ment of components on physical hosts. Due to the extremely large configuration space

involved and the fact that the queuing models do not have a closed form solution, the

optimization task is computationally challenging. It is easy to show that the problem is

NP-Complete by a reduction to the bin-packing problem and thus, an exact solution is

not possible. Furthermore, even an approximate solution based on gradient search is not

sufficient due to the discrete input space in component placement.

29

To solve the problem in an efficient manner, we split it into two sub-problems: (a) se-

lecting for each application an application configuration consisting of the replication level

and CPU allocation for each component, and (b) mapping the components determined by

the application configuration onto the physical machines. For each candidate set of optimal

application configurations, the component placement acts as an accept-reject mechanism.

If the placement step can fit the required components into the available resources, then the

application configurations are accepted. Otherwise, they are rejected. The optimization

algorithm is shown in Algorithm 1 and explained in detail below.

Input: W - the workload at which to optimize
Output: copt - the optimized configuration
forall a ∈ A,n ∈ Na do

c.rep(n)← max{reps(n)},∀nk, c.cap(nk)← 1

forall a ∈ A do
(RTa, {ρ(nk)|∀nk ∈ Nk

a })←LQNS(W,a, c)
Compute U
while forever do
{c.r(nk)|∀a, nk} ← BinPack(R, {ρ(nk)})
if success then return c
foreach a ∈ A,n ∈ Na do

cr ← c[rep(n)← Next smallest in reps(n)]
Ck ← {c[cap(nk)← Reduce by ∆r]|∀k}
foreach cnew ∈ {cr} ∪ Ck do

(RTa, {ρ(nk)})new ←LQNS(W,a, cnew)
Compute Unew, ∇ρ
if ∇ρ < 0 ∨∇ρ is max so far then

(c, {ρ(n)})opt ← (c, {ρ(n)})new

if ∇ρ < 0 then skip to EndRefit

EndRefit: (c, {ρ(n)})← (c, {ρ(n)})opt

Algorithm 1: Optimal configuration generation

The optimization algorithm uses a discrete gradient-based search algorithm to explore

candidate configurations. Note that (a) for any application and its transaction type, the util-

ity function (i.e., Equation 1) is monotonically decreasing with increasing response time,

(b) the response time monotonically (but not necessarily strictly) increases with a reduction

in the number of replicas of a tier, and (c) the response time monotonically increases with a

30

reduction in the resource fraction allocated to the replicas of a tier. Hence, the utility func-

tion has its maximal value for a configuration where each tier is replicated to its highest

allowed replication level and a full resource fraction (i.e., 1.0 per replica) is allocated to

each component. Naturally, this configuration will typically not fit in the set of available

physical resources and thus either replication levels and/or resource fractions have to be

reduced until a fit is found.

Initially, the algorithm begins its search from this maximal utility configuration. For

each application model, the LQNS solver is invoked to estimate response time and the

actual CPU utilization ρ(nk) of the configuration of the application. The bin packer is

then invoked to place all components onto the available hosts using the predicted CPU

utilization as the “volume” of each component. If the bin packing is unsuccessful, the

algorithm re-evaluates all possible single-change degradations of the current configuration

by either reducing the replication level of a component to the next lower level or by reducing

the CPU allocation of a component by a step of ∆r. These reductions are done to each

component in each application separately to generate a set of candidate configurations.

Various granularities for the reduction of CPU capacity can be used (e.g., 1, 5, 10, or

15%), but a tradeoff between the optimality of result configuration and the efficiency of

the algorithm must be considered. In particular, the algorithm terminates faster the larger

the reduction granularity, but with an increased chance that it may skip a configuration that

would have had a larger utility value than the chosen one. In our current implementation,

we use 5% reduction step since it shows a good optimality with reasonable execution time.

During the evaluation, only the model for the application with the reduced resources has to

be solved again, resulting in computational savings. The algorithm then picks the degraded

configuration that provides the maximum reduction in overall CPU utilization for a unit

reduction in utility, or gradient, which is defined as:

∇ρ =

∑
a∈A,nk∈Nk

a
ρnew(nk)− ρ(nk)

Unew − U
(8)

31

The whole process is repeated again until the bin packing succeeds. This technique is

guaranteed to find a configuration that fits in the given resources since the CPU fractions

allocated to components can be reduced repeatedly until the bin packing succeeds.

The component placement based on bin packing determines whether the candidate con-

figurations fit into the available physical resources and then, determines the host assignment

for each application component. Bin packing has been studied extensively in the literature,

and many efficient algorithms can approximate the optimal solution within any fixed per-

centage of the optimality. In our implementation, we use the n log n time first-fit decreas-

ing algorithm that ensures results are asymptotically within 22.22% of the optimal solution

(e.g., [21]).

Using the above techniques, the optimizer is able to generate an optimized configuration

for a given workload. While this configuration is not provably optimal, experimental results

demonstrate that the rule set that results from this process is effective and close to optimal

(see Chapter 3.3).

The approach could also be extended to manage multiple heterogeneous resource types

by extending the bin packing algorithm to generate component placements with additional

constraints. In particular, to allow for resources with different capacities, any of several

approximation algorithms for the variable sized bin-packing problem (e.g., [46]) could be

used, while to incorporate additional resource types such as memory or network bandwidth,

algorithms for the vector bin-packing problem (e.g., [17]) could be used. Algorithms for

both of these extensions could be incorporated into our approach to generate component

placements without modifying other aspects of our approach.

3.2.3 Off-line Rule Set Constructor

The rule set constructor generates the actual adaptation rules used by the on-line con-

troller. Using the allowed range of request rates for each transaction type of each ap-

plication, this module randomly generates a set of candidate workloads WS. For each

32

workload W ∈ WS, it invokes the optimizer to find the best configuration c∗. We en-

code c∗ as a string consisting of physical host names followed by the list of components

hosted on it. Each component entry indicates the name of the application, component

name, and the CPU capacity allocated to it. For example, the notation “host1 app1

apache1 60 app1 tomcat3 40” indicates that host1 hosts two components from

app1: apache1, which is allocated 60% of the CPU, and tomcat3, which is allocated

40% of the CPU.

It is not feasible to evaluate every possible workload point to determine its optimal

configuration. Therefore, we use the J48 decision tree learner of the Weka toolkit [81] to

construct a decision tree as an interpolated, compacted rule set using the (W , c∗) pairs as the

training data set. The generated decision tree has conditions of the form “ws
t < threshold”

or “ws
t ≥ threshold” at each of its branches, where ws

t is the request rate for transaction t

of application s. Each leaf of the tree encodes the configuration that should be used if all

the conditions along the path are true, from the root to that leaf.

The decision tree construction serves multiple functions. First, it provides the interpo-

lation that is needed for rule sets to be applicable not just for the points evaluated by the

optimizer, but for any workload in the range allowed by the SLAs. Second, the decision tree

can be trivially linearized into a nested “if-then-else” rule set that requires less expertise to

understand than the models.

Figure 8 shows a fragment of the rule set used in our experiments. Third, due to the

finite number of leaves in the decision tree, all configurations the system might include are

known before deployment. This knowledge provides a degree of predictability and verifia-

bility that is important for business-critical systems. Finally, the tree provides compaction

of the raw training data since the learning algorithms aggregate portions that share similar

configurations and prune outliers. As a consequence of compaction and due to the fact that

at run-time, the system is likely to see a much larger set of points than were used to gener-

ate the tree, some loss of accuracy (and utility) is expected. In Chapter 3.3, we evaluate the

33

if (app0-Home > 0.023855)
if(app1-Browse ≤ 0.175308)

if (app0-BrowseRegions ≤ 0.05698)
c = “host0app0mysql80” +

“host1app1mysql80” +
“host2app0tomcat40app1tomcat40” +
“host3app0apache40app1apache40”;

if (app0-BrowseRegions > 0.05698)
if (app1-Browse ≤ 0.119041)

if (app1-Browse ≤ 0.086619)
c = “host0app0mysql80” +

“host1app0tomcat80” +
“host2app0apache60app1apache20” +
“host3app1mysql50app1tomcat30”;

if (app1-Browse > 0.086619)
c = “host0app0mysql80” +

“host1app0tomcat80” +
“host2app1mysql60app1apache20” +
“host3app1tomcat50app0apache30”;

Figure 8: Rule set fragment generated by the off-line constructor

loss of accuracy and show that even with a modest number of training points, accurate rule

sets can be constructed.

3.3 Evaluation Results

The goal of the evaluation is to demonstrate the feasibility and accuracy of the three steps

in our approach: modeling, optimization, and rule set construction. Specifically, we show

that (a) the constructed models accurately predict both response time and CPU utilization,

(b) the optimizer produces configurations that are close to optimal, and (c) the resulting

rule sets prescribe close to optimal configurations for any given workload.

3.3.1 Experimental Setup

RUBiS, a commonly used multi-tier application benchmark, is used in our evaluation sce-

nario. RUBiS is an e-commerce application implementing the core features of an eBay-like

auction site with 26 transaction types [14, 63]. RUBiS provides various user behaviors such

34

-70
-60
-50
-40
-30
-20
-10

0
10
20
30
40
50
60
70

0 10 20 30 40 50 60

R
ew

ar
d

/ P
en

al
ty

Request Rate

Reward (Gold)

Penalty (Gold)

Reward (Silver)

Penalty (Silver)

Figure 9: Step-wise pricing scheme

Table 1: Transaction types’ thresholds
Transaction Threshold
Type (msec)
SearchItemsInCategory 170
SearchItemsInRegion 100
ViewBidHistory 340
ViewItem 100
ViewUserInfo 700
Browse 2
BrowseCategories 110
BrowseRegions 50
Home 2

as browsing, selling, and bidding for items. The benchmark defines two types of transition

matrices representing read-only and read-write transactions. The read-only transaction ma-

trix is used in our experiments. We deploy two types of RUBiS instances, referred to as

gold and silver services. In this experiment, we assume each instance has its own SLA in

terms of rewards and penalties, and then extend the SLA-based utility introduced in Sec-

tion 2.1 as shown in Figure 9. We also assume that all RUBiS instances have the same

response time thresholds as shown in Table 1.

To run instances of RUBiS, we have used four physical hosting machines each with

35

0

0.2

0.4

0.6

0.8

1

100 200 300 400 500
 Concurrent Users

R
es

po
ns

e
Ti

m
e

(s
)

ViewUserInfo
(Experiment)
ViewUserInfo
(Model)
All Transactions
(Experiment)
All Transactions
(Model)
BrowseCategories
(Experiment)
BrowseCategories
(Model)

(a) Effect of Load

0.01

0.1

1

30 40 50 60 70 80

CPU Allocation (%)

R
es

po
ns

e
Ti

m
e

(s
)

(b) Effect of CPU Allocation

Figure 10: Response time of model vs. experimental results

an Intel Pentium 4 1.80GHz processor, 1 GB RAM, and a 100 Mb Ethernet interface. We

have used the open-source version of the Xen 3.0.2 to build the virtualization environ-

ment. Linux kernel 2.6.16.29 has been installed as a guest OS in each domain of Xen.

Apache 2.0.54, Tomcat 5.0.28, and MySQL 3.23.58 have been used as the Web server,

servlet container, and database server respectively in 3-tier configurations of RUBiS. Each

replica has been installed in its own VM. The concurrency parameter maxClient for

the Apache servers has been set to 335 and maxThreads for the Tomcat servers set to

655 to avoid unnecessary thread induced blocking. We have increased the heap size of the

Tomcat server to 512 MB to avoid slowdowns induced by garbage collection and enabled

db connection pool. Finally, we have run the optimization process on a machine with

4 Intel Xeon 3.00GHz processors and 4 GB RAM.

3.3.2 Application Model Validation

Our approach requires that the models be accurate enough to predict both the end-to-end

response time of the system and the CPU utilizations of the different system components

with different workloads and different configurations. Figure 10 (a) demonstrates the ac-

curacy of response time prediction for different transaction types and different workloads

without replication and a CPU fraction of 55% for all components. The figure illustrates

36

0

0.1

0.2

0.3

0.4

0.5

100 200 300 400 500
Concurrent Users

C
PU

 U
til

iz
at

io
n

DB Server
(Experiment)
DB Server
(Model)
App. Server
(Experiment)
App. Server
(Model)
Web Server
(Experiment)
Web Server
(Model)

Figure 11: Utilization of model vs. experimental results

that the response times predicted by the model correspond well with the measured response

times. Figure 10 (b) presents similar results when the CPU fractions of all components are

adjusted from 30% to 80%. We set the workload (i.e., the number of concurrent users) to

200.

Figure 11 presents the predicted CPU utilization versus the measured CPU utilization

at the three tiers as the workload increases. Each component runs over its own VM with

a 55% CPU fraction and no replication has been used. Overall, these figures demonstrate

that the models are reasonably accurate and can be used as the foundation for generating

adaptation rules.

3.3.3 Accuracy of the Optimization Process

The optimization process employs a heuristic search algorithm that may miss the optimal

configuration. In this section, we evaluate the accuracy of this search process using differ-

ent parameters. Recall that the optimization process starts from a “maximal” configuration

and reduces it by a certain CPU fraction or replication level at each step until a fit is found

for the available resources. In our evaluation scenario, we set the maximal configuration

to one replica for Apache, two replicas for Tomcat, and two replicas for MySQL, so that

when deploying two applications, the total number of components is 10. For each replica,

the initial CPU fraction is set to 80%, which is the maximum allowed by Xen since the

37

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50 55 60
C

on
cu

rr
en

t U
se

rs

Time (min)

Gold Service1 Gold Service 2

Figure 12: Simple workload scenario

remaining 20% is used by domain-0.

To evaluate the accuracy of the optimization process, we designed a simple scenario

as shown in Figure 12, where two RUBiS instances referred to as GoldService1 and Gold-

Service2 are deployed with identical SLAs. We then generate synthetic workloads within

a defined load range in which the number of concurrent users is between 10 and 500 us-

ing client workload generators provided in RUBiS. The workload of GoldService1 starts at

50 and increases by 45 every 5 minutes until it reaches 500, while the workload of Gold-

Service2 starts from 500 and decreases by 45 every 5 minutes. The rationale behind the

scenario is that the optimizer has to allocate more resources to GoldService2 than Gold-

Service1 during the first 5 minute round, and then must keep moving resources from Gold-

Service2 to GoldService1 to optimize the overall configuration during the remainder of the

rounds in the experiment. Note that, in this experiment, we restart the services for each

round with the configuration determined by the optimizer to exclude any noise incurred by

the adaptation process. Each round has a 1 minute warm-up phase followed by a 4 minute

measurement phase.

With this scenario, two methods are used to evaluate the accuracy of the optimization

process. First, we show the impact of varying the step sizes of the CPU reduction on the ef-

ficiency of the optimizer and the optimality of each resulting configuration. As mentioned

38

20

25

30

35

40

45

50

55

5 10 15 20 25 30 35 40 45 50 55

1%

5%

10%

R
es

po
ns

e
T

im
e

(m
se

c)

Time (min)

(a) GoldService1

20

25

30

35

40

45

50

55

5 10 15 20 25 30 35 40 45 50 55

R
es

po
ns

e
T

im
e

(m
se

c)

Time (min)

(b) GoldService2

Figure 13: Response times of three different step sizes in the optimizer

Table 2: Execution time and accuracy.
CPU Reduction Step
1% 5% 10%

Running Time (msec) 240694 50136 26875
Number of evaluated configurations 1152 235 121
Average Response Time (msec) 32.15 32.95 33.93
Difference from “1%” case (%) - 2.56 5.39

in Chapter 3.2.2, when the search algorithm employs a small CPU reduction step size,

the chance of missing the optimal configuration is reduced but the overall evaluation time

increases since the optimizer has to evaluate more configurations. The efficiency of the

optimizer is represented as “Running time” (i.e., how long it takes to obtain a target con-

figuration) and “Number of evaluated configurations” (i.e., how many configurations the

optimizer evaluates to obtain a target configuration), and the optimality of each resulting

configuration by “Average response time” of the resulting configuration.

Table 2 summarizes the results of three different step sizes. The numbers in the table are

average values over all rounds in the scenario. Figure 13 illustrates the distribution of each

service’s response time over the experiment. The results demonstrate that the difference

in accuracy is negligible across the three different step sizes, although the execution time

increases significantly as the step size is decreased. We use the 5% step size for the rest of

our experiments since the result is both reasonably accurate and computationally efficient.

39

20
22
24
26
28
30
32
34
36
38
40

5 10 15 20 25 30 35 40 45 50 55

5%

Random

R
es

po
ns

e
T

im
e

(m
se

c)

Time (min)

Figure 14: Global quality of the optimizer

Second, to evaluate the global optimality of the solution, we compare the configuration

chosen by the optimizer with the best configuration from a large number of randomly gen-

erated configurations for a given workload. We generated 20000 configurations for each

round in the scenario by randomly selecting each component’s CPU fraction, replication

level, and assignment to a host. Then, the configuration that minimizes the average re-

sponse time of the two applications is determined. The CPU fraction space for the random

configurations is discretized for fair comparison, specifically, the CPU fraction is randomly

selected from among the values 30, 35, 40, 45, etc. In each round in the scenario, most of

the random configurations perform very poorly, as expected, and only a few are close to or

slightly better than the result of our optimizer.

Figure 14 shows that the response times of the configuration produced by the optimizer

are very close to the best of the random configurations for each workload point in the

scenario. In fact, the best random configuration is the same as the configuration selected by

the optimizer for 5 of the rounds, and only slightly better in the other rounds. The average

difference between response times of the two configurations is 1.89%, and the utilities are

identical.

