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Abstract

We propose a new approach to analyze multiclass queueing systems in heavy

traffic based on what we consider as fundamental laws in queueing systems, namely

distributional and conservation laws. Methodologically, we extend the distributional

laws from single class queueing systems to multiple classes and combine them with

conservation laws to find the heavy traffic behavior of the following systems: a)

EGI/G/1 queue under FIFO, b) EGI/G/1 queue with priorities, c) Polling systems

with general arrival distributions. Compared with traditional heavy traffic analysis

via Brownian processes, our approach gives more insight to the asymptotics used,

solves systems that traditional heavy traffic theory has not fully addressed, and more

importantly leads to closed form answers, which compared to simulation are very

accurate even for moderate traffic.

°Dimitris Bertsimas, Sloan School of Management and Operations Research Center, MIT; Cambridge,

Ma 02139.

tGeorgia Mourtzinou, Operations Research Center, MIT, Cambridge, Ma 02139.
tResearch supported in part by a Presidential Young Investigator Award DDM-9158118 with matching

funds from Draper Laboratory and by the National Science Foundation under grant DDM-9014751.

1



1 Introduction

The goal of the present paper is to present a new approach for heavy traffic analysis

of multiclass queueing systems. Starting with a new extension of distributional laws to

multiple classes and combining them with conservation laws, we find the heavy traffic

behavior of the following systems:

1. EGI/G/1 queue under the First-In-First-Out (FIFO) discipline, in which there are

N general renewal processes in a single server queueing system that has a general

service time distribution and uses the FIFO discipline. In this system we derive

the joint distributions of the number of customers in the system and the waiting

time distributions of the various classes.

2. EGI/G/1 queue, in which the various classes have preemptive (or non-preemptive)

priorities. In this system we use conservation and distributional laws to find the

expected number in the system from each class.

3. EGI/G/1 queue with changeover times and cyclic service, in which the server

serves the various classes in a cyclic order, spending time dij when he moves from

class i to class j (polling systems). In this system we derive the expected number

in the system from each class.

For all the above systems our results lead to closed form expressions, which even in

moderate traffic are very close to those obtained via simulation. We would also like to

stress that our results are not identical with traditional heavy traffic results. In contrast

with these results, our expressions yield the same numerical answers only for traffic

intensities extremely close to one. For finite traffic intensities the two methods differ,

with ours being closer to the exact answer in numerical experiments.

More importantly, we feel that our analysis illustrates the following general points in

the analysis of queueing systems:
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1. Our analysis is based on the following principle: Define the random variables of

interest. Derive the laws that relate these random variables from general laws

of queueing theory. In this way we have a complete description of the system,

in the sense that we have a sufficient number of equations and unknowns. The

only difficulty is that the complexity of the equations prevents us from solving

them exactly. In heavy traffic, however, we can use asymptotic expansions to

find asymptotically exact closed form expressions. Our approach has parallels in

the physics tradition, in which there are fundamental laws that fully describe a

physical system, and lead, using mathematical tools, to a complete solution to the

quantities of interest.

2. In contrast, traditional heavy traffic analysis in queueing systems focuses in ap-

proximating various processes involved by appropriate Brownian motions. We feel,

however, that the proposed approach gives a clearer perspective to the physics

of the system, since it starts with a complete description of the system for every

traffic. Heavy traffic then is nothing more than solving the equations that describe

the system asymptotically.

Related work

Multiclass queueing systems are used to model complex production and service systems

with multiple types of customers which may differ in their arrival processes, service re-

quirements as well as cost or profit functions. As there are several important applications

of the systems we consider in telecommunication, computer, transportation and job-shop

manufacturing systems, there is a huge literature in analyzing their performance.

Related to System 1 (GI/G/1 under FIFO) Iglehart and Whitt [8] prove heavy

traffic limit theorems. Our results can be seen as an alternative derivation of the heavy

traffic behavior of the system, which leads to closed form expressions that are not iden-

tical with those obtained in [8], but compared with simulation results are very accurate.

