31,248 research outputs found

    ZigBee-Based wireless sensor network topologies using one and multiple coordinators

    Get PDF
    Wireless Sensor Networks (WSN) have been a cost-effective and feasible solution for a wide range of applications, such as communications infrastructure, traffic networks, telecommunications systems, military operations and so forth. IEEE804.15.4 ZigBee network model is ideally suited to the constraints of WSN in terms of bandwidth, processing power and battery capacity. This paper investigated tree and mesh routing in WSN with multiple coordinators and the failure of single coordinator using OPNET Modeler v14 which is an efficient computational platform for data networks simulation. Throughput, delay, traffic received, MAC Load are studied in this system and the results showed that tree routing was better suited for WSN than mesh routing and mobility of end node in multiple coordinator network was the best

    A Real-Time Communication Framework for Wireless Sensor Networks

    Get PDF
    Recent advances in miniaturization and low power design have led to a flurry of activity in wireless sensor networks. Sensor networks have different constraints than traditional wired networks. A wireless sensor network is a special network with large numbers of nodes equipped with embedded processors, sensors, and radios. These nodes collaborate to accomplish a common task such as environment monitoring or asset tracking. In many applications, sensor nodes will be deployed in an ad-hoc fashion without careful planning. They must organize themselves to form a multihop, wireless communication network. In sensor network environments, much research has been conducted in areas such as power consumption, self-organisation techniques, routing between the sensors, and the communication between the sensor and the sink. On the other hand, real-time communication with the Quality of Service (QoS) concept in wireless sensor networks is still an open research field. Most protocols either ignore real time or simply attempt to process as fast as possible and hope that this speed is sufficient to meet the deadline. However, the introduction of real-time communication has created additional challenges in this area. The sensor node spends most of its life routing packets from one node to another until the packet reaches the sink; therefore, the node functions as a small router most of the time. Since sensor networks deal with time-critical applications, it is often necessary for communication to meet real time constraints. However, research that deals with providing QoS guarantees for real-time traffic in sensor networks is still in its infancy.This thesis presents a real-time communication framework to provide quality of service in sensor networks environments. The proposed framework consists of four components: First, present an analytical model for implementing Priority Queuing (PQ) in a sensor node to calculate the queuing delay. The exact packet delay for corresponding classes is calculated. Further, the analytical results are validated through an extensive simulation study. Second, report on a novel analytical model based on a limited service polling discipline. The model is based on an M/D/1 queuing system (a special class of M/G/1 queuing systems), which takes into account two different classes of traffic in a sensor node. The proposed model implements two queues in a sensor node that are served in a round robin fashion. The exact queuing delay in a sensor node for corresponding classes is calculated. Then, the analytical results are validated through an extensive simulation study. Third, exhibit a novel packet delivery mechanism, namely the Multiple Level Stateless Protocol (MLSP), as a real-time protocol for sensor networks to guarantee the traffic in wireless sensor networks. MLSP improves the packet loss rate and the handling of holes in sensor network much better than its counterpart, MMSPEED. It also introduces the k-limited polling model for the first time. In addition, the whole sending packets dropped significantly compared to MMSPEED, which it leads to decrease the consumption power. Fourth, explain a new framework for moving data from the sink to the user, at a low cost and low power, using the Universal Mobile Telecommunication System (UMTS), which is standard for the Third Generation Mobile System (3G). The integration of sensor networks with the 3G mobile network infrastructure will reduce the cost of building new infrastructures and enable the large-scale deployment of sensor network

    Efficient energy, cost reduction, and QoS based routing protocol for wireless sensor networks

    Get PDF
    Recent developments and widespread in wireless sensor network have led to many routing protocols, many of these protocols consider the efficiency of energy as the ultimate factor to maximize the WSN lifetime. The quality of Service (QoS) requirements for different applications of wireless sensor networks has posed additional challenges. Imaging and data transmission needs both QoS aware routing and energy to ensure the efficient use of sensors. In this paper, we propose an Efficient, Energy-Aware, Least Cost, (ECQSR) quality of service routing protocol for sensor networks which can run efficiently with best-effort traffic processing. The protocol aims to maximize the lifetime of the network out of balancing energy consumption across multiple nodes, by using the concept of service differentiation, finding lower cost by finding the shortest path using nearest neighbor algorithm (NN), also put certain constraints on the delay of the path for real-time data from where link cost that captures energy nodes reserve, energy of the transmission, error rate and other parameters. The results show that the proposed protocol improves the network lifetime and low power consumption