40

0

50

100

150

200

250

300

10

10
0

25
0

50
0

75
0

10
00

12
50

15
00

17
50

20
00

22
50

25
00

2 Applications
4 Applications

Training Set Data Points
R

ul
e

Se
t S

iz
e

Figure 15: Size of rule set

3.3.4 Accuracy of the Constructed Rule Set

The goals of the rule set construction phase described in Chapter 3.2.3 are to minimize both

the size of the resulting rule set and the loss of utility compared to the optimal configuration

for any given workload. These goals may conflict. For example, we can reduce the size of

the rule set by merging configurations that have similar workloads or reducing the number

of training data points, but optimality may suffer. In practice, the goal is to find a number

for the size of the training data set that balances rule set size with optimality.

Our first experiment shows how the size of the rule set changes when the number of

training data points varies. The results are presented in Figure 15. The dotted line denotes

the line where the size of the rule set would be the same as the number of training data

points (i.e., x = y). The results indicate that the size of the rule set depends not only on the

number of training data points, but also the number of applications and hence, the number

of components and complexity of the configurations. However, since both curves flatten

out at a certain point, we can use the knee of each curve as the optimal number of training

points.

Our next experiment evaluates the impact of the rule set size on its accuracy by gen-

erating three different rule sets for the two applications in our simple scenario (Figure 12)

using 10, 100, and 1000 training data points, respectively. The sizes of these generated rule

sets were 4, 18, and 31, respectively, where the size of a rule set is defined as the number of

41

0

100

200

300

400

500

600

5 10 15 20 25 30 35 40 45 50 55

10

100

1000

Time (min)

R
es

po
ns

e
T

im
e

(m
se

c)

(a) Response time

0
100
200
300
400
500
600
700
800

5 10 15 20 25 30 35 40 45 50 55
Time (min)

R
ev

en
ue

 (U
til

ity
)

(b) Utility

Figure 16: Three different rule sets

leaves in the set. The rule set generated by applying 1000 training data points is the upper

bound since it is the point where the curve in Figure 15 starts to converge to 31 for two

deployed applications.

Figure 16 presents the impact of the rule set size on both the average response time

and the utility. When 10 training data points are used to generate the rule set, both the

response time and the utility are slightly degraded in rounds 2, 4, and 6 compared to the

rule set based on 1000 training points. The gap increases starting in round 7 as the load

of GoldService1 keeps increasing in the scenario, since the selected configurations do not

have enough resources for the database server(s) to deal with some of the more expen-

sive transactions (e.g., “ViewUserInfo”). However, increasing the number of training data

points from 10 to just 100 significantly reduces the gaps in the utility and especially the

response time.

3.4 Work Related to Performance Optimization

A number of recent efforts have addressed dynamic resource provisioning of enterprise

applications. For example, [69] has proposed a reinforcement learning approach to resource

allocation but only for coarse-level provisioning at the host level (i.e., no resource sharing

among hosted applications) and for single-tier applications, while [15] has dealt with fine-

grained resource allocation but only for single-tier systems that can be described using

42

closed form performance prediction equations. [72] has considered multi-tier applications

and used queuing models similar to ours, but performed only coarse-grained provisioning

at the host level and did not deal with cases where sufficient resources are not available.

[86] has presented a two-level control model where local controllers use fuzzy control and

continuous learning to determine new resource requirements given the new workload, and

a global controller allocates requested resources so that the allocation maximizes profits.

They have also considered multi-tier applications in a virtualized environment, but have

assumed that all components of an application run in one virtual container (i.e., a single

VM). This is less realistic and more coarse-grained than our approach, which only requires

that each component runs in a separate VM. Perhaps closest to our approach is [8], which

proposes a resource provisioning methodology using queuing models and a beam search

to perform resource allocation in data centers. They have validated the approach using a

simulated system. However, this work does not address fine-grained resource sharing, and

it does not appear trivial to extend their optimization approach to do so. Moreover, all

of the above approaches are based on on-line control and do not consider off-line policy

generation with its many benefits.

Queueing models have often been used to estimate the performance characteristics of

Web servers, but much of the work in this area has focused on single-tier systems and has

been used in online solutions as a means to augment feedback control loops [67, 66, 11, 24].

In contrast, we have applied queueing models off-line and use them for more complex

multi-tier applications. Recently, multi-tier applications have been modeled in [72, 19, 58],

but without accounting for the simultaneous resource possession typically exhibited in

multi-tier applications as discussed in Chapter 2.4.1. We have used layered queueing mod-

els to deal with simultaneous resource possession by modeling synchronous interactions

between servers. [54] has employed layered queueing network models for EJB-based en-

terprise systems with the goal of manual capacity planning. However, these models have

not considered virtualized environments and limited their applicability to environments in

43

which separate application silos with designated resources are used. Since virtualization

has a performance impact on transaction-based applications as mentioned in [49] and [78],

these models cannot be applied directly to virtualized environments without significant

changes. [19] has dealt with static provisioning of multi-tier applications executing in a

Xen-based environment and developed queuing models. However, the performance over-

head of virtualization is not reflected in the models, but rather handled separately using

extensive experimental measurement to ascertain the impact. For instance, service times of

application components across many different CPU allocations are measured and then used

to parameterize the approach. [58] has used black-box linear models for predicting CPU

utilization in virtualized environments, but the models do not consider the performance

impact of virtualization and so, the approach is also dependent on extensive experimenta-

tion. These experiment-based techniques are an alternative method for incorporating the

performance impact of virtualization and have the advantage of requiring less knowledge

about the system. However, they do not scale well as the number of applications and tiers

increases.

Optimization problems arising in multi-tier enterprise systems have been intensively

studied, but few of these efforts have focused on the problem of dynamic resource provi-

sioning. For example, [87] has used an optimization technique to determine per-transaction

service times for a queuing network when the times are not directly measurable. [85] has

proposed efficient search algorithms and used them to determine what experiments must be

conducted to choose appropriate application parameters. Our approach could also utilize

such search-based methods. Finally, [22] has addressed the problem of dynamic resource

allocation in virtualized platforms hosting multi-tier applications. This approach uses a ca-

pacity manager that is periodically executed and reassigns resources by evaluating a model

consisting of multi-tier M/M/1 queues. This is an online technique, however, and does not

have the benefits of our hybrid approach.

44

Finally, machine learning and especially decision trees have been used by several au-

thors for learning autonomic behaviors. For instance, [71] has used these techniques to

predict threshold points where a system is likely to fail its service level agreement obliga-

tions. However, most of this previous work has used decision trees in their traditional role

of learning classifiers based on experimental data. We are not aware of any other work that

has used decision trees to generate adaptation or other management policies.

3.5 Summary

Constructing optimal adaptation policies is one of the biggest challenges in building com-

plex autonomic systems. This research work has presented a novel hybrid approach for the

automatic generation of such adaptation policies that uses a combination of offline model

evaluation and optimization. A policy is generated as a rule set that is compact enough for

human administrators to inspect and augment, and can be used directly with existing rule-

based management engines. Experimental results using RUBiS demonstrate the viability of

the approach for this type of common multi-tier application. Specifically, we have showed

that the models used in the approach and the generated rule sets are accurate in consolidated

server environments that our optimization heuristic identifies near-optimal configurations,

including replication levels, component placement on physical hosts, and VM parameters

tuned for dynamic workloads. All these results suggest that a hybrid approach such as the

one presented here can be an effective starting point for automatically managing multi-tier

enterprise applications in consolidated server environments.

45

CHAPTER IV

COST-SENSITIVE ADAPTATION

As another part of the dissertation, an online adaptation system has been developed to

automatically generate adaptation actions to transform a current configuration to an optimal

configuration under dynamic workload changes over time. In particular, this work has

emphasized that the cost of VM migration is significant and then, precisely incorporated

the transient effects of the cost into the performance optimization problem.

4.1 Problem Statement

Virtualization-based server consolidation requires runtime resource reconfiguration to en-

sure adequate application isolation and performance, especially for multi-tier services that

have dynamic, rapidly changing workloads and responsiveness requirements. While virtu-

alization makes reconfiguration easy, indiscriminate use of adaptations such as VM cloning,

VM migration, and CPU capacity enforcement has performance implications. However,

there is little work that considers the impact of the reconfiguration actions themselves on

application performance except in very limited contexts. For example, while [20] shows

that live migration of VMs can be performed with a few milliseconds of downtime and

minimal performance degradation, the results are limited only to Web servers. This can be

very different for other commonly used types of servers.

4.1.1 Reconfiguration Overhead: Impact on Performance

Table 3 shows the impact of VM migration of servers from different J2EE-based tiers on

the end-to-end mean response time of RUBiS computed over 3 minute intervals. Further-

more, because of interference due to shared resources, such migrations also impact the

46

Table 3: End-to-end response time (ms) during VM migration
Before Apache % Chg. Tomcat % Chg. MySQL % Chg.

Migration Migration Migration Migration
102.92 141.62 37.60 315.83 206.89 320.93 211.83

performance of other applications whose VMs run on the same physical hosts (see Sec-

tion 4.3.2). Cheaper actions such as CPU tuning can sometimes be used to achieve the

same goals, however. These results indicate that the careful use of adaptations is critical to

ensure that the benefits of runtime reconfiguration are not overshadowed by their costs.

This research work tackles the problem of optimizing resource allocation in consol-

idated server environments by proposing a runtime adaptation system that automatically

reconfigures multi-tier applications running in virtualized data centers while considering

adaptation costs and satisfying response-time-based SLAs even under rapidly changing

workloads. The problem is challenging since the costs and benefits of reconfigurations

are influenced not just by the software component targeted, but also by the reconfiguration

action chosen, the application structure, its workload, the original configuration, and the

application’s SLAs.

We use automatic off-line experimentation presented in Chapter 2.4.3 to construct cost

models that quantify the degradation in application performance due to reconfiguration ac-

tions. Using queuing models for predicting the benefit of a new configuration, we show how

the cost models allow the analysis of cost-benefit tradeoffs to direct the online selection of

reconfiguration actions. Then, we develop a best-first graph search algorithm based on the

models to choose optimal sequences of actions. Finally, experimental results using RUBiS

under different workloads derived from real Internet traces show that our cost-sensitive ap-

proach can significantly reduce SLA violations, and provide higher utility as compared to

both static and dynamic-reconfiguration-based approaches that ignore adaptation costs.

47

Adaptation Engine Workload
Monitor

Search
Algorithm

W

RT
U*

LQN
Model

Cost
Model

Application

Resource

Adapt. Action

Off-line
experiments

LQN
Solver

Cost
Mapping

Optimizer

ARMA
Filter

Adapt. Action

Utility
Function

Estimator

W

RT
Controller

E

uc

da

U c
a

c

a s !

p

p

Figure 17: Cost-sensitive approach

4.2 Approach
4.2.1 Overview: Cost-Aware Optimization

To address the tradeoff between performance benefit and adaptation cost, the adaptation

system estimates the cost and the potential benefit of each adaptation in terms of changes

in the utility. Since the utility is a function of the mean end-to-end response time in this

research work as shown in Equation 1 in Chapter 2.3, the cost of adaptation for a given

adaptation depends on its duration and impact on the applications’ response times. On the

other hand, the benefit of adaptation depends on the change in applications’ response times

and how long the system remains in the new configuration.

The adaptation system manages the shared host pool by performing various adaptation

actions such as CPU capacity tuning, VM live-migration, and component replication. As

shown in Figure 17, it consists of a workload monitor, estimator, and controller. The work-

load monitor tracks the workload at the ingress of the system as a set of transaction request

rates for each hosted application. The estimator consists of an LQN solver, a cost map-

ping, and an ARMA filter. The LQN solver uses layered queuing models [28] described in

48

Chapter 2.4.1 to estimate the mean response time RT s for each application given a work-

load W and configuration c. The cost mapping uses cost models described in Chapter 2.4.3

to estimate the duration d(a) and performance impact ∆RT s(a) of a given adaptation a.

Both types of models are constructed using the results of an off-line model parametriza-

tion phase. Finally, the ARMA (auto-regressive moving average) filter described in Chap-

ter 2.4.4 provides a prediction of the stability interval Ep that denotes the duration for

which the current workload will remain stable.

The controller invokes the estimator to obtain response time and cost estimates for an

action’s execution, which it uses to iteratively explore candidate actions. Using a search

algorithm and the utility function, the controller chooses the set of actions that maximizes

the overall utility. The search is guided by the upper bound on the utility U∗ calculated

using a previously-developed offline optimization algorithm described in Chapter 3.2.2 that

provides the configuration that optimizes utility for a given workload without considering

reconfiguration cost.

To balance the cost accrued over the duration of an adaptation with the benefits accrued

between its completion and the next adaptation, the algorithm uses a parameter, called

the control window, that indicates the time to the next adaptation (For a more specific

formulation of the problem, see Chapter 2.3). Adaptations occur only because of con-

troller invocations. If the controller is invoked periodically, the control window is set to the

fixed inter-invocation interval. If the controller is invoked on demand when the workload

changes, the control window is set to the stability interval prediction Ep provided by the

ARMA filter. An adaptation is only chosen if it increases utility by the end of the control

window. Therefore, a short control window produces a conservative controller that will

typically only choose cheap adaptation actions, while a longer control window allows the

controller to choose more expensive adaptations.

A two-level controller is implemented to achieve a balance between rapid but cheap

response to short term fluctuations and more disruptive responses to long term workload

49

Time

Measurement
Interval (mi)

Long term controller actions

Stability Interval

ck: Old Config.

mi

Short term controller actions

mi mi

ck+1 ck+2 ck+3

Figure 18: Control timeline

changes (Figure 18). The short term controller is invoked periodically once every measure-

ment interval, while the long term controller is executed on-demand when the workload

has changed more than a specified threshold since the last long term controller invoca-

tion. To avoid multiple controller executions in parallel, the timer tracking the short term

controller’s execution is suspended while the long term controller is active.

4.2.2 Search Algorithm

The goal of the search algorithm is to find a configuration (and the corresponding adaptation

actions) for which the utility U is maximized. Configurations must satisfy the following

allocation constraints: (a) for each application, only one replica from each tier can be

assigned to a host, (b) the sum of CPU allocations on a host can be at most 1, and (c) the

number of VMs per host is restricted to fit the available memory on the host.

Starting from a current configuration, a new configuration at each step is built by ap-

plying exactly one adaptation action as shown in Figure 19. The vertices represent system

configurations, and the edges represent adaptation actions. We frame the problem as a

shortest path problem that minimizes the negative of the utility, i.e., maximizes the actual

utility. Therefore, each edge has a weight corresponding to the negative of the utility ob-

tained while the action is being executed. If multiple action sequences lead to the same

configuration, the vertices are combined. Configurations can be either intermediate or can-

didate configurations as represented by the white and gray circles in the figure, respectively.

50

…
… …

…

…
…

do nothing

act1:migrate(tomcat)
-cost(d1,u1)

act2:cpu(db)+10%
-cost(d2,u2)

v0

exit

v1 v2

v3 v4 v5

vopt*

do
nothing

act3:add(www)
-cost(d3,u3)

act2
-cost(d2,u2)

act3
-cost(d3,u3)

Candidate configuration

Intermediate configuration

act1
-cost(d1,u1)

do nothing
-Uopt

-U1

-U3

Figure 19: Adaptation action search graph

A candidate configuration satisfies the allocation constraints, while an intermediate config-

uration does not, e.g., it may assign more CPU capacity to VMs than is available, requiring

a subsequent “Reduce CPU” action to yield a candidate configuration. Neither type of

configuration is allowed to have individual replicas with CPU capacity greater than one.

Only candidate configurations have a do nothing action that leads the goal state,

labeled as exit in the figure. The weight for the do nothing action in a configuration c

is the negative of the revenue obtained by staying in c until the end of the prediction interval

(i.e. −Uc), assuming that the best known path is used to get to c. Then, the shortest path

starting from the initial configuration to the exit state computes the best U , and represents

the adaptation actions needed to achieve optimal revenue. Intermediate configurations do

not have do nothing actions, and thus their utility is not defined.

Although the problem reduces to a weighted shortest path problem, it is not possible

to fully explore the extremely large configuration space. To tackle this challenge without

sacrificing optimality, we adopt an A* best-first graph search approach as described in [64].

The approach requires a “cost-to-go” heuristic to be associated with each vertex of the

51

graph. The cost-to-go heuristic estimates the shortest distance from the vertex to the goal

state (in our case, the exit vertex). It then explores the vertex for which the estimated

cost to get to the goal (i.e., the sum of the cost to get to the vertex and the cost-to-go) is the

lowest. In order for the result to be optimal, the A* algorithm requires the heuristic to be

“permissible” in that it underestimates the cost-to-go.

As the cost-to-go heuristic, we use the utility u∗ of the optimal configuration c∗ that is

produced by our previous work in Chapter 3 using bin-packing and gradient-search tech-

niques. This utility value represents the highest rate at which utility can be generated for the

given workload and hardware resources. However, it does not take into account any costs

that might be involved to change to that configuration, and thus overestimates the utility

that can practically be obtained in any given situation. Therefore, the utility U calculated

by using u∗ instead of accrued utilities during the rest of control window is guaranteed to

overestimate the true reward-to-go (i.e., underestimate cost-to-go), and thus forms a per-

missible heuristic.