Related to System 2 (EGI/G/1 with priorities) Gelenbe and Mitrani [6], Federgruen

and Groenevelt [3], [4] and Shantikumar and Yao [15] derive conservation laws for ex-
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pected performance measures. While conservation laws lead to explicit expressions for

the performance of systems under priority policies for systems with Poisson arrivals, the

performance for systems with general arrivals is not known. We find that the distri-

butional laws lead to explicit expressions for the conservation laws in heavy traffic for

systems with general arrivals and thus enable us to analyze the performance of priority

policies.

System 3 (polling systems) has been extensively studied for the case of Poisson arrivals

(see Takagi [17 for a survey). Perhaps the most efficient algorithm for the analysis of

polling systems with Poisson arrivals is due to Sarkar and Zangwill [14], in which they

analyze the system by solving a linear system of N equations in N unknowns. We gen-

eralize their work using distributional laws and derive the heavy traffic behavior of a

polling system with general renewal arrivals. Recently, Reiman [13] proposed an alter-

native heavy traffic approach, via Brownian processes, for a polling system with two

stations.

Regarding the methodological foundation of the paper, namely the distributional

laws, Haji and Newell [7] derive the distributional laws for an overtake free single class

system, and for the case of Poisson arrivals Keilson and Servi [9], [10] found that the dis-

tributional laws have a very convenient form that can lead to complete solutions for some

queueing systems. The approach in the present paper has its origin in the work of Bert-

simas and Nakazato [2] and Bertsimas and Mourtzinou [1], who give exact expressions

for systems involving mixed generalized Erlang arrival distributions and asymptotically

exact heavy traffic results for single class systems. The present paper can be seen as the

extension of the distributional laws and their applications to the multiclass case.

The rest of the paper is organized as follows. In Section 2, we develop the multiclass

distributional laws. In Sections 3, 4 and 5 we derive the heavy traffic behavior of the

EGI/G/1 under FIFO, EGI/G/1 with priorities and polling systems respectively as

applications of the distributional and conservation laws. Finally in Section 6 we report

numerical results, comparing our results with the traditional heavy traffic approach and
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simulation.

2 The multiclass distributional law

In this section we first review the single class distributional law for systems with arbitrary

renewal arrival processes, and then present a generalization of the distributional law in

the multiclass case.

2.1 A review of the single class distributional law

Consider a general queueing system, with a single stationary renewal arrival process of

rate A, in which the interarrival time has Laplace transform a(s). We assume that the

system satisfies the following conditions:

Assumptions A:

A.1 All arriving customers enter the system (or the queue) one at a time, remain in the

system (or the queue) until served (there is no blocking, balking or reneging) and leave

also one at a time.

A.2 The customers leave the system (or the queue) in the order of arrival (FIFO).

A.3 New arriving customers do not affect the time in the system (or the queue) for

previous customers.

Let Na(t) be the number of customers up to time t for the ordinary renewal process

(where the time of the first interarrival time has the same distribution as the interarrival

time). Let N*(t) be the number of customers up to time t for the equilibrium process

(where the time of the first interarrival time is distributed as the forward recurrence time

of the arrival process). Then, given that they exist in steady state, let S (W) be the

stationary time a customer spends in the system (queue) and let L (Q) the stationary

number of the customers in the system (or queue) for a system that satisfies Assumptions

A. Let also L-, L+ (Q-, Q+) be the number in the system (or in the queue) just before

an arrival or just after a departure, respectively. We denote with Fs(t) = P{S t}
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and Fw(t) = P{W < t} the distribution functions of S and W respectively and with

GL(Z) = E[zL] and GQ(Z) = E[zQ] the generating functions of L and Q.

The single class distributional law can be stated as follows:

Theorem 1 (Haji and Newell [7], Bertsimas and Nakazato [2]) For a system that sat-

isfies Assumptions A, L and S (Q and W) are related in distribution by:

L Na(S), (1)

Q - Na(W), (2)

while

GL(Z) = K(z, t)dFs(t), (3)

GQ(z) = fo K(z,t)dFw(t), (4)

with

K(z,t) = E zP{Na(t)= n),
n=O

where

K*(z, ) = e ' K(z,t)dt= 1 (1- z)(1- a(s))
s s2(1 - a(s))

Remarks:

1. Relations (1) and (2) hold even if we relax the assumption that the arrival process

is renewal and we consider the broader family of stationary arrival processes (see

Haji and Newell [7]).