    Fixed chain-based wireless sensor network for intelligent transportation systems

    Get PDF
    Wireless Sensor Networks (WSNs) are distributed and interconnected wirelessly sensors that are used in a variety of fields of our daily life, such as the manufacturing, utility operations and traffic monitoring. Many WSN applications come with some technical weaknesses and issues, especially when they are used in Intelligent Transportation Systems (ITS). For ITS applications that use a fixed chain topology which contains road studs deployed at ground level, there are some challenges related to radio propagation, energy constraints and the Media Access Control (MAC) protocol. This thesis develops a ground level radio propagation model for communication between road studs, and energy efficiency metrics to manage the resources to overcome the energy constraints, as well as a MAC protocol compatible with chain topology and ground level communication. For the challenges of the physical layer, this thesis investigates the use of a WSN for communicating between road-based nodes. These nodes are situated at ground level, and two-way wireless communication is required between the nodes and from the nodes to a roadside control unit. Field measurements have been carried out to examine the propagation close to the ground to determine the maximum distance between road-based nodes as a function of the antenna height. The results show that for a frequency of 2.4 GHz, a range of up to 8m is achievable with 2mW equivalent isotropically radiated power (EIRP). An empirical near-ground level radio propagation model has been derived, and the predicted results from this model are shown to match closely to the measured results. Since wireless sensor networks have power constraints, green energy efficiency metrics have been proposed for low-power wireless sensors operating at ground level. A numerical analysis is carried out to investigate the utilisation of the green energy efficiency metrics for ground level communication in wireless sensor networks. The proposed metrics have been developed to calculate the optimal sensor deployment, antenna height and energy efficiency level for the near ground wireless sensor. As an application of the proposed metrics, the relationship between the energy efficiency and the spacing between the wireless sensor nodes has been studied. The results provide guidance for energy efficient deployment of near ground level wireless sensors. To manage the communication between large numbers of nodes deployed on a chain topology, this research presents a time division multiple access (TDMA) MAC protocol that is specifically designed for applications requiring periodic sensing of the sensor field. Numerical analysis has been conducted to investigate the optimum transmission scheduling based on the signal-to-interference-plus-noise-ratio (SINR) for ground level propagation model applied on wireless chain topology. The optimised transmission schedule considers the SINR value to enable simultaneous transmission from multiple nodes. The most significant advantages of this approach are reduced delay and improved Packet Received Ratio (PRR). Simulation is performed to evaluate the proposed protocol for intelligent transport system applications. The simulation results validate the MAC protocol for a fixed chain topology compared with similar protocols

    Unified clustering and communication protocol for wireless sensor networks

    Get PDF
    In this paper we present an energy-efficient cross layer protocol for providing application specific reservations in wireless senor networks called the “Unified Clustering and Communication Protocol ” (UCCP). Our modular cross layered framework satisfies three wireless sensor network requirements, namely, the QoS requirement of heterogeneous applications, energy aware clustering and data forwarding by relay sensor nodes. Our unified design approach is motivated by providing an integrated and viable solution for self organization and end-to-end communication is wireless sensor networks. Dynamic QoS based reservation guarantees are provided using a reservation-based TDMA approach. Our novel energy-efficient clustering approach employs a multi-objective optimization technique based on OR (operations research) practices. We adopt a simple hierarchy in which relay nodes forward data messages from cluster head to the sink, thus eliminating the overheads needed to maintain a routing protocol. Simulation results demonstrate that UCCP provides an energy-efficient and scalable solution to meet the application specific QoS demands in resource constrained sensor nodes. Index Terms — wireless sensor networks, unified communication, optimization, clustering and quality of service

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated
    • …
    corecore