Input: ci: current config., Wi: predicted workload, CW : control window length
Output: Ai

opt - the optimized adaptation action sequence
(c∗, u∗)←UtilityUpperBound (Wi)
if c∗ = ci then return [anull] (do nothing)
v0.(aopt, c, U(a), U,D)← (φ, ci, 0, u∗, 0); V ← {v0}
while forever do

v ← argmaxv′∈Vv
′.U

if v.aopt[last] = anull then return v.aopt

foreach a ∈ A ∪ anull do
vn ← v, vn.aopt ← v.aopt + a
if a = anull then

uc ← LQNS (Wi, v
n.c); vn.U ← (CW − vn.D) · uc + vn.U(a)

else
vn.c← NewConfig (vn.c, a); (d(a), u(a))←Cost (vn.c, a,Wi)
vn.U(a)← vn.U(a) + d(a) · u(a); vn.D ← vn.D + d(a);
vn.U ← (CW − vn.D) · u∗ + vn.U(a)

if ∃v′ ∈ V s.t. v′.c = vn.c then
if v′.U > vn.U then v′ ← vn

else
V ← V ∪ vn

Algorithm 2: Optimal adaptation search

52

The resulting search algorithm is shown in Algorithm 3. After using the UtilityUpper-

Bound function to compute the cost-to-go heuristic u∗ for the initial configuration v0, it

begins the search. In each iteration, the open vertex with the highest value of U is explored

further. New open vertices are created by applying each allowed adaptation action to the

current vertex and updating v.aopt, the optimal list of actions to get to v. When applying

the do nothing action, the algorithm invokes the LQNS solver to estimate the response

times of the current configuration and computes the utility. Otherwise, it invokes NewCon-

fig to produce a new configuration and uses the cost model to compute both the adaptation

cost U(a) and the overall utility U as explained above. The algorithm terminates when

a.null, i.e., “do nothing”, is the action chosen.

4.2.3 Reducing the Search Space

The running time of the algorithm depends on the number of configurations explored by

the search. The algorithm avoids lengthy sequences of expensive actions due to the opti-

mal utility bound. However, to prevent it from getting stuck exploring long sequences of

cheap actions such as CPU allocation changes, we have implemented several techniques

to significantly reduce the number of states generated without affecting the quality of the

adaptations produced. The first is depth limiting (DL), which limits the search of paths to

those of no more than n adaptation actions and effectively makes the search space finite.

In our experiments, we chose n = 7 as the largest value that ensured that the controller

always produced a decision within 30 seconds. The second is partial order reduction (PO),

which addresses the issue that CPU tuning actions can interleave in many ways to pro-

duce the same results, but require different intermediate states, e.g., WS+10%, WS+10%,

DB-10% and DB-10%, WS+10%, WS+10%. To prevent multiple inter-leavings without

affecting the actual candidate configurations, we consider all CPU increases and decreases

in a strict canonical order of components. The final technique is action elimination (AE),

which eliminates known poor action choices, for example, disabling add replica actions

53

Table 4: State space reduction
Technique States Time (sec)
Naive 83497 3180
DL 19387 1420
DL+PO 599 210
DL+PO+AE 62 18

when the workload for an application has diminished.

Table 4 shows the magnitude of reductions that are achievable with these techniques us-

ing an experiment in which 10 VMs across two applications were being optimized. Adding

more replicas to an application does not affect the size of the state-space. However, adding

more applications does. While these results indicate that the search algorithm can be made

fast enough to be used in an on-line manner while still retaining a high quality of adapta-

tion for deployments of small to moderate size, scalability is potentially a problem for large

deployments.

4.3 Evaluation Results

The experimental results are divided into three parts. In the first part, we describe the

testbed and workloads used, and then present the measurements used in the adaptation cost

models. In the second part, we evaluate the accuracy of the individual controller compo-

nents in the testbed: the LQNS performance models, the cost models, and the ARMA-based

workload stability predictor. Finally, in the third part, we evaluate our approach holistically

in terms of the quality of the adaptation decisions the controller produces and their impact

on application SLAs.

4.3.1 Experimental Setup

Our target system is a three-tier version of the RUBiS application. The application consists

of Apache web servers, Tomcat application servers, and MySQL database servers running

54

on a Linux-2.6 guest OS using the Xen 3.2 virtualization platform. The hosts are com-

modity Pentium-4 1.8GHz machines with 1GB of memory running on a single 100Mbps

Ethernet segment. Each VM is allocated 256MB of memory, with a limit of up to 3 VMs

per host. The Xen Domain-0 hypervisor is allocated the remaining 256MB. The total CPU

capacity of all VMs on a host is capped to 80% to ensure enough resources for the hy-

pervisor even under loaded conditions. Our test-bed is built by a small cluster of hosting

machines as illustrated in Figure 4 in Chapter 2.2. Five machines are used to host our test

applications, while two are used as client emulators to generate workloads. One machine is

dedicated to hosting dormant VMs used in server replication, and another one is used as a

storage server for VM disk images. Finally, we run the adaptation engine on a separate ma-

chine with 4 Intel Xeon 3.00 GHz processors and 4 GB RAM. For MySQL replication, all

tables are copied and synchronized between replicas. The Tomcat servers are configured to

send queries to the MySQL replicas in a round-robin manner. We deploy two applications

RUBiS-1 and RUBiS-2 in a default configuration that evenly allocates resources among all

components except for the database servers, which are allocated an additional 20% CPU

to avoid bottlenecks. The target response time (84 ms in these experiments) was derived

experimentally as the mean response time across all transactions of a single RUBiS appli-

cation running in isolation in the initial configuration driven by a constant workload equal

to half of the design workload range of 5 to 80 requests/sec.

During experiments, we drive the target applications using two workloads, a time-of-

day workload and a flash crowd workload. The time-of-day workload was generated based

on the Web traces from the 1998 World Cup site [5] and the traffic traces of an HP cus-

tomer’s Internet Web server system [23]. We have chosen a typical day’s traffic from each

of these traces and then scaled them to the range of request rates that our experimental

setup can handle. Specifically, we scaled both the World Cup requests rates of 150 to 1200

requests/sec and the HP traffic of 2 to 4.5 requests/sec to a range of 5 to 80 requests/sec.

Since our workload is controlled by adjusting the number of simulated clients, we created

55

0

10

20

30

40

50

60

70

80

15
:0

0
15

:1
9

15
:3

8
15

:5
7

16
:1

6
16

:3
5

16
:5

4
17

:1
3

17
:3

2
17

:5
1

18
:1

0
18

:2
9

18
:4

8
19

:0
7

19
:2

6
19

:4
5

20
:0

4
20

:2
3

20
:4

2
21

:0
1

21
:2

0
21

:3
9

21
:5

8
22

:1
7

RUBiS-1
RUBiS-2

Time

R
eq

ue
st

 r
at

e
(p

er
 se

c)

Figure 20: Time-of-day workload

0

10

20

30

40

50

60

70

80

15
:0

0
15

:0
4

15
:0

8
15

:1
2

15
:1

6
15

:2
0

15
:2

4
15

:2
8

15
:3

2
15

:3
6

15
:4

0
15

:4
4

15
:4

8
15

:5
2

15
:5

6
16

:0
0

16
:0

4
16

:0
8

16
:1

2
16

:1
6

16
:2

0
16

:2
4

RUBiS-1
RUBiS-2

Time

R
eq

ue
st

 r
at

e
(p

er
 se

c)

Figure 21: Flash crowd workload

a mapping from the desired request rates to the number of simulated RUBiS clients. Fig-

ure 20 shows these scaled workloads for the two RUBiS applications from 15:00 to 22:30,

where RUBiS-1 uses the scaled World Cup workload profile and RUBiS-2 uses the scaled

HP workload profile. The flash crowd workload shown in Figure 21 uses the first 90 min-

utes of the time-of-day workloads, but has an additional load of over 50 requests per second

added to RUBiS-2 around 15:30 for a short interval.

56

200
300

400
500

0
100
200
300
400
500
600

100
200

300
400

500

!R
es

po
ns

e
T

im
e

(m
se

c)

Users
(Target App)

Users
(Shared App)

(a) Target App ∆RT

200
300

400
500

0

50

100

150

100
200

300
400

500

!R
es

po
ns

e
T

im
e

(m
se

c)

Users
(Target App)

Users
(Shared App)

(b) Shared App ∆RT

Figure 22: Delta response times of MySQL live-migration

200
300

400
500

0
10000
20000
30000
40000
50000
60000
70000

100
200

300
400

500

A
da

pt
at

io
n

L
en

gt
h

(m
se

c)

Users
(Target App)

Users
(Shared App)

Figure 23: Adaptation duration of MySQL live-migration

4.3.2 Adaptation Costs: Performance Degradation

To measure adaptation costs, we deployed both applications and used the methodology de-

scribed in Chapter 2.4.3. One application was the “target application” for the action, while

the other was the “shared application” that was co-located with the target application, but

was not reconfigured. We measured the adaptation length d(a) and response time impact

∆RT s(a) for all adaptation actions and combinations of workloads ranging from 100 to

500 users for both the target and shared application.

For example, Figures 22 and 23 show ∆RT s(a) and d(a) for the target application

when subjected to actions affecting the MySQL server and when the workload for both ap-

plications is increased equally. As is seen, ∆RT for adding and removing MySQL replicas

increases as workloads increase, but the adaptation durations are not greatly affected. The

57

0

50

100

150

200

250

300

MySQL Tomcat Apache
R

es
po

ns
e

Ti
m

e
(m

se
c)

Before

Overall avg.

Pre-copy avg.

Figure 24: Live migration costs of various servers

costs of CPU reallocation are very small in terms of both ∆RT and d(a).

The most interesting results were those for live migration, which has been proposed

in the literature as a cheap technique for VM adaptation (e.g., [20]). However, we see that

live-migration can have a significant impact on a multi-tier application’s end-to-end respon-

siveness both in magnitude and in duration. For each of the three server types, Figure 24

shows the mean end-to-end response time for RUBiS measured before migration of that

server, over the entire migration duration, and during the “pre-copy” phase of migration.

This figure shows that although live-migration is relatively cheap for the Apache server, it

is very expensive for both the Tomcat and MySQL servers. Moreover, most of this over-

head incurs during the pre-copy phase. During this phase, dirty pages are iteratively copied

to the target machine at a slow pace while the VM is running. In the subsequent stop-

and-copy phase, the VM is stopped and the remaining few dirty pages are copied rapidly.

Claims that VM migration is “cheap” often focus on the short (we measured it to be as

low as 60msec) stop-and-copy phase when the VM is unavailable. However, it is the much

longer pre-copy phase with times averaging 35 sec for Apache, 40 sec for MySQL, and 55

sec for the Tomcat server that contributes the most to end-to-end performance costs.

Migration also affects the response time of other VMs running on the same host. Fig-

ures 22(a) and 22(b) show the ∆RT for the target and shared applications, respectively

during MySQL migration. While increases in the shared application’s number of users

58

Table 5: Variance of adaptation costs for MySQL migration
Workload Action Length RUBiS-1 ∆RT RUBiS-2 ∆RT
100:500 2.34% 2.95% 14.52%
300:500 7.45% 10.53% 17.14%
500:500 8.14% 6.79% 101.80%

(i.e., workload) impact the target application’s response time, the target application mi-

gration has an even more significant impact on the shared application, especially at high

workloads. Figure 23 shows how the adaptation duration increases with the target workload

due to an increase in the working set memory size.

In Table 5, we also show the standard deviations for these costs as percentages of the

mean and calculated across all the random configurations used for measurement. The vari-

ances are quite low indicating that exact knowledge of the configuration does not signif-

icantly impact migration cost, and validating our cost model approximations. The only

outlier we saw was for the response time of RUBiS-2 when two MySQL servers were

co-located under high load.

4.3.3 Model Prediction Accuracy

We evaluate the accuracy of the LQN models and the cost models in a single experiment by

using the first 220 minutes from the time-of-day workloads. Specifically, at each controller

execution point and for each application, we recorded the response time predicted by the

models (RT s) for the next control interval and then compared it against the actual measured

response time over the same time period. This comparison includes both the predictions of

adaptation cost and performance. Figure 25 shows the results for each application. Despite

the simplifications made in our cost models, the average estimation error is quite good at

around 15%, with the predictions being more conservative than reality.

Second, we evaluated the accuracy of our stability interval estimation. To do this, the

59

0

20

40

60

80

100

120

140

15
:0

2
15

:1
4

15
:2

6
15

:3
8

15
:5

0
16

:0
2

16
:1

4
16

:2
6

16
:3

8
16

:5
0

17
:0

2
17

:1
4

17
:2

6
17

:3
8

17
:5

0
18

:0
2

18
:1

4
18

:2
6

18
:3

8
18

:5
0

19
:0

2
19

:1
4

19
:2

6
19

:3
8

R
es

po
ns

e
tim

e
(m

se
c)

Time

Exp.
Model

0

50

100

150

200

250
15

:0
0

15
:1

2
15

:2
4

15
:3

6
15

:4
8

16
:0

0
16

:1
2

16
:2

4
16

:3
6

16
:4

8
17

:0
0

17
:1

2
17

:2
4

17
:3

6
17

:4
8

18
:0

0
18

:1
2

18
:2

4
18

:3
6

18
:4

8
19

:0
0

19
:1

2
19

:2
4

19
:3

6

R
es

po
ns

e
tim

e
(m

se
c)

Time

Exp.
Model

Figure 25: Prediction accuracy for both applications under time-of-day workload

ARMA filter is first trained using 30 minutes of the respective workloads. As shown in

Figure 26, the filter is executed 68 times during the time-of-day experiment and provides

effective estimates. The absolute prediction error against the measured interval length is

around 15% for the time-of-day workloads. Meanwhile, the flash crowd workload causes

an increase in the estimation error of the ARMA filter due to the short and high unexpected

bursts. The results are presented in Figure 27. The error reaches approximately 23% be-

cause the filter over-estimates the length until the 5th stability interval when the flash crowd

appears. However, the estimation quickly converges on the lower length and matches the

monitored length of the stability interval until the 14th interval, when the flash crowd goes

away and the filter starts to under-estimate the length. Even under such relatively high

prediction errors, we show below that our cost-sensitive strategy works well.

60

0

2

4

6

8

10

12

14

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67

monitored
estimated

In
te

rv
al

 (m
in

)

Prediction window

Figure 26: Stability interval prediction errors in time-of-day workload

0

2

4

6

8

10

12

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

monitored estimated

In
te

rv
al

 (m
in

)

Prediction window

Figure 27: Stability interval prediction errors in flash crowd workload

4.3.4 Controller Evaluation

We evaluate our Cost-Sensitive (CS) strategy under both time-of-day workload and flash

crowd scenarios by comparing its response time and utility against the following strategies:

• Cost Oblivious(CO): reconfigures the system to the optimal configuration whenever

the workload changes, and uses the optimal configurations generated using our pre-

vious work (see Chapter 3).

• 1 Hour: reconfigures the system to the optimal configuration periodically at the rate

of once per hour; this strategy reflects the common policy of using large consolidation

windows to minimize adaptation costs.

61

• No Adaptation(NA): maintains the default configuration throughout the experiment.

• Oracle: provides an upper bound for utility by optimizing based on perfect knowl-

edge of future workload and by ignoring all adaptation costs.

We use the current measured workload at the controller execution point to be the pre-

dicted workload for the next control window for the CS and CO strategies. The measure-

ment interval is set to 2 minutes to ensure quick reaction in response to workload changes.

The workload monitor gets the workload for each measurement interval by parsing the

Apache log file. Finally, we choose a narrow workload band b of 4 req/sec to ensure that

even small workload changes will cause the controller to consider taking action.

0

50

100

150

200

250

15
:0

0
15

:1
8

15
:3

6
15

:5
4

16
:1

2
16

:3
0

16
:4

8
17

:0
6

17
:2

4
17

:4
2

18
:0

0
18

:1
8

18
:3

6
18

:5
4

19
:1

2
19

:3
0

19
:4

8
20

:0
6

20
:2

4
20

:4
2

21
:0

0
21

:1
8

21
:3

6
21

:5
4

22
:1

2

NA
CS
CO

R
es

po
ns

e
tim

e
(m

s)

Time

Figure 28: Response time comparison in time-of-day workload

End-to-End Response Time. First, we compare the mean end-to-end response time for

all the strategies as measured at each measurement period. The results for the RUBiS-1

application are shown for the CS, CO, and NA strategies in Figures 28 and 29; the oracle

and 1-Hour plots are omitted for legibility. Figure 28 shows the results for the time-of-day

workload. Predictably, the NA strategy is very sensitive to workload changes and shows

large spikes once the workload intensity reaches the peak in both applications. For the CO

and CS strategies, a series of spikes corresponds to when the adaptation engine triggers

62

adaptations. The CS strategy has relatively short spikes and then the response time stabi-

lizes. Meanwhile, the CO strategy has more and larger spikes than the CS strategy. This

is because the CO strategy uses more adaptation actions, including relatively expensive

ones such as live-migration of MySQL and Tomcat and MySQL replication, while the CS

strategy uses fewer and cheaper actions, especially when the estimated stability interval is

short. Although the response time of the CO strategy is usually better than the CS strategy

after each adaptation has completed, the overall average response time of CS is 47.99 ms,

which is much closer to the oracle’s result of 40.91ms than the CO, 1-Hour, and NA values,

which are 58.06 ms, 57.41 ms, and 71.18 ms respectively.