2. Similar relations hold for the number of customers in the system (queue) just before

an arrival or just after a departure. Namely,

L- L + A Na(S), Q- - Q+ I Na(W),

GL-(Z) = GL+(Z) = jo K(z,t)dFs(t), (5)/f
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GQ_(z) = GQ+(z) = j Ko(zt)dFw(t), (6)

with
00

K (Z,t)= E zP{Na(t) = E ( ) = },
n=O

where

K*(z, ) = e - t K(z, t) dt = (1 (s))

2.2 The multiclass distributional law

We, now, consider a general queueing system, with N classes of customers having inde-

pendent arbitrary renewal arrival streams and different service requirements. We assume

that the system satisfies Assumptions A. Let ai(s) be the Laplace transform of the in-

terarrival distribution for the ith class, with arrival rate Ai = -1/di(O) and square

coefficient of variation c.

Let Naj(t), N*(t) be the number of customers up to time t for the ordinary and

equilibrium renewal process of the ith class respectively. Given that they exist in steady

state, let Si (Wi) be the stationary time spent in the system (queue) for class i customers

and let Li (Qi) be the stationary number of class i customers in the system (or queue).

Finally let L = N_1 Li (Q = N1 Qi), Fsi(t) = P{Si < t} (Fw,(t) = P{Wi < t}) and

GLL,...,LN(z1.., ZN) = E[Z ... ZN] (GQ 1 .... QN(Z1,.,ZN) = E[Z1 ... ZN])

The multiclass distributional law can be stated as follows:

Theorem 2 For a queueing system that satisfies Assumptions A,

GL1,...,LN(Z1, .,ZN) = 1 + I Kj (zj,) dKi(zi,) dFsi(t) (7)

N o t1

GQ1 --,QN(Zl 1, ,N) = 1° + Hj( j ) dKi(i, ) dFwi( ), (8)

with

Ki(zi, t) = E ziP{Na(t) = n}.
n=O
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Proof

Let T be the time that an observer starts observing the system. Let ri,ni be the arrival

time of the nih customer of the ith class and Si,n be his system time. Note that within

each class, the customer who is numbered 1 is the customer who arrived most recently.

The customer currently served, if the server is actually busy, must have the highest

ordinal number in his class. Therefore, i,ni and Si,, are ordered in the reverse time

direction.

Let Ti*1 = T - ri,1 for i = 1, . , N, i.e., T*' is distributed as the forward recurrence

time of the ith arrival process, and Ti,ni = i,ni-1 - i,ni, ni > 2, i.e., Ti,ni is the

interarrival time of the ith arrival process.

The key observation of the proof is that for an observer to see, at the random ob-

servation epoch r, at least ni customers of the ith class in the system, where ni > 1, we

must have that for i = 1,..., N the nih customer of the ith class is still in the system at

that moment T. Then, for ni > 1 i = 1,... N

L 1 > n,..., LN > nN if and only if Sl,, > T- T1l, ... ,SN,nN > Tr- rN,nN. (9)

Note, that we have used Assumptions A.1 and A.2 here. Thus,

P{L1 > nl,...,LN > nN} = P{Sl,,, > T7- 1l,, ... SN,nN > T- N,nN}.

We, then, condition on the type of the customer that arrived first to the system and

obtain:

P{L1 > nl,...,LN nN}=

P{ -ii = mazj (-Trjn) Sl,n > T - T,nl,- , SN,nN > T -N,nN}.

Since the discipline is FIFO (Assumption A.2), the event (T - ri,ni > - Tj,ni) n(Si, >

T - Ti,ni) implies that S3,nj > r - rj,n, j 6 i. Therefore,

N

P{L1 > n 1,...,LN > nN} = P{T - in, = mazj (T- Tjnj) and S,, > - rin}
i=1
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Figure 1: A possible observation scenario in the case of two customer classes.

