519 research outputs found

    Simple and explicit bounds for multi-server queues with 1/(1ρ)1/(1 - \rho) (and sometimes better) scaling

    Full text link
    We consider the FCFS GI/GI/nGI/GI/n queue, and prove the first simple and explicit bounds that scale as 11ρ\frac{1}{1-\rho} (and sometimes better). Here ρ\rho denotes the corresponding traffic intensity. Conceptually, our results can be viewed as a multi-server analogue of Kingman's bound. Our main results are bounds for the tail of the steady-state queue length and the steady-state probability of delay. The strength of our bounds (e.g. in the form of tail decay rate) is a function of how many moments of the inter-arrival and service distributions are assumed finite. More formally, suppose that the inter-arrival and service times (distributed as random variables AA and SS respectively) have finite rrth moment for some r>2.r > 2. Let μA\mu_A (respectively μS\mu_S) denote 1E[A]\frac{1}{\mathbb{E}[A]} (respectively 1E[S]\frac{1}{\mathbb{E}[S]}). Then our bounds (also for higher moments) are simple and explicit functions of E[(AμA)r],E[(SμS)r],r\mathbb{E}\big[(A \mu_A)^r\big], \mathbb{E}\big[(S \mu_S)^r\big], r, and 11ρ\frac{1}{1-\rho} only. Our bounds scale gracefully even when the number of servers grows large and the traffic intensity converges to unity simultaneously, as in the Halfin-Whitt scaling regime. Some of our bounds scale better than 11ρ\frac{1}{1-\rho} in certain asymptotic regimes. More precisely, they scale as 11ρ\frac{1}{1-\rho} multiplied by an inverse polynomial in n(1ρ)2.n(1 - \rho)^2. These results formalize the intuition that bounds should be tighter in light traffic as well as certain heavy-traffic regimes (e.g. with ρ\rho fixed and nn large). In these same asymptotic regimes we also prove bounds for the tail of the steady-state number in service. Our main proofs proceed by explicitly analyzing the bounding process which arises in the stochastic comparison bounds of amarnik and Goldberg for multi-server queues. Along the way we derive several novel results for suprema of random walks and pooled renewal processes which may be of independent interest. We also prove several additional bounds using drift arguments (which have much smaller pre-factors), and make several conjectures which would imply further related bounds and generalizations

    Stationary Distribution Convergence of the Offered Waiting Processes for GI/GI/1+GI Queues in Heavy Traffic

    Full text link
    A result of Ward and Glynn (2005) asserts that the sequence of scaled offered waiting time processes of the GI/GI/1+GIGI/GI/1+GI queue converges weakly to a reflected Ornstein-Uhlenbeck process (ROU) in the positive real line, as the traffic intensity approaches one. As a consequence, the stationary distribution of a ROU process, which is a truncated normal, should approximate the scaled stationary distribution of the offered waiting time in a GI/GI/1+GIGI/GI/1+GI queue; however, no such result has been proved. We prove the aforementioned convergence, and the convergence of the moments, in heavy traffic, thus resolving a question left open in Ward and Glynn (2005). In comparison to Kingman's classical result in Kingman (1961) showing that an exponential distribution approximates the scaled stationary offered waiting time distribution in a GI/GI/1GI/GI/1 queue in heavy traffic, our result confirms that the addition of customer abandonment has a non-trivial effect on the queue stationary behavior.Comment: 29 page

    Multiclass queueing systems in heavy traffic: an asymptotic approach based on distributional and conservation laws

    Get PDF
    We propose a new approach to analyze multiclass queueing systems in heavy traffic based on what we consider as fundamental laws in queueing systems, namely distributional and conservation laws. Methodologically, we extend the distributional laws from single class queueing systems to multiple classes and combine them with conservation laws to find the heavy traffic behavior of the following systems: a)EGI/G/1 queue under FIFO, b) EGI/G/1 queue with priorities, c) Polling systems with general arrival distributions. Compared with traditional heavy traffic analysis via Brownian processes, our approach gives more insight to the asymptotics used, solves systems that traditional heavy traffic theory has not fully addressed, and more importantly leads to closed form answers, which compared to simulation are very accurate even for moderate traffic
    corecore