0

50

100

150

200

250

15
:0

0
15

:0
4

15
:0

8
15

:1
2

15
:1

6
15

:2
0

15
:2

4
15

:2
8

15
:3

2
15

:3
6

15
:4

0
15

:4
4

15
:4

8
15

:5
2

15
:5

6
16

:0
0

16
:0

4
16

:0
8

16
:1

2
16

:1
6

16
:2

0
16

:2
4

NA
CS
CO

R
es

po
ns

e
tim

e
(m

s)

Time

Figure 29: Response time comparison in flash crowd workload

Similarly, for the flash crowd scenario, although the ARMA filter over- and under-

estimates several stability intervals, the CS strategy’s mean response time of 57.68 ms

compares favorably with the CO, 1-Hour, and NA values of 67.56 ms, 70.42 ms, and 116.35

ms, respectively, and is closer to the oracle result of 40.14ms as shown in Figure 29. Not

surprisingly, the difference between CS and oracle is larger for the flash crowd workload

than the time-of-day one because the ARMA filter is wrong more often in its stability

interval predictions. Also, the 1-Hour strategy does more poorly in the flash crowd case

because it is unable to respond to the sudden workload spike in time. The results for

63

0

50

100

150

200

250

15
:0

0
15

:0
8

15
:1

6
15

:2
4

15
:3

2
15

:4
0

15
:4

8
15

:5
6

16
:0

4
16

:1
2

16
:2

0

Time C
um

ul
at

ed
 C

PU
 a

llo
ca

tio
n

(%
)

0

50

100

150

200

250

15
:0

0
15

:0
8

15
:1

6
15

:2
4

15
:3

2
15

:4
0

15
:4

8
15

:5
6

16
:0

4
16

:1
2

16
:2

0

MySQL Tomcat

Time

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

15
:0

0
15

:0
8

15
:1

6
15

:2
4

15
:3

2
15

:4
0

15
:4

8
15

:5
6

16
:0

4
16

:1
2

16
:2

0

RUBiS-2 RUBiS-1
Time

C
PU

 a
llo

ca
tio

n
fr

ac
tio

n

Figure 30: CPU allocations of oracle

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

15
:0

0
15

:0
8

15
:1

6
15

:2
4

15
:3

2
15

:4
0

15
:4

8
15

:5
6

16
:0

4
16

:1
2

16
:2

0

RUBiS-2 RUBiS-1
Time

C
PU

 a
llo

ca
tio

n
fr

ac
tio

n

0

50

100

150

200

250

15
:0

0
15

:0
8

15
:1

6
15

:2
4

15
:3

2
15

:4
0

15
:4

8
15

:5
6

16
:0

4
16

:1
2

16
:2

0

Time C
um

ul
at

ed
 C

PU
 a

llo
ca

tio
n

(%
)

0

50

100

150

200

250

15
:0

0
15

:0
8

15
:1

6
15

:2
4

15
:3

2
15

:4
0

15
:4

8
15

:5
6

16
:0

4
16

:1
2

16
:2

0

MySQL Tomcat Apache

Time

Figure 31: CPU allocations of the CS strategy

RUBiS-2 were similar. Thus, the CS controller is able to outperform the CO strategy over

the long run by trading-off short-term optimality for long-term gain.

To illustrate how the different strategies affect adaptation behaviors in the flash crowd

scenario, we look at resource allocation for the CS strategy versus oracle. Figures 30 and

31 show the CPU allocation between applications (the leftmost plot in both figures) as

well as among their components over time (the middle plot representing RUBiS-1 and the

Table 6: Total number of actions triggered
Action CS CO
CPU Increase/Decrease 14 36
Add (MySQL replica) 1 4
Remove (MySQL replica) 1 4
Migrate (Apache replica) 4 10
Migrate (Tomcat replica) 4 10
Migrate (MySQL replica) 0 2

64

rightmost plot representing RUBiS-2 in both figures). As shown in these figures, oracle

moves more CPU resources between the two applications and also among the components

in each application using more expensive actions than the CS strategy. In particular, when

the load to RUBiS-2 suddenly increases around 15:30, oracle removes a MySQL replica

of RUBiS-1 and adds a MySQL replica to RUBiS-2. Note that, if a component has more

than 100% CPU allocation (e.g., MySQL in middle and right most graphs of Figure 30), it

is replicated and uses more than one physical machine. Meanwhile, the CS strategy also

removes the MySQL replica of RUBiS-1, but after that it only tunes the CPU allocation

of Tomcat servers, which are much cheaper actions than adding a replica to RUBiS-2.

The middle graph of Figure 31 shows that the CPU allocation of MySQL in RUBiS-1 is

reduced from 120% to 80% at 15:36, but that the CPU allocation of MySQL in RUBiS-2

(see the rightmost graph) is not changed. Table 6 summarizes the actions used to adapt

configurations by the CS and CO strategies for the flash crowd scenario. Although the CS

strategy uses fewer actions than the CO strategy, its average response time is lower than

that of the CO strategy.

-150

-100

-50

0

50

100

150

15
:0

0
15

:1
8

15
:3

6
15

:5
4

16
:1

2
16

:3
0

16
:4

8
17

:0
6

17
:2

4
17

:4
2

18
:0

0
18

:1
8

18
:3

6
18

:5
4

19
:1

2
19

:3
0

19
:4

8
20

:0
6

20
:2

4
20

:4
2

21
:0

0
21

:1
8

21
:3

6
21

:5
4

22
:1

2

NA CS CO

U
til

ity

Time

Figure 32: Utility comparison in time-of-day workload

Utility. Using the monitored request rates and response times, we compute the utility of

each strategy at every measurement interval to show the impact of adaptation actions on

65

the overall utility. For the time-of-day workload, Figure 32 shows that both the CO and

CS strategies have spikes when adaptation actions are triggered. However, the CO strategy

has more and much deeper spikes than the CS strategy including some that lead to negative

utility by violating SLAs of both applications. Meanwhile, the CS strategy chooses actions

that do not violate SLAs.

-100

-50

0

50

100

150

15
:0

0
15

:0
4

15
:0

8
15

:1
2

15
:1

6
15

:2
0

15
:2

4
15

:2
8

15
:3

2
15

:3
6

15
:4

0
15

:4
4

15
:4

8
15

:5
2

15
:5

6
16

:0
0

16
:0

4
16

:0
8

16
:1

2
16

:1
6

16
:2

0
16

:2
4

NA CS CO

U
til

ity

Time

Figure 33: Utility comparison in flash crowd workload

The utility for the flash crowd scenario in Figure 33 similarly shows that the CS strategy

has a couple of spikes corresponding to the onset and exit of the flash crowd. However,

these spikes are less severe than those of the CO strategy. The CS strategy violates the

SLA of RUBiS-1 only in the measurement periods where it removes or adds a MySQL

replica of RUBiS-1 (when the flash crowd starts and then after it disappears), while the CO

strategy violates SLAs of both applications in many periods.

We also computed the total utility accumulated over the entire experiment duration.

The values for all the different strategies and workloads are shown in Table 7. Because the

absolute value of the utility can differ greatly depending on the exact reward, penalty, and

response time threshold values used in the SLA, it is more important to note the relative

ordering between the different approaches. As can be seen, the CS strategy performs the

66

Table 7: Cumulative utility for all strategies
Workload Oracle CS 1 Hour CO NA
Time of day 16535 15785 10645 9280 2285
Flash Crowd 3345 3120 2035 1620 -630

best and has a utility very close to the oracle for both workloads. The NA strategy pre-

dictably performs the worst. While neither the CO nor the 1-Hour strategy are competitive

with CS, it is interesting to note that CO performs worse than 1-Hour. This is because CO

is so aggressive in choosing optimal configurations that it incurs too much adaptation cost

compared to 1-Hour, which limits adaptations to once every hour. The higher frequency of

response time spikes for the CO and NA approaches indicates that this ordering is not likely

to change even if a different utility function is used. These results demonstrate the value of

taking workload stability and costs into account when dynamic adaptations are made.

4.4 Work Related to Cost-Sensitive Adaptation

The primary contributions of this research work are (a) a model for comparing on a uniform

footing dramatically different types of adaptation actions with varying cost and application

performance impacts (e.g., CPU tuning vs. VM migration), and (b) considering workload

stability to produce adaptations that are not necessarily optimal in the short term, but pro-

duce better results over the long run when workload variations are taken into account. We

are not aware of any other work that addresses these issues, especially in the context of

multi-tier systems with response time SLAs.

Several papers address the problem of dynamic resource provisioning [4, 15, 82, 8, 86,

88, 74]. The authors in [74] even use queuing models to make decisions that preserve

response time SLAs in multi-tier applications. However, none of these papers consider

the performance impact of the adaptations themselves in their decision making process.

The approach proposed in [69] learns the relationships between application response time,

workload, and adaptation actions using reinforcement learning. It is implicitly able to learn

67

adaptation costs as a side-benefit. However, it cannot handle never-before seen configura-

tions or workloads, and must spend considerable time relearning its policies in case of even

workload changes.

Recently, some efforts including [48, 83, 83, 75, 31] address adaptation costs. Only

one adaptation action, VM migration, is considered in [48], [83], and [32]. These papers

propose controllers based on online vector-packing, utilization to migration cost ratios, and

genetic algorithms, respectively, to redeploy components whose resource utilization causes

them to fit poorly on their current hosts while minimizing the number or cost of migrations.

Migrations are constrained by resource capacity considerations, but once completed, they

are assumed not to impact the subsequent performance of the application. Therefore, the

approaches cannot be easily extended to incorporate additional action types since they pos-

sess no mechanisms to compare different performance levels that could result from actions

such as CPU tuning or component addition. pMapper focuses on optimizing power given

fixed resource utilization targets produced by an external performance manager [75]. It

relies solely on VM migration, and propose a variant of bin-packing that can minimize the

migration costs while discarding migrations that have no net benefit. It also does not pro-

vide any way to compare the performance of different types of actions that achieve similar

goals. Finally, [31] examines an integer linear program formulation in a grid job scheduler

setting to dynamically produce adaptation actions of two types - VM migration and appli-

cation reconfiguration - to which users can assign different costs. However, there is again

no mechanism to compare the different performance benefits of the different actions, and

the user must resort to providing a manual weight to prioritize each type of action.

In summary, the above “cost aware” approaches only minimize adaptation costs while

maintaining fixed resource usage levels. They do not provide a true cost-performance trade-

off that compares different levels of performance resulting from different kinds of actions.

Furthermore, none of the techniques consider the limited lifetime that reconfiguration is

68

likely to have under rapidly changing workloads and adjusts its decisions to limit adap-

tation costs accordingly. In that sense, they are more comparable to our “cost oblivious”

policy which reconfigures the system whenever it finds a better configuration for the current

workload, irrespective of future trends.

The only work we are aware of that explicitly considers future workload variations by

using a limited lookahead controller (LLC) is presented in [51]. The algorithm balances

application performance with energy consumption by switching physical hosts on and off.

However, it only deals with a single type of coarse grain adaptation action, and requires

accurate workload predictions over multiple windows into the future, something that is

hard to get right. In contrast, our approach does not require any workload predictions, but

can benefit from much simpler to obtain estimates of stability windows if they are available.

Moreover, it is not clear whether it is practical to extend the LLC approach to allow multiple

types of actions with a range of granularities.

Energy saving is considered an explicit optimization goal in [51] and [75] and is real-

ized by shutting down machines when possible. Our approach does not factor in the cost of

energy and therefore does not consider power cycling actions. CPU power states are virtu-

alized in [56] to produce “soft power states” exported by an hypervisor to its VMs. In this

approach, each VM implements its own power management policy through the soft-states,

and the management framework arbitrates requests from multiple VMs to either perform

frequency scaling, or VM capacity scaling along with consolidation. It leaves policy de-

cisions, i.e., (a) how performance goals and workload are mapped to resource targets, and

(b) when and which VMs are consolidated to which physical hosts, to the application to

decide. Our goal is to automatically produce such policies.

4.5 Summary

In this research work, we have shown that runtime reconfiguration actions such as virtual

machine replication and migration can impose significant performance costs in multi-tier

69

applications running in virtualized data center environments. To address these costs while

still retaining the benefits afforded by such reconfigurations, we developed an adaptation

system for generating cost-sensitive adaptation actions using a combination of predictive

models and graph search techniques. Through extensive experimental evaluation using real

workload traces from Internet applications, we have showed that by making smart decisions

on when and how to act, the approach can significantly enhance the satisfaction of response

time SLAs compared to approaches that do not take adaptation costs into account.

70

CHAPTER V

MULTI-DIMENSIONAL OPTIMIZATION

In our prior research work presented in Chapters 3 and 4, we have addressed the optimiza-

tion problem only related to the application performance. The research work described in

this chapter integrates the power consumption into the optimization formulation since the

power consumption has become equally important for cloud computing as is performance.

This chapter presents, first, the tradeoff between performance and power consumption, and

shows experimental results that illustrate various adaptation overheads in the context of not

only the end-to-end response time but also additional power consumption. Then, the multi-

dimensional optimization approach, referred to as Mistral, is discussed in detail. Finally,

we show the evaluation result of our approach by comparing it with other optimization

approaches.

5.1 Problem Statement

Power consumption has recently become one of the top concerns in data center and cloud

computing environments. With the rapid growth of data center deployments at scale, the

total power consumption has doubled from 2000 to 2005. This significant power con-

sumption rate of data centers has directly been caused by deploying the large number of

inexpensive hosting servers [2, 1]. The rated power consumption of hosting servers has

increased by 10 times over the past ten years. A recent Internet Data Center (IDC) report

has estimated the worldwide spending on enterprise power to be more than $30 billion and

likely to even surpass spending on new server hardware. Therefore, the performance is no

longer only criterion for optimization and management in such environments. In response

to the increased importance of the power savings, cloud infrastructure providers need to

factor in the power consumption when managing deployed resources.

71

0
5

10
15
20
25

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100
400
800

Time (5-sec interval)

D
el

ta
 W

at
ts

 (%
)

(a) Power consumption

-50
0

50
100
150
200
250
300

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110

100
400
800

D
el

ta
 R

es
. T

im
e

(%
)

Time (5-sec interval)

(b) Response time

Figure 34: Costs of a single VM live-migration

5.1.1 Power-Performance Tradeoff

Server consolidation based on virtualization technology has become a key ingredient for

improving power efficiency and resource utilization in cloud computing environments.

Through adaptation actions such as VM migration and resource capacity control, cloud

infrastructure providers not only accommodate demand spikes by temporarily taking re-

sources away from underutilized applications, but also save power by consolidating servers

into fewer number of resources. However, the indiscriminate use of server consolidation

can adversely affect the application performance because of the inherent tradeoff between

power consumption and performance. Thus, it must be used very carefully in such envi-

ronments that provide a wide array of performance-sensitive services such as online portals

and enterprise applications.

5.1.2 Reconfiguration Overhead: Impact on Power and Performance

In addition to the power-performance tradeoff, infrastructure providers must also consider

the tradeoff between the cost of an adaptation and its benefit, since workload varies dy-

namically, and runtime consolidation actions such as migration are not free. For example,

72

Figure 34 shows the increase in power consumption and end-to-end response time of a

3-tier application as a function of time during the live migration of a single of the applica-

tion’s Xen-based VM. The VM migration is initiated at the 25sec mark in the figure. The

measurements, shown for three different workload intensities of 100, 400, and 800 concur-

rent user sessions, indicate that the impact is not only significant, but that it depends on the

workload and is incurred over a substantial period of time.

Coupled with a changing workload, adaptation costs can lead to complete rethinking of

the best strategy for power savings. For example, when the workload is rapidly changing,

it may be better to suffer a slight performance degradation rather than trigger an expensive

migration whose costs may never be recouped before another adaptation is needed. Or, a

cheap but modest change such as the redistribution of resources amongst VMs may be a

more effective than powering up a new host. Additionally, the power cost and decision de-

lay incurred by the system making the adaptation decision must also be considered. Often

it may be better to make a suboptimal decision quickly rather than invest time and energy

searching for savings that are not enough to recoup the investment. Therefore, infrastruc-

ture providers must account for balancing steady state performance and power with the

dynamic adaptation costs under changing workloads.

5.2 Approach

In this dissertation, a multi-dimensional optimization approach is developed to balance

power consumption, application performance, and transient power/performance costs due

to adaptation actions and decision making in a single unified framework. By doing so,

it can dynamically choose optimal adaptation actions from a variety of actions with dif-

fering effects in a multiple multi-tier application, dynamic workload environment. The

cost-sensitive adaptation approach described in Chapter 4 is extended to incorporate the

cost of power in both steady state and during adaptations, and enable significant power

savings by migrating applications away from idle resources and shutting them down only

73

Data Center Level
App. Migration,
Rack power on/off

Rack Level
VM migration,
VM replication,
Machine power on/off

Machine Level
Resource capping

Cloud Level
Disk image migration

Figure 35: Architecture of 4-level control hierarchy

when appropriate. Also, this new approach provides an ability to factor the optimization

system’s power consumption and decision delays into its decision making. Finally, the

adaptation system is constructed as a scalable, multi-level hierarchical system that can deal

with a large number of applications and hosts, and also with adaptation actions at multiple

time-scales ranging from a few milliseconds to tens of minutes.

5.2.1 System Architecture

We assume that a large-scale cloud computing environment can be built as a resource hi-

erarchy (see Chapter 2.2). The optimization system is then deployed in the resource hier-

archy as the form of a multi-level hierarchical control scheme with multiple instances of

controllers. Each controller manages different subsets of hosts and applications, and op-

erates at different time-scales. Figure 35 illustrates an example control hierarchy and the

types of available adaptation actions generated at each level. The higher level controller

can generate all types of actions that can be generated at the lower level controllers. For

example, a rack level controller manages a small number of machines and applications by

triggering VM migration and resource capping that can be triggered by a machine level

controller. At the data center level, a controller manages all machines hosted in multiple

74

racks by triggering application migration and VM migration.