Moreover, Si,, is distributed as the stationary system time Si, and because of Assump-

tions A.2 and A.3, Si,n, - Ti,, are independent. We thus condition on Si and obtain

N o

P{L > nl,...,LN > nN} = | p{n(T-in > -jnj) - i,n < t dFsi,(t).
jii=l 

Conditioning next on r - ri,n, introducing the notation

ni

Ai,n (x) = P{r - ri,ni < X} = P{T 1, + Z Ti,k < },
k=2

and using the independence of r - rj,nj for all j = 1,..., N (different arrival processes

are independent) we obtain for ni > 1, i = 1,..., N

N t

P(L1 > nl,...,LN > nN} = Z o fo P{T- j,nj < z} dAi,ni(z) dFsi(t)

N oo t

i= Ajnj () dAn () dFS (t). (10)

We next consider the general case where the random observer, upon his arrival, does

not see any customers from classes k E A C {1,..., N} in the system, and sees ni > 1

9
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customers from class i 0 A. Similarly with relation (9), we obtain

n(Li > i), if and onlyif (Si,ni > - rini),)
iVA iiA

Thus, following the derivation of (10), we obtain:

P{l(Li > ni)} = E J I A,nj(z)dAi,(z) dFs(t), (11)
iA iA ifA jA,jAi

for ni > 1, i A.

We next calculate P(L 1 = n,..., LN = nN} iteratively, based on (10) and (11) and

using the fact that for ni > 0

P(L1 = nl,...,Li = ni, Li+ > ni+l,...,LN > n} =

P{ n (Lk = nk), n(Lj > nj)}- P n (Lk = nk), L > ni + , n (L > nj)}.
k<i-1 j>i k<i-1 j>i+l

Finally, we compute generating functions and, after some algebra, we find that:

N oo t

GL,...,.(z1,...,zN ) = + : Io o IIKj,(zj,x) dKi,(zi,) dFs.(t),
i=1 jZi

where

oo n n+l1

K 1 (z,t) = P({T, 1 > t} + E zl P{Til + EZTin > t - PjT + E Ti,n > t
n=l- j=2 j=2

= z" {N* (t) = n}.
n=O

Equation (8) is proved following exactly the same line of arguments if we restrict our

attention to the number of customers in the queue. E

Remarks:

1. Note that for the case of a single class (7) reduces to (3).

2. The generating function of the total number L (Q) in the system (or in the queue)

can be found if we set zl = z2 = ... = ZN = z in (7) and (8):

GL(z) = 1 + E J o InK(z,x) dK(z,) dF,(t), (12)
Kjzi
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and

GQ(Z) = 1 + E j j IA K(z, ) dK(z, ) dF,(t). (13)

We define as overtake free multiclass queueing systems those systems that

satisfy Assumptions A and therefore, satisfy multiclass distributional laws. These include

(a) EGI/G/1 under FIFO for both Li and Qi,

(b) MIGI/D/s under FIFO for both Li and Qi,

(c) EGI/G/s under FIFO for Qi,

(d) multiclass systems with vacations (see [1], [10]).

2.3 Asymptotic forms of multiclass distributional laws

The distributional laws have a somewhat complicated form. Our goal in this section

is to examine their implications as Li, Qi, Si, Wi --+ oo. For the rest of this paper

we only consider systems in which either the interarrival or the service times are non-

arithmetic. It is well known that for these systems there is a natural parameter p, the

traffic intensity, such that as p --+ 1, Li, Qi, Si, Wi -- oo. The traffic intensity depends

on the interarrival and service time characteristics of the particular system considered

(for example in a EGI/G/1 queue, in which class i has arrival rate Ai and mean service

time E[Xi], p = ZN1 AiE[Xi]). Therefore, whenever we say that a system is under

heavy traffic conditions, we mean that p -- 1 and therefore, Li, Qi, Si, Wi - oo.

We will also use the notation that under heavy traffic conditions g(z) - r(z) to mean

that limp,,-1 W = 1.