To understand how the controllers interact, consider that an adaptation action is only

chosen by a controller if it is anticipated to increase utility over the next control window

CWi time units. From Equation 4 in Chapter 2, it can be seen that as the stability interval

becomes longer, adaptation is less frequent, but the benefits of adaptation can accrue for

longer periods. Thus, longer stability intervals make increasingly disruptive actions with

potentially more significant benefits (e.g., application migrations, power cycling) worth-

while, while short stability intervals may rule out all but the quickest actions (e.g., CPU

capacity tuning). Stability intervals can be made longer by making the workload bands

wider (i.e., allowing a larger change in workload before adaptation is needed). Therefore,

the lower level controllers are configured with very narrow workload bands and coupled

with their limited target domain. These controllers may be invoked very rapidly, but only

produce modest changes to ensure quick decision times. Higher level controllers have

increasingly larger workload bands, longer times between invocation (e.g., hourly, daily,

weekly), larger sets of more potent actions to choose from, more hosts and applications to

consider, and correspondingly take longer to make their decisions.

Figure 36 illustrates the architecture of a single controller. The architecture consists of

a set of “predictor modules” and an “optimizer module.” The predictor modules, which in-

clude the Performance Manager, the Power Consolidation Manager, the Cost Manager, and

the Workload predictor (ARMA filter), use analytical models described in Chapter 2.4 to

predict utility values of new configurations and actions being considered by the optimizer.

Given a configuration c and workload W , the Performance and Power Consolidation Man-

agers predict the corresponding application utility and power utility values. When provided

with a list of actions in addition to c and W , the Cost Manager predicts the action costs,

while the ARMA filter uses previous workload history to predict the stability intervals.

The optimizer module includes the Optimal Adaptation Search engine and is responsible

for choosing the optimal set of actions that will maximize the utility. The search is guided

75

LQNM
Solver

Performance
Manager

Power
Estimation

Power
Consolidation
Manager

Cost
Manager

Cost
Mapping

ARMA
Filter

Optimal Adaptation
Search

c, W

pwr*

c
W

Upwr*
Upwr

c, W

pwr(a)

Workload
Monitor

W

LQN Model Cost Model

Application Resource Adapt. Action

Off-line experiments

Power Model

Adapt. Action

Virtual Machine Pool Active Hosts

D
om

ai
n-

0

Hypervisor

W
eb

 S
er

ve
r

A
pp

. S
er

ve
r

D
B

 S
er

ve
r

VM VM VM

D
or

m
an

t
D

B
 S

er
ve

r

D
or

m
an

t
D

B
 S

er
ve

r

D
or

m
an

t
A

pp
. S

er
ve

r

D
om

ai
n-

0

Hypervisor
VM VM VM

Shared Storage

OS
Image

CW

Test-bed

W

Figure 36: Architecture of a single controller

by upper bounds of utility estimates (denoted by the superscript “*”) which are provided

by the predictor modules.

5.2.2 Performance and Power Optimizer

The multi-dimensional optimization approach relies on a simpler optimizer, Perf-Pwr opti-

mizer, to provide the best configuration while ignoring any adaptation costs. In this section,

the Perf-Pwr optimizer is described.

Perf-Pwr optimizer generates the optimal tradeoff between performance and power con-

sumption for a given workload when any transient adaptation costs are ignored. It is ex-

tended from the performance optimizer presented in Chapter 3 that finds the configuration

76

that maximizes utility given a fixed pool of resources (and ignoring power usage). Specif-

ically, Perf-Pwr finds the optimal capacities of VMs that can be packed on as few server

machines as possible while balancing performance and power usage. Similar to our prior

performance optimizer, Perf-Pwr optimizer employs a heuristic bin-packing algorithm to

place given VMs to hosts and a classic gradient-based search algorithm, but extends the

algorithm to deal with variable number of active hosting machines and their power con-

sumption.

Perf-Pwr optimizer determines the optimal configuration (i.e., one that maximizes ap-

plication utility) first for the whole system (all hosts active) and then reduces the number

of hosts to see if a smaller number of active hosts would optimize overall utility (appli-

cation utility + power usage). Specifically, for any given set of hosts, Perf-Pwr optimizer

initially allocates maximum CPU capacities for all VMs. Then, it attempts to place (pack)

these VMs on the given set hosts (bins). The bin-packing algorithm used by the optimizer

chooses the host that has the largest space among used hosts. If no such host is found, it

chooses a new empty host only if it is available. If the bin packing fails, the optimizer starts

a search process where, in each iteration, it generates a set of candidate configurations by

(a) reducing the capacity of individual VMs and (b) reducing the replication level of an

application component (and thus, removing one VM). Then, it chooses the candidate that

has the highest gradient value among all the candidates, where the gradient is defined as

∇ρ = (ρnew − ρ)/(Unew
RT − URT) and ρnew and Unew

RT represent each new candidate’s CPU

utilization and performance utility, respectively. It attempts to pack the chosen candidate ci

on the given set of hosts and if the packing fails, the algorithm performs the next iteration

using configuration ci as the new starting point. If the packing succeeds, the optimizer

considers the resulting configuration as a potential optimal configuration and repeats the

search with a reduced number of hosts. For each potential optimal configuration, the opti-

mizer estimates watts consumed by each host by summing all hosted VMs’ utilization and

also shared utilization (i.e., consumed by Domain-0). The optimizer stops reducing number

77

of hosts when the number of hosts reaches a threshold that can host minimum capacities

of the VMs. The potential optimal configuration that has the largest utility is chosen as

the “ideal configuration” c∗ and its utility denotes the “ideal utility” U∗ = U∗RT − U∗pwr.

The ideal utility is an upper bound for the multi-dimensional optimization since it ignores

adaptation costs.

5.2.3 Multi-Dimensional Optimizer

The optimization algorithm incorporates power and performance overheads caused by adap-

tation actions and the cost of the decision making process into the tradeoff formulation.

Given the utility function and models, the adaptation system determines the optimal se-

quence of adaptation actions that transforms the current configuration c to the new opti-

mal configuration. To solve the multi-dimensional optimization, the A* search algorithm

present in Chapter 4.2.2 is adopted. To recall the search algorithm, this section briefly out-

lines it and then, describes the improved algorithm to deal with the cost of the decision

making process.

Naive A* algorithm. The A* algorithm requires a “cost-to-go” heuristic to be associated

with each vertex of the graph. This heuristic estimates the shortest distance from the vertex

to a goal state and, for the result to be optimal, the heuristic must be “permissible” in that it

overestimates the cost-to-go. We use the ideal utility U∗ as the heuristic since it represents

the highest utility that can be generated for the given workload. Since it does not consider

any costs, it overestimates the utility and therefore, it is a permissible heuristic.

The algorithm starts from v0 with current configuration. In each iteration of search,

it generates the set of child vertices as one adaptation step from a parent vertex (e.g.,v0)

and stores these vertices in the total set of explored vertices V . It also stores the parent

vertex only if it is a candidate configuration. It then chooses the vertex v from V with

the lowest utility. Each vertex’s utility is computed by summing the cost of actions from

v0 plus the cost-to-go if the vertex is an intermediate, or the total utility U if the vertex

78

is a candidate. If the chosen vertex v is a candidate, the algorithm returns the vertex and

computes actions. The algorithm considers v as the final optimal configuration since the

vertex’s utility is larger than any other utilities of intermediate configurations that can be

generated by further explorations. This is because those utilities (i.e., the cost-to-go plus

accumulated cost) will decrease as further actions are taken. Meanwhile, utilities of any

other candidates generated by further explorations are less than those utilities generated

with cost-to-go by the definition of permissible. Thus, optimality is guaranteed.

Since the naive A* algorithm still evaluates a large number of configurations due to

the numerous possible adaptation actions at each depth of the graph, the search time may

increase exponentially as the number of hosts and applications increases. For example, if

the workload changes significantly and then stays relatively long in this state (resulting in

a large control window), the algorithm may try to change the current configuration signif-

icantly by searching a large number of possible action sequences. The huge search space,

and the resulting long search time, is a general problem for many optimization techniques

proposed in the literature for cloud computing environments. Spending too much time

to compute an optimal configuration can adversely affect the system response time (and

utility) since the current configuration that may not be optimal for the changed workload

is used during the decision making. Furthermore, the optimization procedure itself may

consume significant amount of power while making its decision - so called “consuming

power to save power.” Therefore, we consider the cost of decision as another tradeoff in

our optimization formulation.

Self-Aware A* algorithm. We have developed a method to accelerate the search by de-

creasing the search space at each vertex dynamically (i.e., decreasing the number of adap-

tation actions considered for each configuration in the graph). We set the algorithm to

choose a small portion of all possible expanded configurations based on similarity to the

ideal configuration c∗. Specifically, the algorithm computes a weighted Euclidean distances

79

between each expanded configuration and c∗ by summing up the differences in the corre-

sponding VM sizes (CPU capacities) in the two configuration. We also set a weight to each

VM based on its relative size in the ideal configuration. For example, we set 2 times more

weight to VMi than VMj if their CPU capacities are 60% and 30%, respectively, in the

ideal configuration. In addition, we compute another distance value based on VM place-

ment on hosts by counting how many VMs have identical locations (same host) in the two

configurations and then normalize the value with the total number of VMs.

Our Self-Aware A* algorithm uses the weighted Euclidian distances and a heuristic to

dynamically restrict the search space and to allow the optimization system to control the

cost of search versus the potential benefits during the search process. Specifically, it mea-

sures the elapsed time of the search, T , the utility accrued of the current configuration,

UT , and the power usage of the search procedure itself, UpwrT . Then, the algorithm com-

pares the cost to an “expected utility”, UH , to decide when the search space needs to be

restricted (i.e., search needs to be completed soon). We consider a history of recent util-

ities and choose the lowest one as UH (i.e., a pessimistic estimate). Furthermore, we set

a delay threshold for the search T that depends on the length of control window and can

be empirically obtained. This threshold prevents a too long search in the case UH is too

high for the current system state. When the cost of search reaches UH , or T exceeds T , the

optimization system accelerates its search by decreasing search width of each vertex. The

resulting search algorithm is shown in Algorithm 3. Note that the risk of stopping too early

and never finding the correct adaptations is reduced by the fact that the optimization sys-

tem operates multi-level controllers and lower level controllers will refine the configuration

chosen by the higher level controllers.

The algorithm takes the current configuration c, workload W , the length of control

window CW , the expected utility UH , its performance and power utilities over the unit

monitoring intervalURT H andUpwrH , and the search delay threshold T as inputs and returns

the optimal sequence of adaptation actions A. Using Perf-Pwr, the algorithm computes

80

Input: c, W , CW , UH , URT H , UpwrH , T Output: A
(c∗, URT ∗ , Upwr∗)← Perf-Pwr(W);
if c∗ = c then return “null”;
v0.(A, c, URT (A), Upwr(A), URT , Upwr, D)
← (φ, c, 0, 0, URT ∗ , Upwr∗ , 0);
(V, T, UT , UpwrT , st)← ({v0}, 0, 0, 0,Time());
(U ′RT , U

′
pwr)← UtilityEst (c,W);

while forever do
vmax ← argmaxv∈V v.U ; t← 0;
if vmax.alast = “null” then return vmax.A;
foreach a ∈ A ∪ “null” do

vn ← vmax; vn.A← vmax.A ∪ a;
vn.c← NewConfig (vn.c, a);
Vn ← Vn ∪ vn;

if (UT + UpwrT) ≥ UH or (T ≥ T) then Vn ← PruneByDistancevn∈Vn
(vn.c, c

∗);
foreach vn ∈ Vn do

if vn.c = “candidate” then
(URT , Upwr)← UtilityEst (vn.c,W);
vn.U ← (CW − vn.D) · (URT − Upwr) + (vn.URT (A)− vn.Upwr(A));

else
(d, URT (a), Upwr(a))←Cost (vn.c,W, a);
vn.URT (A)← vn.URT (A) + d · URT (a);
vn.Upwr(A)← vn.Upwr(A) + d · Upwr(a);
vn.D ← vn.D + d;
vn.U ← (CW − vn.D) · (U∗RT − U∗pwr) + (vn.URT (A)− vn.Upwr(A));

if ∃v′ ∈ V s.t. v′.c = vn.c then
if vn.U > v′.U then v′ ← vn;

else
V ← V ∪ vn;

t← Time()− st; st← Time(); T ← T + t;
UpwrT ← UpwrT + t · Upwrt ;
UT ← UT + t · (U ′RT − U ′pwr);
UH ← UH − t · (URT H − UpwrH);

Algorithm 3: Optimal adaptation search

81

the ideal utilities. The UtilityEst estimates performance and power utilities, U ′RT and

U ′pwr, with current configuration and workload. The elapsed time T , the utility accrued

by the current configuration UT , the power consumption incurred by the search procedure

itself UpwrT , and expected utility UH are updated after each depth of search.

In each iteration in the while loop, the open vertex with the highest utility is selected

as vmax. If this vertex’s configuration is a “candidate” (i.e., its last action is “null”), then

the algorithm considers the configuration as the optimal one and returns actions leading to

the configuration as described in the Naive A* algorithm. Otherwise, it explores further by

triggering all possible actions including “null” (i.e., “do nothing”). NewConfig generates

a new vertex (configuration) resulting from performing action a in the current vertex. If the

cost of the search (i.e., UT + UpwrT) exceeds the expected utility, or the elapsed time ex-

ceeds the given delay threshold, the algorithm prunes the number of new vertices using the

Euclidean distances described above by calling PruneByDistance. When a new con-

figuration is a “candidate”, the algorithm invokes UtilityEst to estimate performance

and power utilities. Otherwise, it invokes Cost to compute the adaptation costs such as

accrued performance and power utilities (i.e, URT (A) and Upwr(A), respectively), and then

computes the total utility with the cost-to-go values. If the newly generated vertex vn is

the same as one previously found, say v′, and vn’s utility is larger than that of v′, then the

algorithm replaces the old vertex with the new one.

5.3 Evaluation Results
5.3.1 Experimental Setup

The 3-tier servlet version of RUBiS application used in our prior research work (see Chap-

ter 3.3.1 and 4.3.1) has been deployed to evaluate the multi-dimensional optimization ap-

proach. The application workload has been set to remain in the range 0 to 100 req/sec.

We have set the maximum replication level for Tomcat and MySQL servers to 2, which

is enough to handle the maximum request rates (100 req/sec), while Apache has not been

82

replicated since a single Apache server per application is enough even under the maxi-

mum request rates. To replicate the database server, we have used a simple master-slave

mechanism provided by MySQL. All tables have been copied and synchronized between

replicas (i.e., shared-nothing). We have deployed up to 4 RUBiS instances, referred to as

from RUBiS-1to RUBiS-4, and thereby, deployed up to 20 VMs in a small data center.

To simulate the scalability of our approach, we have set up to 12 RUBiS instances and 60

VMs.

The Xen-based virtualization setup has also been reused. In this setup, we have used

up to 2 racks, each of which has 6 commodity Pentium-4 1.8GHz machines with 1GB of

memory running on a single 100Mbps Ethernet segment. As illustrated by the test-bed box

in Figure 36, one machine in each rack is dedicated to host dormant VMs used in server

replication, and one as a storage server for VM disk images. We hook all machines to a

power meter to measure power usage. Each VM is allocated 200MB of memory with a

limit of up to 4 VMs per hosting machine. The remaining 200MB is allocated to Domain-

0. The total CPU capacity of all VMs on a hosting machine is capped to 80% to ensure

enough resources for Domain-0 even under loaded conditions. We set the minimum CPU

capacity for each VM to 20% to avoid request errors even under low request rates. We use

Xen’s credit-based scheduler to dynamically set CPU capacity of each VM.

In the following experiments, we have generated up to 4 different workloads based on

the Web traces from the 1998 World Cup site and the traffic traces of an HP customer’s

Internet Web server system. A typical day’s traffic has been chosen from each trace. Then,

we have scaled and shifted them to the range of request rates that our experimental setup

can handle. Specifically, we have scaled both the World Cup request rates of 150 to 1200

req/sec and the HP traffic of 2 to 4.5 req/sec to our desired range of 0 to 100 req/sec.

Since our workload is controlled by adjusting the number of simulated clients, we have

created a mapping from the desired request rates to the number of simulated concurrent

sessions. Figure 37 shows these scaled workloads from 15:00 to 21:30, where workload-1

83

0

10

20

30

40

50

60

70

80

90

100

15
:0

0
15

:1
0

15
:2

0
15

:3
0

15
:4

0
15

:5
0

16
:0

0
16

:1
0

16
:2

0
16

:3
0

16
:4

0
16

:5
0

17
:0

0
17

:1
0

17
:2

0
17

:3
0

17
:4

0
17

:5
0

18
:0

0
18

:1
0

18
:2

0
18

:3
0

18
:4

0
18

:5
0

19
:0

0
19

:1
0

19
:2

0
19

:3
0

19
:4

0
19

:5
0

20
:0

0
20

:1
0

20
:2

0
20

:3
0

20
:4

0
20

:5
0

21
:0

0
21

:1
0

21
:2

0

workload-1

workload-2

workload-3

workload-4

Time

R
eq

ue
st

 r
at

e
(r

eq
/s

ec
)

Figure 37: Application workloads

and workload-2 use the scaled World Cup trace, and workload-3 and workload-4 use the

HP workload trace.

5.3.2 Experimental Model Validation

This section presents experiment results including the accuracy of models introduced in

Chapter 2.4 and various adaptation overheads.