As a preparation we need the following intermediate result:

Theorem 3 (Bertsimas and Mourtzinou [1]) For a renewal process with rate A and

square coefficient of variation c, asymptotically, as t -+ oo and z 1:
o

K(z,t) = P{Na(t) = n} e-t f Z),
n=O

and
o00

K.(Z,t)= E ZnP{N(t)= n f(Z) e-= } )z
n=O A(1- z)
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where

f(z) = A(1 - z)- A(1 - z)2(c 2 - 1).

Given a random variable Y, we will denote with Oy(s) the Laplace transform of Y. Then

the asymptotic form of the distributional laws is as follows.

Theorem 4 In a N-class queueing system that satisfies Assumptions A, the following

asymptotic relations hold under heavy traffic conditions:

GL,(z) s,(fi(z)), i = 1,...,N (14)

GQ,(z) - qw(fi(z)), i = 1,...,N (15)

GL+() (1- z) (i ()), i = 1,..., N (16)

GQ+(z) qf z) wi, (z)), i = 1,...,N (17)

N f(z) (1N N
i=1 CV=1 fj(zj) k=1

=withfj(zj) k=x

with

fi(z) = Ai(1-z)- 1Ai(1- z)2 (c i -1) i= 1,...,N. (20)

Proof

Substituting the asymptotic form of the individual kernels from Theorem 3 to (3), (4),

(5) and (6), as well as (7) and (8) we obtain Theorem 4. o

The previous theorem is useful as it relates asymptotically the transform of the

number of customers in the system (queue) to the transform of the time spent in the

system (queue). Note that for Poisson arrivals the relations of the previous theorem are

exact for all p, since K(z, t) = Ko(z, t) = e-Xt(1-z).
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2.4 Another distributional law for the EGI/G/1 queue

In this section we consider a particular overtake free multiclass system, i.e., the EGI/G/1

queue. By generalizing the work of Lemoine [12] for the GI/G/1 queue we prove a

new multiclass distributional law that involves the characteristics of the service time

distribution.

There are N classes in system. Class i customers arrive at the system according to a

renewal process of rate Ai and square coefficient of variation c2i. Let Xi be the random

variable corresponding to the service time of a class i customer. We denote with E[Xi]

and c2i the mean and the square coefficient of variation of Xi. Let, also, X* be the age of

the service time of a class i customer, i.e., if at a random epoch r a class i customer is in

the server, Xi* corresponds to the amount of service time this customer has received up

to time r. Let Pi = AiE[Xi] and p = ,Nl pi. Let Si (Wi) be the stationary time spent

in the system (queue) for class i customers and by Li (Qi) the stationary number of the i

class in the system (or queue), given that those quantities exist in steady state. Denote,

also by L (Q) the stationary number of all the customers in the system (or queue).

Theorem 5 In a EGI/G/1 queue that satisfies Assumptions A

N 0o N

GQl n(z,.. . ,zN) = (1 - P) + E Pi Koi(zi,t) Kj(zj, t) dFw,+x.(t), (21)
i=1 ji

and

N N

LZ,...z N) = ( ! - p) + E Zi Pi Koi(zi, t) X Kj(zj, t) dFw+x(t), (22)
i-l jsi

where

K,(zi,t) = Ej zP{Na,(t) = n} and Ko,(zi,t) = E zP{N.,(t) = n}.
n=O n=O

Furthermore, the following asymptotic relations hold under heavy traffic conditions:

,N * f(z,) Ni N
GQI,- ~ .... iz.N) PT (-+ nP.'( - (z, ) ) Ox(E=f1(zj)) (23)

"Ai /1=1 l=O
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and

N f,(Z,) N N

GL1,...LN(1,..ZN) (1 p) + Z i fi(z)) Ox!(Z fz(zi)), (24)L, (z A,(l - z,)
i=1 l=1 / =1

where fi(z) is defined in (20).

Proof

Denote by Bi the event that at the arrival epoch of a random observer the server is busy

by a class i customer. By applying Little's law to the server we obtain: P{Bi} = pi.