0

50

100

150

200

250

300

350

16
:5

2
16

:5
4

16
:5

6
16

:5
8

17
:0

0
17

:0
2

17
:0

4
17

:0
6

17
:0

8
17

:1
0

17
:1

2
17

:1
4

Exp.

Model

R
es

. t
im

e
(m

s)

Time

(a) Response times

0.6

0.8

1

1.2

1.4

1.6

1.8

16
:5

2
16

:5
4

16
:5

6
16

:5
8

17
:0

0
17

:0
2

17
:0

4
17

:0
6

17
:0

8
17

:1
0

17
:1

2
17

:1
4

Exp.

Model

Time

U
til

iz
at

io
n

(b) Utilizations

Figure 38: Application model accuracy

Response time and utilization. We have validated the application performance models

84

using the workload-1 in Figure 37. Figure 38 shows that our performance models (LQNM)

provide sufficient accuracy for (a) response time and (b) utilization. The estimation error

is approximately 5%. In this model validation, the interval from 16:52 to 17:14 of the

workload has been used since it represents the first flash crowd in the scenario as shown

in Figure 37. While the Performance Manager generates a series of configurations using

models for given request rates, we have recorded estimated response times and CPU uti-

lizations. Then we have compared them with experiment results. In these experiments,

we have restarted the controller to measure values at each time point separately for each

configuration and request rate to remove any noise caused by adaptations.

Power consumption. To apply the power model introduced in Chapter 2.4.2 into the multi-

dimensional optimization, the non-linear model has to be calibrated to fit into actual power

consumption observed using a power meter. In the fitting process, we have to measure

three model parameters and then, set the tuning parameter used to obtain the non-linearity

of the model. Those parameters are pwridle representing the power consumption of the

machine at standby state, pwrbusy representing the maximum power consumption of the

physical machine observed in our workload scenario, and ρ representing CPU utilization

of the machine estimated by the LQN models at the workload.

50

60

70

80

90

100

110

120

130

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Measured

Linear Est.

Non-linear

Normalized CPU utilization

W
at

ts

Figure 39: Power model fitting using Ubench

85

60

70

80

90

100

110

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Measured
Est. by CPU power model
Calibrated

W
at

ts

Normalized CPU utilization

Figure 40: Power model fitting using RUBiS with read-only transaction mix

In our power model, we consider only CPU utilization as the major factor of server

power consumption. To obtain a power model based on CPU utilization, we have em-

ployed a micro-benchmark, called “Ubench,” that intensively consumes CPU resource but

little of other resources such as memory, disk, and network bandwidth. Figure 39 shows

two models with measured power consumption. To measure the power consumption, we

have hooked a machine into the power meter, and then deployed the benchmark on the

machine. As shown in the figure, the power consumption has a strong correlation with

CPU utilization. We have first applied a linear model by setting the tuning parameter to

1 and then, increased it until the model curve is fitted to measured power consumption.

The error rate of the non-linear model is around 2%, while the one of the linear model

8%. Then, we have applied the non-linear model to the RUBiS application with read-only

transaction mix workload. Figure 40 shows that the power model obtained with Ubench is

not fitted into measured power consumption. This is because the RUBiS application and

its workload are more complex than the micro-benchmark, and other resources such as dy-

namic memory usage may be involved in the server power consumption. Therefore, we

have to further calibrate the model by increasing the tuning parameter. The error rate of the

calibrated model is around 4%. To measured power consumption, we have increased the

86

workload (i.e., the number of concurrent users) until CPU utilization reaches around 70 %

while measuring power consumption every second. Note that we couldn’t measure power

beyond 70% utilization, since we have connection errors from the Web server at that point.

60

70

80

90

100

110

120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Measured

Calibrated

W
at

ts

Normalized CPU utilization

Figure 41: Power model fitting using RUBiS with arbitrary transaction mix

120

130

140

150

160

170

180

190

16
:5

2
16

:5
4

16
:5

6
16

:5
8

17
:0

0
17

:0
2

17
:0

4
17

:0
6

17
:0

8
17

:1
0

17
:1

2
17

:1
4

Exp.

Model

Time

W
at

ts

Figure 42: Power model accuracy

To evaluate the accuracy of the calibrated power model, we have applied the model

to an arbitrary transaction mix of RUBiS. Figure 41 shows that the model is as accurate

as the read-only workload of RUBiS is. We have validated the power model using the

same methodology as the response time and utilization accuracy validation. Figure 42

87

0

100000

200000

300000

400000

500000

600000

700000

800000

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94

Experiment
Model

Control windows

St
ab

ili
ty

 in
te

rv
al

 (m
s)

Figure 43: Accuracy of stability interval estimation

shows the model accuracy for power consumption in this scenario. The estimation error is

approximately 5%.

Stability interval. We have evaluated the ARMA filter introduced in Chapter 2.4.4 using

workload-1 and workload-3 in Figure 37. In this evaluation, we have first measured the

number of control windows and the interval of each window under the scenario.

As shown in Figure 43, we have 97 windows ranged from 120 seconds to 760 seconds.

Then, we have run the ARMA filter to estimate windows and the interval of each window.

Once the workload is suddenly changed, the deviation of estimated interval is relatively

high, but stabilized immediately at followed windows. The average error is reasonably

small (approximately 14%), so that the ARMA filter can be facilitated in the optimization

framework to predict the stability of workload.

Adaptation Costs. Figure 44 illustrates some of the adaptation costs measured for the

RUBiS application on the small data center. The figures illustrate that adaptation costs are

heavily influenced by the workload, and vary in tier components and adaptation actions.

We have also measured power overhead and duration off-line for shutting down/restarting

88

8
9

10
11
12
13
14
15
16
17

100 200 300 400 500 600 700 800

D
el

ta
 W

at
ts

 (%
)

Number of concurrent sessions

(a) Delta power consumption

0

100

200

300

400

500

600

700

800

100 200 300 400 500 600 700 800

Number of concurrent sessions

D
el

ta
 r

es
. t

im
e

(m
s)

(b) Delta response times

0

10000

20000

30000

40000

50000

60000

70000

80000

100 200 300 400 500 600 700 800

Number of concurrent sessions

A
da

pt
. d

el
ay

 (m
s)

(c) Adaptation delay

8
9

10
11
12
13
14
15
16
17

100 200 300 400 500 600 700 800

Migration (MySQL)

Migration (Tomcat)

Migration (Apache)

Add replica (MySQL)

Remove replica (MySQL)

D
el

ta
 W

at
t (

%
)

Number of concurrent sessions

Figure 44: Adaptation costs

hosts. Starting a host has taken around 90 sec and consumed around 80 watts while shut-

down has taken 30 sec and consumed 20 watts.

5.3.3 Adaptation Comparison

To evaluate our approach, we compare our optimization’s results with those of three dif-

ferent approaches, each of which solves the tradeoff between two objectives among perfor-

mance, power consumption, and adaptation costs as follows:

• Perf-Pwr: addresses the tradeoff between performance and power consumption, but

ignores transient adaptation costs. Our Perf-Pwr optimizer described in Chapter 5.2.2

is adopted. In this approach, once a workload change is observed in a monitoring

interval, the optimizer chooses adaptation actions and executes them.

89

• Perf-Cost: multiplexes a given fixed pool of resources to hosted applications to max-

imize performance utility. The cost-sensitive approach presented in Chapter 4 is

directly used in this comparison work. This approach incorporates adaptation costs

(adaptation duration and performance overhead) into the optimization formulation in

each control window. However, it considers neither further power savings by consol-

idating VMs to a smaller number of hosts, or power overhead during adaptations.

• Pwr-Cost: minimizes power consumption and adaptation costs under the restriction

that VMs’ CPU capacities and placement for each request rate are given and static.

These CPU capacities are large enough that the target response time can be met. To

compute such VMs’ capacities, the Perf-Pwr optimizer will be modified so that it will

not reduce the VM sizes below the capacity needed to meet the target response times.

Given these VMs’ capacities and placement across the resource hierarchy at each

execution, the Pwr-Cost optimizer first adjusts the VMs’ capacities of the VMs in

the current configuration to match the new sizes. If the resulting VM CPU capacities

violate the capacity constraints on some host (the sum of VM capacities on a host

must be less than 100%), the VMs are migrated over the resource hierarchy starting

from the smallest one until the constraints are satisfied on all host. Finally, when

no constraints are violated, the algorithm uses VM migration to consolidate VMs

on fewer hosts if possible. During consolidation decision, it considers the tradeoff

between power saving through consolidation and migration cost. Compared to our

approach, this approach does not allow response time goals to be missed in order to

reduce power usage or transient costs.

• Mistral: performs the multi-dimensional optimization for performance, power con-

sumption, and adaptation costs. This represents our approach.

We compare these four approaches using RUBiS-1 and RUBiS-2 deployed in a rack

with first and second level controllers. The target response time has been set to 400ms.

90

0

200

400

600

800

1000

1200

15
:0

0
15

:1
8

15
:3

6
15

:5
4

16
:1

2
16

:3
0

16
:4

8
17

:0
6

17
:2

4
17

:4
2

18
:0

0
18

:1
8

18
:3

6
18

:5
4

19
:1

2
19

:3
0

19
:4

8
20

:0
6

20
:2

4
20

:4
2

21
:0

0
21

:1
8

Perf-Pwr

Perf-Cost

Pwr-Cost

Mistral

R
es

po
ns

e
T

im
e

(m
s)

Time

(a) RUBiS-1 Response Time

0

200

400

600

800

1000

1200

1400

1600

15
:0

0
15

:1
8

15
:3

6
15

:5
4

16
:1

2
16

:3
0

16
:4

8
17

:0
6

17
:2

4
17

:4
2

18
:0

0
18

:1
8

18
:3

6
18

:5
4

19
:1

2
19

:3
0

19
:4

8
20

:0
6

20
:2

4
20

:4
2

21
:0

0
21

:1
8

Perf-Pwr

Perf-Cost

Pwr-Cost

Mistral

R
es

po
ns

e
T

im
e

(m
s)

Time

(b) RUBiS-2 Response Time

Figure 45: Response time comparison of adaptation approaches

91

This time has been derived experimentally as the mean response time across all transac-

tions of the RUBiS application running with a “default configuration” where all tiers’ CPU

capacities have been set to 40% and workload has been constant at 50 req/sec. The exact

amount of the reward and penalty depends on the current application request rate as pre-

sented in Chapter 2.1. For the utility function, the monitoring interval is set to 2 minutes

so that we can react quickly to workload changes. The cost per watt consumed over a

monitoring interval was set to $ 0.01 in our experiments. We set the workload band to 0

req/sec for the 1st-level controller and 8 req/sec for the 2nd-level controller to ensure that

even relatively small workload changes could cause the controller to be triggered.

150

200

250

300

350

400

15
:0

0
15

:1
2

15
:2

4
15

:3
6

15
:4

8
16

:0
0

16
:1

2
16

:2
4

16
:3

6
16

:4
8

17
:0

0
17

:1
2

17
:2

4
17

:3
6

17
:4

8
18

:0
0

18
:1

2
18

:2
4

18
:3

6
18

:4
8

19
:0

0
19

:1
2

19
:2

4
19

:3
6

19
:4

8
20

:0
0

20
:1

2
20

:2
4

20
:3

6
20

:4
8

21
:0

0
21

:1
2

21
:2

4

Perf-Pwr Perf-Cost Pwr-Cost Mistral

Po
w

er
 (W

at
ts

)

Time

Figure 46: Power consumption comparison of adaptation approaches

Figures 45 through 47 show the results of the comparison. As demonstrated by Fig-

ure 45 (a) and (b), the response times with Mistral (i.e., our multi-dimensional approach)

are somewhat higher than with the Perf-Cost approach, and it slightly violates the perfor-

mance objective when request rates peak since it uses a maximum of 3 hosts out of the 4 to

save power. However, due to more frequent and intensive adaptations in other approaches

(shown as spikes in figures), performance violations with Perf-Pwr and Pwr-Cost are more

92

frequent than with Mistral. Especially, the response times with Perf-Pwr fluctuate and then

remain high since it performs many more adaptations than Mistral. Pwr-Cost is forced to

execute migrations during the peak request rates to meet the capacity constraints since it

does not address the tradeoff between performance and costs as Mistral has done.

Meanwhile, the overall power consumption with Mistral is lower than with the other

approaches as illustrated in Figure 46. This is because Mistral uses fewer hosts and per-

forms fewer adaptations even under peak request rates. The curve of Perf-Pwr shows that

using 4 hosts at peak request rates provides the optimal tradeoff between performance and

power. However, Mistral chooses configurations with only 2 or 3 hosts since the cost of

using 4 hosts would be too high. Pwr-Cost, however, is forced to use 4 hosts when both

applications’ request rates peak in order to host all the VMs with the required VM CPU

capacities.

-100

-50

0

50

100

150

200

15
:0

0
15

:1
4

15
:2

8
15

:4
2

15
:5

6
16

:1
0

16
:2

4
16

:3
8

16
:5

2
17

:0
6

17
:2

0
17

:3
4

17
:4

8
18

:0
2

18
:1

6
18

:3
0

18
:4

4
18

:5
8

19
:1

2
19

:2
6

19
:4

0
19

:5
4

20
:0

8
20

:2
2

20
:3

6
20

:5
0

21
:0

4
21

:1
8

Perf-Pwr Perf-Cost
Pwr-Cost Mistral

U
til

ity

Time

Figure 47: Cumulative utility

Finally, Figure 47 shows that the total utility of Mistral is indeed higher than the other

approaches. For the duration of the experiment, the cumulative utility of Mistral (152.3)

is higher than those of Perf-Pwr (-47.1), Perf-Cost (26.3), and Pwr-Cost (93.9). Although

Perf-Cost provides a better response time behavior than Mistral, its utility is much lower

93

than Mistral’s since it consumes much more power. Thus, Mistral meets the goal of max-

imizing overall utility, consisting of performance and power utilities and transient costs,

better than the other approaches. The results of comparisons are summarized in Table 8.

Table 8: Summary of comparison
Perf-Pwr Perf-Cost Pwr-Cost Mistral

The number of violations 21 6 10 8
Cumulative violations (ms) 10,357.4 385.9 1,960.8 401.2
Cumulative power (Watts) 17,402.1 27,276.4 17,160.4 16,584.1
Cumulative utility -47.1 26.3 93.9 152.3

5.3.4 Cost of Search

In this section, we illustrate the cost of the decision making itself in terms of its power

consumption, duration, and impact on the total utility. Specifically, we demonstrate that

our Self-Aware search algorithm that is aware of its own execution costs can indeed result

in significant improvement of overall utility. To measure the power consumption of search

algorithms, we connected only the host running controller to the power meter and then

ran the controller in a simulation mode where it only determines the action sequences to

execute, but does not execute the adaptation actions chosen. Figure 48 (a) shows that the

naive search algorithm consumes power up to 12 % over the host’s idle power usage (i.e.,

60 watts).

The next two experiments measured how the awareness of its own execution costs im-

pacts the search algorithms. Figure 48(b) shows that the execution time of the naive search

approach is up to 4 time longer (around 24 sec) than that of the Self-Aware search algorithm

(around 5.5 sec) in the most intensive search cases. The longer search not only uses more

power, but also keeps the system in the current configuration, which is not necessary close

to optimal for the current workload, a longer time when the search for new configuration is

in progress.

94

2
4
6
8

10
12
14

15
:0

0
15

:1
0

15
:2

0
15

:3
0

15
:4

0
15

:5
0

16
:0

0
16

:1
0

16
:2

0
16

:3
0

16
:4

0
16

:5
0

17
:0

0
17

:1
0

17
:2

0
17

:3
0

17
:4

0
17

:5
0

18
:0

0
18

:1
0

18
:2

0
18

:3
0

18
:4

0
18

:5
0

19
:0

0
19

:1
0

19
:2

0
19

:3
0

19
:4

0
19

:5
0

20
:0

0
20

:1
0

20
:2

0
20

:3
0

20
:4

0
20

:5
0

21
:0

0
21

:1
0

21
:2

0 Po
w

er
 c

ha
ng

e
(%

)

(a) Power consumption

0

5000

10000

15000

20000

25000

15
:0 0 15
:1 0 15
:2 0 15
:3 0 15
:4 0 15
:5 0 16
:0 0 16
:1 0 16
:2 0 16
:3 0 16
:4 0 16
:5 0 17
:0 0 17
:1 0 17
:2 0 17
:3 0 17
:4 0 17
:5 0 18
:0 0 18
:1 0 18
:2 0 18
:3 0 18
:4 0 18
:5 0 19
:0 0 19
:1 0 19
:2 0 19
:3 0 19
:4 0 19
:5 0 20
:0 0 20
:1 0 20
:2 0 20
:3 0 20
:4 0 20
:5 0 21
:0 0 21
:1 0 21
:2 0

Self-aware
Naive

Se
ar

ch
 ti

m
e(

m
s)

(b) Duration

-8

-6

-4

-2

0

2

4

15
:0

0
15

:1
0

15
:2

0
15

:3
0

15
:4

0
15

:5
0

16
:0

0
16

:1
0

16
:2

0
16

:3
0

16
:4

0
16

:5
0

17
:0

0
17

:1
0

17
:2

0
17

:3
0

17
:4

0
17

:5
0

18
:0

0
18

:1
0

18
:2

0
18

:3
0

18
:4

0
18

:5
0

19
:0

0
19

:1
0

19
:2

0
19

:3
0

19
:4

0
19

:5
0

20
:0

0
20

:1
0

20
:2

0
20

:3
0

20
:4

0
20

:5
0

21
:0

0
21

:1
0

21
:2

0

Self-aware
Naive

U
til

ity

(c) Utility

Figure 48: Cost of search

Finally, we show that such cost awareness does indeed improve the total utility. Figure

48 (c), based on a 2-application scenario (RUBiS-1 and RUBiS-2), shows that the utility

of the naive approach is lower than that of the Self-Aware approach, although the Naive

approach typically executes more adaptation actions. The difference in the cumulative util-

ities over the execution time period is significant, with cumulated utilities of 135.3 (Naive)

and 152.3 (Self-Aware).