Conditioning on the state of the server at a random epoch, we have that:

N

GQ, .,...,QN( zN) =(1 - p)+ p E[z1 ... zNIB,], (25)
i=1

and
N

GL, ...,LN(1,,...,N) = (1 - P) + E zi Pi E[zQ1 ... Z SNIB]. (26)
i=l

Moreover, due to FIFO, if at a random observation time r the server is busy servicing

a class i customer (we call this customer the tagged customer), and there are nj class

j customer waiting in queue, those customers must have arrived after the arrival of the

tagged customer (r1 ) and before r. In other words, they must have arrived during the

interval Wi + X*, where Wi is the stationary waiting and X* is the age of the service

time for the tagged customer. Notice, however, that we start counting customers upon

the arrival of the tagged customer, that is upon a renewal epoch of the ith process that

constitutes a random incidence for the other arrival processes (see Figure 2).

Consequently, we must have ni renewals of the ith arrival process in r - rl, where

the time of the first renewal has the same distribution as the interarrival time and nj

renewals of jth arrival process (j i) in the same interval, where the time of the first

renewal has the same distribution as the forward recurrence interarrival time of the jth

process.

Furthermore, due to FIFO and to the independence of the arrival processes, Wi, Xi*

and the arrival processes are independent, and therefore:
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W2 + X2

Figure 2: A possible observation scenario

P{Q = nl,..., QN = nNBi} =

P{N.1 *(Wi+Xi*) = nL, N*2(Wi+Xi*) = n 2,.. , N,(Wi+X*) = ni,...,NN(Wi+Xi*) = nN}.

(27)

By taking z-transforms we have:

E[z 1 .. .zQ Bi] = Ko(znt)IKj(zj,t) dFW,+x,(t), (28)