5.3.5 Scalability of Search

Finally, we demonstrate how Mistral scales to the larger number of applications and hosts,

and discuss its use in managing large-scale data centers. In the small data center setup, we

95

Table 9: Search durations and utilities
2-app 3-app 4-app

#VMs / #hosts 10 / 4 15 / 6 20 / 8
Self-Aware (avg. duration, milli-sec) 3,807.8 5,669.9 7,514.8
- 1st level 112.4 298.1 487.4
- 2nd level 3,737.6 4,977.2 5,956.8
- 3rd level 5,287.4 8,029.7 10,797.4
Naive (avg. duration, milli-sec) 4,341.4 11,343.4 35,155.8
- 1st level 132.5 355.4 792.5
- 2nd level 4,077.5 5,798.7 11,615.9
- 3rd level 13,387.2 59,345.6 250,297.4
Mistral (total utility) 152.3 336.6 504.8
Ideal (total utility) 351.7 538.3 701.9

deploy up to 20 VMs of 4 RUBiS applications to all given 8 hosts in 2 racks, each of which

has 4 hosts. Then, we deploy each RUBiS to the rack for the 2-app scenario. For the 3-app

scenario, we add RUBiS-3 to the first rack and for the 4-app scenario, we add RUBiS-4 to

the second rack. We configure Mistral to use up to three-level controller. Each 1st level

controller can manage a host using CPU tuning, and each 2nd level controller can manage a

subset of hosts using CPU tuning, VM migrations, and VM replications within its managed

rack. The 3rd level controls the whole system, and uses all actions used in those 1st and 2nd

level controllers across hosts and racks. We deploy a controller for each rack to manage the

rack and its all hosts, instead of deploying each controller per host in this experiment, while

we separately deploy the 3rd level controller to manage the whole resource infrastructure.

Table 9 summarizes those results of 3 different scenarios. We report the average search

times for the Naive A* and the Self-aware controllers as well as the averages for each

level’s controllers. As the number of hosts and applications increase, the search space

of adaptation actions to be considered increases. The search duration of the Naive A*

search algorithm illustrates the exponential increase. To tackle this problem, our Self-aware

search algorithm restricts the search space when necessary using simple technique based

on weighted Euclidean distances. The results show that the duration for the Self-aware

96

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

2 3 4 5 6 7 8 9 10 11 12

Self-aware
Naive A* search

Se
ar

ch
 d

ur
at

io
n

(s
ec

on
ds

)

The number of RUBiS instances

Figure 49: Scalability of search algorithm

algorithm increases approximately linearly with the number of machines, while generating

reasonable utilities. To estimate the optimality of our approach, we compare these utilities

to the ideal utilities generated by the simulated Perf-Pwr optimizer that ignores adaptation

costs. The results show that the gap between the achieved and ideal utilities in each sce-

nario remains approximately constant. It indicates that our approach keeps generating near

optimal utilities.

To show further scalability of our search algorithm, we have simulated larger data center

by putting up to 12 RUBiS instances and deploying these instances into up to 60 VMs and

24 hosts. In this experiment, we assume that each RUBiS instance can use up to 5 VMs

and 2 hosts. Hence, when we add a RUBiS instance, we add 5 VMs and 2 hosts into the

search setup. We have measured the average search duration of all controllers (i.e., from

1st level to 4th level) at each point in Figure 49. The figure demonstrates that the Self-

aware algorithm can dramatically reduce the search duration. When 12 RUBiS instances

are deployed to 48 hosts, the search duration of the Self-aware algorithm is 122 seconds,

while it takes almost 4 hours in the Naive search algorithm. These results have implications

on using Mistral to manage an entire data center or a cloud platform.

97

Another feature of our approach to support the scalability is the hierarchical adapta-

tion mechanism. Centralized optimization techniques are typically not scalable enough to

manage a large system. Mistral can address this challenge due to its ability to implement

multi-level hierarchical control. Specifically, each local controller managing its own few

machines (e.g., a stack of machines in a rack) can execute frequently (every few minutes),

while higher-level controllers can operate hourly or daily on larger groups of machines

(e.g., the whole data center hosting a number of racks).

5.4 Work Related to Multi-Dimensional Optimization

In this section, we present recent work most pertinent to the discussion of this dissertation

in the field of the power management and performance-power optimization. We categorize

related work based on adaptation methodologies and objectives.

Many efforts have tackled intelligent power control using underlying hardware support

such as processor throttling and low-power DRAM states. In particular, Dynamic voltage

and frequency scaling of processors (DVFS) has been adopted by many authors including

[60, 18, 26, 52], but mainly in single-server settings. Extending these control algorithms

to balance end-to-end performance across multiple tiers and clusters remains a challenge.

Nevertheless, we believe that techniques such as DVFS are complementary to our approach

and can be incorporated into the lowest level controllers.

Some researchers have worked to maximize the use of a given power budget across

multiple machines and tiers. In [25], the authors present a methodology for efficient power

provisioning that increases the number of services that can be deployed within a given

power budget. Govindan et al. have tackled a similar problem using statistical multiplexing

methods to improve the power utilization in [34]. However, they do not explicitly consider

the power-performance tradeoff nor any transient costs.

A number of projects have addressed different aspects of the power-performance trade-

off. Gandhi et al. use queuing models to find the optimal power allocation among servers

98

so as to minimize mean response time under a given power budget in [30], while Kephart

et al. address the tradeoff in [47] using reinforcement learning over a decentralized archi-

tecture in which power and performance managers cooperate. Chase et al. discuss turning

servers on and off for efficient power management in [16]. However, these approaches

have not considered adaptation costs which, as we have shown, can have a significant im-

pact on overall utility. Similar to our approach, Chen et al. consider some adaptation costs

(time overheads and wear-and-tear) [18], but they do not consider process migration and

consolidation.

The authors of [56] propose a technique that exploits the hypervisor’s ability to limit

hardware usage of VMs and control power consumption of individual VMs in a fine-grained

manner. The mechanism can be integrated with our approach as an adaptation action to

achieve further power savings at an aggregated level.

Recently, a number of power management systems have been proposed based on vir-

tualization techniques, including [51, 70, 75, 12, 50], that share some adaptation methods

with our approach. Tolia et al. demonstrate the ability of such techniques to optimize the

performance-power tradeoff in two case studies using COTS hardware [70]. Cardosa et al.

control min, max, and share parameters of VMs to manage the power-performance tradeoff

and develop constrained bin-packing algorithms [12]. However, they do not consider ben-

efits and costs of VM migrations that can be used to further consolidate servers by packing

VMs into a smaller number of physical machines in such virtualized environments.

Kusic et al. tackles a similar problem of achieving power efficiency while maintaining

the desired performance by consolidating servers, and also explicitly deals with transient

costs [51]. While they consider the potential excessive costs caused by high workload vari-

ations in their problem formulation, they only consider a single type of adaptation (turning

on/off machines). Moreover, adding multiple actions to their approach is not trivial and can

lead to significant challenges with scalability.

99

The pMapper system [75] tackles power-cost tradeoffs under a fixed performance con-

straint by using modified bin-packing algorithms to minimize migration costs while pack-

ing VMs in a small number of machines. Our Pwr-Cost approach is inspired by pMap-

per. Similarly, Sanjay et al. perform VM placement to save power without degrading

performance [50]. They also consider adaptation costs to improve system stability in their

distributed architecture. However, their focus is on developing an extensible architecture

to coordinate various management objectives, rather than solving tradeoffs between those

objectives.

5.5 Summary

Managing large computer systems (e.g., data centers, clouds) with complex multi-tier dis-

tributed applications is becoming increasing important and challenging due to often con-

flicting goals of meeting performance objectives, saving power, and managing the cost of

management decisions and actions. In this work, we have presented the multi-dimensional

optimization approach, a control architecture that optimizes total utility that includes ap-

plication utility due to meeting/missing performance objectives, power costs, and transient

adaptation costs. We demonstrate experimentally that our adaptation engine, referred to as

Mistral, provides better overall utility than a number of alternative controllers that consider

only a subset of these factors. To our knowledge, our self-aware search algorithm is the

first one to consider the cost of the search itself in its decision making. We demonstrate ex-

perimentally that such self-awareness does indeed improve overall total utility. Mistral can

also be configured as a multi-level hierarchical controller enabling its potential application

in large scale systems.

100

CHAPTER VI

CONCLUSION AND DISCUSSION

6.1 Conclusion

This dissertation addresses the problems associated with dynamic resource management

in cloud computing infrastructures. Although cloud computing based on resource virtu-

alization has provided significant features for improving power efficiency while meeting

performance requirements in enterprise data centers, it has also posed new research chal-

lenges. One critical challenge regards how to dynamically provision available resources

to maximize overall utility under time-varying workloads, while minimizing management

costs. A satisfactory approach to meet the challenge must deal with very different respon-

siveness of different applications, handle dynamic changes in resource demands as their

workloads change over time, and consider management costs such as power consumption

and adaptation overheads.

In this dissertation, I have presented research efforts in attacking the challenges. I have

developed an adaptation engine to address the problem of the multi-dimensional optimiza-

tion between performance, power consumption, and transient costs incurred by various

adaptations and decision-making process itself in a cloud infrastructure. This research

effort is based upon the observation that adaptations can cause significant overheads not

only on end-to-end performance but also on power consumption. Moreover, such transient

overheads can vary in intensity and time scale against workload and performance charac-

teristics of hosted applications. The innovative multi-dimensional optimization approach

uses an analytical modeling technique, a scalable optimization search algorithm, and an

adaptation hierarchy to deal with large-scale cloud infrastructures and various adaptation

101

actions in support of various time-scale decision-makings. The approach has been demon-

strated in a virtualized data center environment. This research makes the following distinct

contributions.

• Transparent and tractable optimization for application performance. The adaptation

system constructs adaptation rule set off-line for a given range of workload to be

used as a guideline for runtime adaptation decisions. Additionally, domain experts

or management systems can be allowed to further inspect or extend the generated rule

set with additional constraints such as the consideration of adaptation overheads. It

provides the upper-bound performance utility for a given workload that is used in our

multi-dimensional optimization process.

• Ability to address the tradeoff between adaptation benefit and cost. Although the

resource management is easier than ever before along with virtualization technology,

the indiscriminate use of adaptations such as VM migration can have adverse im-

pact on satisfying response-time-based SLAs and power savings. Using modeling

techniques, utility functions, and novel optimization algorithms, our approach can

address the tradeoff between accrued adaptation costs and their benefits to maximize

the overall utility.

• Scalable and efficient optimization for the multi-dimensional tradeoffs. The proposed

adaptation system is designed to balance multiple management objectives including

performance, power consumption, and transient adaptation costs incurred by adapta-

tion actions and the decision making procedure itself. By developing the self-aware

optimization algorithm and the multi-level hierarchical adaptation architecture, we

can deal with a large number of applications, hosts, and various adaptation actions at

multiple time-scales while solving the optimization problem.

102

6.2 Future Work

Although we have showed the feasibility of solving the large-scale multi-dimensional opti-

mization problem in this dissertation, we introduce two distinct challenges that need to be

further explored in future work.

First, we have mainly focused on CPU resource and end-to-end response time to eval-

uate our approach. The approach can be extended to allow more complex utility functions

incorporating various metrics and statistics, and to allow management of multiple types

of heterogenous resources (e.g., memory, disk I/O, and network bandwidth in addition to

CPU capacity). Since the adaptation engine uses models to evaluate the utility function,

the main consideration in tackling the first challenge is the types of metrics and statistics

that can be predicted by the models. Without modification, the models employed in this

dissertation can predict response time, throughput, CPU utilization, disk utilization, and

I/O throughput. They can also be extended to predict network bandwidth. However, the

complexity of modeling various metrics can pose the inherited performance degradation of

the approach, and more importantly, need a risk management due to potential inaccurate

predictions. Therefore, we need to develop more robust and reliable models to deal with

multiple heterogenous metrics. Additionally, in order to manage multiple heterogenous

resource types, the bin-packing algorithm used by our adaptation engine must be extended

to generate component placements with additional constraints. In particular, to allow for

resources with different capacities, one can use one of several approximation algorithms

such as a heuristic vector bin packing algorithm for the variable sized bin packing problem.

Meanwhile, if a statistic other than the mean value of a metric is required (e.g., fraction

of requests for which response time is greater than some threshold), then the models have

to be solved by simulation to get accurate answers. For example, the LQNS tool suite

used in evaluations of our queueing network models provides a simulator that can produce

higher order statistics. When simulation is needed, an off-line solution such as one de-

scribed in Chapter 3 for performance optimization can become the practical approach to

103

solve the multi-dimensional optimization problem, since simulation is usually not practical

in a purely on-line approach.

As another on-going work, we are integrating other management objectives including

service availability and reliability into the optimization formulations. We have introduced

a preliminary result for service availability optimization and the tradeoff between availabil-

ity and performance in [43]. As presented in this dissertation, when multiple management

objectives derived from different administrative domains are controlled by a unified opti-

mization system, all potential tradeoffs must be considered. For example, to achieve high

service availability, a high redundancy level of each hosted application is typically required.

However, it can lead to consuming additional power by imprudently deploying many ap-

plication replicas. Additionally, to maintain a certain replication level of each application,

the management system should address the tradeoff between the cost of replications and

service availability by dynamically determining not only how to replicate (e.g, where each

replica is placed) but also when replicating applications.

104

REFERENCES

[1] “Server and data center energy efficiency,” in U.S. Environmental Protection Agency
Report, ENERGY STAR Program, 2007.

[2] “Green clouds: Power consumption as a first order criterion?,” in Panel meeting in the
17th International Conference on Autonomic Computing, 2009.

[3] AMAZON, “Elastic compute cloud,” (http://www.amazon.com/ec2/).

[4] APPLEBY, K., FAKHOURI, S., FONG, L., GOLDSZMIDT, M., KRISHNAKUMAR, S.,
PAZEL, D., PERSHING, J., and ROCHWERGER., B., “Oceano sla based manage-
ment of a computing utility,” in Proceedings of Symposium on Integrated Network
Management, pp. 855–868, IFIP/IEEE, 2001.

[5] ARLITT, M. and JIN, T., “Workload characterization of the 1998 world cup web site,”
in HP Labs Technical Report, 1999.

[6] AT&T, “Synaptic hosting,” (http://www.business.att.com/enterprise/family/application-
hosting-enterprise/synaptic-hosting-enterprise/).

[7] BARHAM, P., DRAGOVIC, B., FRASER, K., HAND, S., HARRIS, T., HO, A.,
NEUGEBAUER, R., PRATT, I., and WARELD, A., “Xen and the art of virtualization,”
in Proceedings of 19th Symposium on Operating Systems Principles, pp. 164–177,
ACM, Oct. 2003.

[8] BENNANI, M. and MANESCE, D., “Resource allocation for autonomic data centers
using analytic performance models,” in Proceedings of the 2nd International Confer-
ence on Autonomic Computing, pp. 217–228, IEEE, June 2005.

[9] BOX, G., JENKINS, G., and REINSEL, G., Time Series Analysis: Forecasting and
Control. Prentice Hall, 3 ed., 1994.

[10] BUYYA, R., YEO, C. S., and VENUGOPA, S., “Market-oriented cloud computing:
Vision, hype, and reality for delivering it services as computing utilities,” in Pro-
ceedings of the 10th International Conference on High Performance Computing and
Communications, IEEE, Aug. 2008.

[11] CAO, J., ANDERSON, M., NYBERG, C., and KIHL, M., “Web server performance
modeling using an m/g/1/k*ps queue,” in Proceedings of the 10th International Con-
ference on Telecommunications, pp. 1501–1506, IEEE, Feb. 2003.

[12] CARDOSA, M., KORUPOLU, M., and SINGH, A., “Shares and utilities based power
consolidation in virtualized server environments,” in Proceedings of the 11th Interna-
tional Symposium on Integrated Network Management, IFIP/IEEE, 2009.

105

[13] CEAPARU, I., LAZAR, J., BESSIERE, K., ROBINSON, J., and SHNEIDERMAN, B.,
“Determining causes and severity of end-user frustration,” International Journal of
Human-Computer Interaction, vol. 17, no. 3, pp. 333–356, 2004.

[14] CECCHET, E., CHANDA, A., ELNIKETY, S., MARGUERITE, J., and ZWAENEPOEL,
W., “Performance comparison of middleware architectures for generating dynamic
web content,” in Proceedings of the 4th International Middleware Conference,
ACM/IFIP/USENIX, 2003.

[15] CHANDRA, A., GONG, W., and SHENOY, P., “Dynamic resource allocation for
shared data centers using online measurements,” in Proceedings of SIGMETRICS
International Conference on Measurement and Modeling of Computer Systems,
pp. 300–301, ACM, June 2003.

[16] CHASE, J., ANDERSON, D., and THAKAR, P., “Managing energy and server re-
sources in hosting centers,” in Proceedings of the 18th Symposium on Operating Sys-
tems Principles, pp. 103–116, ACM SIGOPS, 2001.

[17] CHEKURI, C. and KHANNA, S., On Multidimensional Packing Problems,
33(4):837 851. SIAM J. Comput., 1984.

[18] CHEN, Y., DAS, A., QIN, W., SIVASUBRAMANIAM, A., WANG, Q., and GAUTAM,
N., “Managing server energy and operational costs in hosting centers,” in Proceed-
ings of SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pp. 303–314, ACM, 2005.

[19] CHEN, Y., IYER, S., LIU, X., MILOJICIC, D., and SAHAI, A., “Sla decomposition:
Translating service level objectives to system level thresholds,” in Proceedings of the
4th International Conference on Autonomic Computing, p. 3, IEEE, June 2007.

[20] CLARK, C., FRASER, K., HAND, S., HANSEN, J. G., JUL, E., LIMPACH, C.,
PRATT, I., and WARFIELD, A., “Live migration of virtual machines,” in Proceedings
of the 2nd Symposium on Networked Systems Design and Implementation, pp. 273–
286, USENIX Association, 2005.

[21] COFFMAN, E. G., GALAMBOS, G., MARTELLO, S., VIGO, D., DU, D., and
PARADALOS, P., Handbook of Combinatorial Optimization, Bin Packing Approxi-
mation Algorithms: Combinatorial Analysis. Kulwer, 1998.

[22] CUNHA, I., ALMEIDA, J. V., and SANTOS, M., “Self-adaptive capacity management
for multi-tier virtualized environments,” in Proceedings of the 10th Symposium on
Integrated Network Management, pp. 129–138, IEEE, May 2007.

[23] DILLEY, J., “Web server workload charaterization,” in HP Technical Report, HPL-
96-160, 1996.

[24] DOYLE, R., CHASE, J., ASAD, O., JIN, W., and VAHDAT, A., “Model-based re-
source provisioning in a web service utility,” in Proceedings of the 4th Symposium on
Internet Technologies and Systems, USENIX, Mar. 2003.

106

[25] FAN, X., WEBER, W., and BARROSO, L., “Power provisioning for a warehouse-
sized computer,” in Proceedings of the 34th International Symposium on Computer
Architecture, pp. 13–23, ACM, 2007.

[26] FELTER, W., RAJAMANI, K., RUSU, C., and KELLER, T., “A performance-
conserving approach for reducing peak power consumption in server systems,” in Pro-
ceedings of the 19th Annual International Conference on Supercomputing, pp. 293–
302, 2005.

[27] FRANKEN, L. and HAVERKORT, B., “The performability manager,” IEEE Network,
vol. 8, pp. 24–32, Jan. 1994.

[28] FRANKS, G., MAJUMDAR, S., NEILSON, J., PETRIU, D., ROLIA, J., and WOOD-
SIDE, M., “Performance analysis of distributed server systems,” in Proceedings of the
6th International Conference on Software Quality, pp. 15–26, Oct. 1996.

[29] GALLETTA, D., HENRY, R., MCCOY, S., and POLAK, P., “Web site delays: How
tolerant are users?,” Journal of the Assoc. for Information Systems, vol. 5, no. 1,
pp. 1–28, 2004.

[30] GANDHI, A., HARCHOL-BALTER, M., DAS, R., and LEFURGY, C., “Optimal power
allocation in server farms,” in Proceedings of SIGMETRICS International Conference
on Measurement and Modeling of Computer Systems, ACM, 2009.

[31] GARBACKI, P. and NAIK, V. K., “Efficient resource virtualization and sharing strate-
gies for heterogeneous grid environments,” in Proceedings of Symposium on Inte-
grated Network Management, pp. 40–49, IFIP/IEEE, 2007.

[32] GMACH, D., ROLIA, J., CHERKASOVA, L., BELROSE, G., TURICCHI, T., and KEM-
PER, A., “An integrated approach to resource pool management: Policies, efficiency
and quality metrics,” in Proceedings of International Conference on Dependable Sys-
tems and Network, pp. 326–335, IEEE, 2008.

[33] GOOGLE, “App engine,” (http://code.google.com/appengine/).

[34] GOVINDAN, S., CHOI, J., URGAONKAR, B., SIVASUBRAMANIAM, A., and BAL-
DINI, A., “Statistical profiling-based techniques for effective power provisioning in
data centers,” in European Conference on Computer Systems, pp. 317–330, ACM,
2009.

[35] GOVINDAN, S., NATH, A., DAS, A., URGAONKAR, B., and SIVASUBRAMANIAM,
A., “Xen and co.: Communication-aware cpu scheduling for consolidated xen-based
hosting platforms,” in Proceedings of the 3rd International Conference on Virtual
Execution Environments, pp. 126–136, ACM, June 2007.

[36] HP, “Openview,” (http://h18013.www1.hp.com/products/servers/management/openview/).

[37] IBM, “Tivoli,” (http://www-01.ibm.com/software/tivoli).

107

[38] JACOBSON, P. A. and LAZOWSKA, E. D., “The method of surrogate delays: Simul-
taneous resource possession in analytic models of computer systems,” ACM SIGMET-
RICS Performance Evaluation Review, vol. 10, pp. 165–174, Sept. 1981.

[39] JUNG, G., HILTUNEN, M., JOSHI, K., SCHLICHTING, R., and PU, C., “An offline
approach for generating online policies,” in The 8th International Workshop on Per-
formability Modeling of Computer and Communication Systems, 2007.

[40] JUNG, G., JOSHI, K., HILTUNEN, M., SCHLICHTING, R., and PU, C., “An off-line
approach for generating on-line adaptation policies in consolidated server environ-
ments,” Under review in ACM Transactions on Autonomous and Adaptive Systems.

[41] JUNG, G., JOSHI, K., HILTUNEN, M., SCHLICHTING, R., and PU, C., “Generating
adaptation policies for multi-tier applications in consolidated server environments,”
in Proceedings of the 5th International Conference on Autonomic Computing, pp. 23–
32, IEEE, June 2008.

[42] JUNG, G., JOSHI, K., HILTUNEN, M., SCHLICHTING, R., and PU, C., “A
cost-sensitive adaptation engine for server consolidation of multi-tier applications,”
in Proceedings of the 10th International Middleware Conference, pp. 163–183,
ACM/IFIP/USENIX, Nov. 2009.

[43] JUNG, G., JOSHI, K., HILTUNEN, M., SCHLICHTING, R., and PU, C., “Perfor-
mance and availability aware regeneration for cloud based multitier applications,” in
Proceedings of the 40th International Conference on Dependable Systems and Net-
work, IEEE/IFIP, 2010.

[44] JUNG, G., PU, C., and SWINT, G., “Mulini: An automated staging framework for
qos of distributed multi-tier applications,” in Proceedings of Workshop on Automating
Service Quality, pp. 10–15, ACM, Nov. 2007.

[45] JUNG, G., SWINT, G., PAREKH, J., PU, C., and SAHAI, A., “Detecting bottleneck
in n-tier it applications through analysis,” in Proceedings of the 17th Distributed Sys-
tems: Operations and Management, pp. 149–160, Springer, Oct. 2006.

[46] KANG, J. and PARK, S., “Algorithms for the variable sized bin packing problem,”
European Journal of Operational Research, vol. 147, pp. 365–372, June 2003.

[47] KEPHART, J., CHAN, H., DAS, R., LEVINE, D., TESAURO, G., RAWSON, F.,
and LEFURGY, C., “Coordinating multiple autonomic managers to achieve specified
power-performance tradeoffs,” in Proceedings of the 4th International Conference on
Autonomic Computing, pp. 24–33, IEEE, 2007.

[48] KHANNA, G., BEATY, K., KAR, G., and KOCHUT, A., “Application performance
management in virtualized server environments,” in Proceedings of the 10th Network
Operations and Management Symposium, pp. 373–381, IEEE, 2006.

108

[49] KOH, Y., KNAUERHASE, R., BOWMAN, M., WEN, Z., and PU, C., “An analysis of
performance interference effects in virtual environments,” in Proceedings of Interna-
tional Symposium on Performance Analysis of Systems and Software, pp. 200–209,
IEEE, Apr. 2007.

[50] KUMAR, S., TALWAR, V., KUMAR, V., RANGANATHAN, P., and SCHWAN, K.,
“vmanage: Loosely coupled platform and virtualization management in data cen-
ters,” in Proceedings of the 6th International Conference on Autonomic Computing,
pp. 127–136, IEEE, 2009.

[51] KUSIC, D., KEPHART, J., HANSON, J., KANDASAMY, N., and JIANG, G., “Power
and performance management of virtualized computing environments via lookahead
control,” in Proceedings of the 5th International Conference on Autonomic Comput-
ing, pp. 3–12, IEEE, June 2008.

[52] LEFURGY, C., WANG, X., and WARE, M., “Power capping: A prelude to power
shifting,” Cluster Computing, vol. 11, pp. 183–195, May 2008.

[53] LIU, L., WANG, H., LIU, X., JIN, X., HE, W., WANG, Q., and CHEN, Y., “Green-
cloud: a new architecture for green data center,” in Proceedings of the 6th Interna-
tional Conference on Autonomic Computing, pp. 29–38, IEEE, June 2009.

[54] LIU, T., KUMARAN, S., and LUO, Z., “Layered queuing models for enterprise jav-
abean applications,” in Proceedings of the 5th International Conference on Enterprise
Distributed Object Computing, pp. 174–178, IEEE, Sept. 2001.

[55] MICROSOFT, “Hyper-v,” (http://www.microsoft.com/hyper-v-
server/en/us/default.aspx).

[56] NATHUJI, R. and SCHWAN, K., “Virtualpower: Coordinated power management in
virtualized enterprise systems,” in Proceedings of the 21st Symposium on Operating
Systems Principles, p. 265 278, ACM SIGOPS, 2007.

[57] PADALA, P., HOU, K., SHIN, K., ZHU, X., UYSAL, M., WANG, Z., SINGHAL,
S., and MERCHANT, A., “Automated control of multiple virtualized resources,” in
Proceedings of the 4th European Conference on Computer Systems, pp. 13–26, ACM
SIGOPS, 2009.

[58] PADALA, P., SHIN, K., ZHU, X., UYSAL, M., WANG, Z., SINGHAL, S., MER-
CHANT, A., and SALEM, K., “Adaptive control of virtualized resources in utility
computing environments,” in Proceedings of the 2nd European Conference on Com-
puter Systems, pp. 289–302, ACM SIGOPS, June 2007.

[59] PAREKH, S., GANDHI, N., HELLERSTEIN, J., TILBURY, D., JAYRAM, T., and BI-
GUS, J., “Using control theory to achieve service level objectives in performance
management,” Real-Time Systems, vol. 23, pp. 127–141, July 2002.

109

[60] PERING, T., BURD, T., and BRODERSEN, R., “The simulation and evaluation of
dynamic voltage scaling algortithms,” in Proceedings of International Symposium on
Low Power Electronics and Design, pp. 76–81, 1998.

[61] PU, C., SAHAI, A., JUNG, G., PAREKH, J., BAE, J., CHA, Y., GARCIA, T., IRANI,
D., LEE, J., and LIN, Q., “An observation-based approach to performance charac-
terization of distributed n-tier applications,” in Proceedings of the 10th International
Symposium on Workload Charaterization, pp. 161–170, IEEE, 2007.

[62] RAGHAVENDRA, R., RANGANATHAN, P., TALWAR, V., WANG, Z., and ZHU, X.,
“No power struggles: Coordinated multi-level power management for data center,” in
Proceedings of the 13th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, pp. 48–59, 2008.

[63] RUBIS, “Rice University Bidding System,”
(http://rubis.objectweb.org/.).

[64] RUSSELL, S. J. and NORVIG, P., Artificial Intelligence: A Modern Approach. Pren-
tice Hall, 2003.

[65] SALESFORCE, “Enterprise cloud platform,” (http://www.salesforce.com/platform/).

[66] SHA, L., LIU, X., LU, Y., and ABDELZAHER, T., “Queueing model based network
server performance control,” in Proceedings of the 23rd Real-Time Systems Sympo-
sium, pp. 81–90, IEEE, Dec. 2002.

[67] SLOTHOUBER, L., “A model of web server performance,” in Proceedings of the
World Wide Web Conference, June 1996.

[68] SWINT, G., JUNG, G., PU, C., and SAHAI, A., “Automated staging for built-to-order
application systems,” in Proceedings of the 10th Network Operations and Manage-
ment Symposium, pp. 361–372, IEEE, Apr. 2006.

[69] TESAURO, G., JONG, N., DAS, R., and BENNANI, M., “A hybrid reinforcement
learning approach to autonomic resource allocation,” in Proceedings of the 3rd Inter-
national Conference on Autonomic Computing, pp. 65–73, IEEE, June 2006.

[70] TOLIA, N., WANG, Z., MARWAH, M., and BASH, C., “Delivering energy propor-
tionality with non energy-proportional systems - optimizing the ensemble,” in Pro-
ceedings of the 1st USENIX Workshop on Power Aware Computing and Systems, 2008.

[71] UDUPI, Y. B., SAHAI, A., and SINGHAL, S., “A classification-based approach to
policy refinement,” in Proceedings of the 10th International Symposium on Integrated
Network Management, pp. 785–788, IEEE, May 2007.

[72] URGAONKAR, B., PACIFICI, G., SHENOY, P., SPREITZER, M., and TANTAWI, A.,
“An analytical model for multi-tier internet services and its applications,” in Proceed-
ings of SIGMETRICS International Conference on Measurement and Modeling of
Computer Systems, pp. 291–302, ACM, June 2005.

110

[73] URGAONKAR, B., SHENOY, P., CHANDRA, A., and GOYAL, P., “Dynamic provi-
sioning of multi-tier internet applications,” in Proceedings of the 2nd International
Conference on Autonomic Computing, pp. 217–228, IEEE, June 2005.

[74] URGAONKAR, B., SHENOY, P., CHANDRA, A., GOYAL, P., and WOOD, T., “Ag-
ile dynamic provisioning of multi-tier internet applications,” ACM Transactions on
Autonomous and Adaptive Systems, vol. 3, pp. 1–39, Mar. 2008.

[75] VERMA, A., AHUJA, P., and NEOGI, A., “pmapper: Power and migration cost aware
application placement in virtualized systems,” in Proceedings of the 9th International
Middleware Conference, pp. 243–264, ACM/IFIP/USENIX, 2008.

[76] VMWARE, “Virtualcenter,” (http://www.vmware.com/support/vc11/doc/c15alarms.html).

[77] VOORSLUYS, W., BROBERG, J., VENUGOPAL, S., and BUYYA, R., “Cost of virtual
machine live migration in clouds: A performance evaluation,” in Proceedings of the
1st International Conference Cloud Computing, Dec. 2009.

[78] WANG, Z., ZHU, X., PADALA, P., and SINGHAL, S., “Capacity and performance
overhead in dynamic resource allocation to virtual containers,” in Proceedings of the
10th Symposium on Integrated Management, pp. 149–158, IEEE, May 2007.

[79] WEBSITEOPTIMIZATION.COM, “The psychology of web performance,” (Ac-
cessed Apr 2009. http://www.websiteoptimization.com/speed/tweak/psychology-
web-performance/), May 2008.

[80] WEISS, A., “Computing in the clouds,” netWorker, vol. 11, pp. 16–25, Dec. 2007.

[81] WEKA (http://www.cs.waikato.ac.nz/ml/weka).

[82] WELSH, M. and CULLER, D., “Adaptive overload control for busy internet servers,”
in Proceedings of Symposium on Internet Technologies and Systems, USENIX, 2003.

[83] WOOD, T., SHENOY, P., and VENKATARAMANI, A., “Black-box and gray-box
strategies for virtual machine migration,” in Proceedings of Symposium on Networked
Systems Design and Implementation, pp. 229–242, USENIX, 2007.

[84] WOODSIDE, C. M., NERON, E., HO, E. D. S., and MONDOUX, B., “An ”active
server” model for the performance of parallel programs written using rendezvouz,”
Journal of Systems and Software, pp. 125–132, 1986.

[85] XI, B., LIU, Z., RAGHAVACHARI, M., XIA, C., and ZHANG, L., “A smart hill-
climbing algorithm for application server configuration,” in Proceedings of the 13th

International Conference on World Wide Web, pp. 287–296, ACM, May 2004.

[86] XU, J., ZHAO, M., FORTES, J., CARPENTER, R., and YOUSIF, M., “On the use
of fuzzy modeling in virtualized data center management,” in Proceedings of the 4th

International Conference on Autonomic Computing, p. 25, IEEE, June 2007.

111

[87] ZHANG, L., XIA, C., SQUILLANTE, M., and III, W. N. M., “Workload service re-
quirements analysis: A queueing network optimization approach,” in Proceedings of
the 10th International Symposium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunications Systems, pp. 23–32, IEEE, Oct. 2002.

[88] ZHANG, Q., CHERKASOVA, L., and SMIRNI, E., “A regression-based analytic model
for dynamic resource provisioning of multi-tier applications,” in Proceedings of the
4th International Conference on Autonomic Computing, pp. 27–36, IEEE, June 2007.

112

VITA

Gueyoung Jung is a Ph.D. candidate at School of Computer Science, Georgia Institute

of Technology. His research interests lie in the fields of distributed systems, operating

systems, and autonomic computing. More specifically, he is involved in the automated

management of large-scale distributed systems encompassing capacity planning, deploy-

ment, and dynamic adaptive systems. He holds an MS in Computer Science from Georgia

Institute of Technology and a BS in Statistics from Inha University, Incheon, Korea. He

has earned IT scholarship from Ministry of Information and Communication Republic of

Korea during his graduate study. Before joining the graduate program in Georgia Institute

of Technology, he has been a lead system developer at LG-CNS and a startup company,

Internet Metrix, in Korea for five years.

113