where for i = 1,..., N
~~~~~00 ~ ~ ~00

K i (zi,t) = E znP{N.(t) = n} and Koi(zi, t) = E z'P(Na(t) = n}.
n=O n=O

Substituting (28) into (25) and (26), we obtain (21) and (22). Moreover, using the

asymptotic form of the kernels (Theorem 3) we establish (23) and (24). 0

Remarks:

1. An interesting special case of (23) is a relation between GQ,(z) (GL,(z)) for i =

1,..., N and the Laplace transforms of Wj, for j = 1,..., N:

N

GQi(z) (1 - p) + E pjwj(fi(z)) OXx;(fi(z))
j=l,j'i

15
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+Pi Af(z) kw (fi(z)) qx (fi(z)), (29)
+P (1 - z)

and

N

GL(z), (1 - p) + E pjqwij(fi(z)) x;(fi(z))
j=,j#s

+Z Pi A(1 z)wi(fi(z)) x(fi(z)). (30)

2. Another special case of (23) is a relation between GQ(z) (GL(z)) and the Laplace

transforms of Wj, for j = 1,..., N, namely:

N A~) ( N N

GQ(Z) (1 - p) + Pij (1) Wi( f(Z)) ox(Z fz()),
'= X(1- z) =1 1=1

and
N f(z) N N

GL(Z) (1 Aj(1 _- Z) qw( fl(z)) qx. (Z f(z)).
i=1 1=1 / =1

3. In the special case of a single class GI/G/1 queue (21) and (22) have been proved in

Lemoine [12].

3 EGI/G/1 under FIFO

In this section we demonstrate that the distributional laws of the previous section lead to

a complete solution of the GII/G/1 under FIFO in heavy traffic. We use the notation

of Section 2.4.

Theorem 6 In a EGI/G/1 system under FIFO operating under heavy traffic conditions

Ow () (1- p)s) (31)
1- p4x(s) -;-

and

1GQ(z) -p) 1 + (f(z))
GQ~,(z~) ( (1- p)] (32)
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where c(s) = D(s)/(1 - D(s)) and

D(s) = Epjx; (s)

j=l 1 -p 3 4'X;(s) [x.(lf-l()) - 1

The joint generating function of the number of customers in the queue is given by:

GQI,.,QN(Zl,. .. ZN) (1 - )[l + c(g(z))] f1(zi)

g(z- i=l - pioXi (g(z-) g(z') - 1]
i' 1 - p;q~x.((()) ]i4Z(g ) '

(33)

where g(z) = 1k=l fk(Zk)-

Proof

The distributional laws in Theorems 2 and 5 hold for both Li and Qi for all i = 1,..., N.

From (15) and (29), we obtain in heavy traffic for i = 1,..., N

GQi(zi)- Wi(fi(z)),

N

GQ(zi) (1- p) + E pj Owi(fi(zi)) qbx;(fi(zi))
j=l,j•i

+Pi ( 1-2 (1-i)(c, -1)) qw,(fi(zi)) ix(fi(zi))i= 1,...,N.

Combining the previous equations pairwise, and setting for each i: zi = fi-l(s), we

obtain for i = 1,..., N:

h(S) p i x a i(S - fir(s)) - PxN)liea(s) i e p.

The previous equations form a N x N linear system, which can be solved in closed form

by adding and subtracting Pioqx (s)qwi (s). We can then solve each wi (s) as a function

of Ej PjOx; (s)Ww (s), from where (31) follows. Moreover, because of (15), (32) follows.

Having found the transforms of qwi (s), we obtain the joint transform of (Q1,..., QN)

from (19), which leads to (33). Note that we could use (23) instead. o

Remarks:
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1. Since Si = Wi E Xi and Wi, Xi are independent we obtain

0si(S) = qw(s) 0xi(s) i = 1,...,N,

so that we can also find si(s) and GLi() s,(fi(z)).

2. The total number of customers in the queue can be found if we set z = (z,..., z)

in (33). If in addition all customer classes have the same service requirements, X,

then we have from Theorem 4 as p -- 1 :

N

GL(Z) qX( fi(z)) GQ(z),
i=l

and since GL(Z) = zGQ(z) + (1 - p)(l - z), we obtain

i-pGq(z) - (34)
Xx(Zi= f(z)) - z

3. In the case of a single class (N = 1) we obtain the results of [1] for the GI/G/1

queue.

4. For Poisson arrival processes fi(z) = Ai(l - z), so that Ai(1 - fi-l(s)) = s. Hence,

we need to solve the following N x N system:

,wi(s) (1 -Pix(s)) - EPjx(s)w() = 1 - p i= 1,..,N,
3i

from where we obtain, as it was expected,

Ow,(S) = i=1 ,..., N.
1- ZN 1 pjx;(s)

We next find closed form expressions for the expectations of the performance mea-

sures, since we will use them in the next section.

Proposition 1 In a EGI/G/1 queue under FIFO in heavy traffic, for i = 1,... N

j= 1L AjE[XJ] + pjE[Xj](C2 - 1) 1
E[Wi] ,,, j l + _[X1](c[ 1). (35)2(1 - p) 2 
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Proof

From Little's law,:

E[Qi] = AiE[W1].

By differentiating (29) we obtain,

N 1

E[Qi] Ai E pj(E[Wj] + E[X;]) + pi(cai- 1).
j=1

Combining the previous equations pairwise results in an N x N system of equations and

solving the system yields (35). E

4 EGI/G/1 under general service disciplines

The techniques of the previous section lead to a complete solution only when the ser-

vice discipline is FIFO. There are, however, many service disciplines (for example priority

policies) that arise in practical situations and therefore it is interest to develop a method-

ology to analyze performance under arbitrary service disciplines. Our goal in this section

is to use conservation laws, that have been developed in the last decade for multiclass

queueing systems, together with the results of the previous section in order to analyze

explicitly the performance of arbitrary policies in heavy traffic.

4.1 Conservation laws

Consider a EGI/G/1 system, and denote by E = {1,2,...,N} the set of all classes

and by 2E the set of all subsets of E. Let U to be the set of all work conserving

and non-anticipative policies. For any policy u E U and any class i, we let x to be

the performance measure of class i (i E E) customers under policy u. We restrict our

attention to performance measures which are expectations. We then define xU := (s)iEE

to be the performance vector under policy u. Finally, for any given permutation r of the

N elements of E, we let x' denote the performance measure of class i under an absolute

policy rule that assigns priorities to customer types according to the permutation r,
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i.e., type r(1) has the highest priority, ... , type 7r(N) has the lowest priority. Then, the

following is a formal definition of the strong conservation laws introduced in Shantikumar

and Yao [15]:

Definition 1 (Strong Conservation Laws) The performance vector x satisfies strong

conservation laws, if there ezists a set function b: 2E -. R+ such that b(0) = 0 satisfying:

Zx7 = b(A) for all r: {r(1),.. .,r(IAl)} = A and for all A C E; (36)
iEA

and for any policy u E U,

Zxs > b(A) for all A C E and x~' = b(E). (37)
iEA iEE

In other words, a performance vector is said to satisfy strong conservation laws, if the

total performance EiEE XYU over all customer classes i is invariant under any admissible

policy and the minimal performance EiEA XiY over customer classes in a subset A C E

is achieved by an absolute priority policy giving priority to classes in the set A over all

other classes in E - A.

The major result about systems that satisfy conservation laws is the following:

Theorem 7 (Shantikumar and Yao [15]) Assume that the performance vector x satisfies

strong conservation laws. Let P(b) = {x E RNI iEA X > b(A), A C E and EiEEXy =

b(E)}. Then

1. P(b) defines ezactly those performance vectors that can be achieved under any

policy u in U.

2. The vertices of the polyhedron P(b) are the performance vectors x" of the abso-

lute priority rules r. The performance vector of an absolute priority policy 7r,

{((1),...,7r(N)} = E, is given by:

x(1) = b({ir(1)})

X(2) = b({7(l), 7(2)}) - b({7r(l)})

X7(N) = b(E) - b({r(l),.. ., 7r(N - 1)})
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3. The polyhedron P(b) is a polymatroid, i.e., the set function b(.) is supermodular,

i.e., for any sets A, B C E, b(A) + b(B) < b(A U B) + b(A n B).

Therefore, an arbitrary policy in U gives rise to a performance vector xu that is in P(b).

Moreover, if we know the set function b(.) we are able to calculate the performance of

priority policies. Furthermore, as any policy u E U can be obtained by an appropriate

randomization among absolute priority policies, we can obtain the performance under

any work conserving and non-anticipative policy. As a result, knowledge of the set

function b(-) fully characterizes the achievable region.

Unfortunately the set functions b(.) (and therefore the performance of arbitrary poli-

cies) are only known for systems with Poisson arrivals (see, e.g., Gelenbe and Mitrani

[6]). Our contribution in this section is to calculate the set function b(.) in heavy traffic

for a variety of systems EGI/G/1 that satisfy conservation laws. We note that conser-

vation laws hold even for multiserver systems but we only deal with EGI/G/1 in this

paper.

In Table 1 below we summarize EGI/G/1 systems that satisfy conservation laws.

Note that in the last three systems the set function b(.) is not known. We calculate the

set function b(.) in Theorem 8. Recall that Qi denotes the number of class i customers

in the queue and Wi denotes the steady state waiting time of class i. Furthermore, we

denote by pi and E[Xi] the traffic intensity and the mean service time, respectively, for

the class i.

4.2 Evaluation of the set function b(-) in heavy traffic

In this section we evaluate the set function b(.) for the systems presented in Table 1

in heavy traffic. The idea of our derivation is that the set function b(A) is insensitive

to any change in the control policy as long as we are restricted to work conserving and

non-anticipative policies that give priority to the classes in set A over these classes in

E - A. The distributional laws enable us to evaluate the performance measures when
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System Special characteristics Performance measure Evaluation of b

EM/G/1 N-classes non-preemptive piE[W] [6]

EGI/G/1 N-classes preemptive piE[Wi] Theorem 8a

GI/G/1 N-classes non-preemptive piE[Wi] Theorem 8b

same service

ZGI/G/1 2-classes non-preemptive piE[Wi] Theorem 8c

Table 1: Systems satisfying strong conservation laws in steady state.

the service discipline is FIFO. Therefore, we can assume the FIFO discipline within A

and E - A and then use the distributional laws in order to evaluate the set function b(.).

In this way we will be able to find b(.) in closed form in heavy traffic as a function

of Ai, c2,, E[Xi], E[Xi2] and pi for all i.

Theorem 8 In a EIGI/G/1 system with customer classes in E = {1,..., N}, the value

of the set function b(A) is given as follows, for any A C E that satisfies the heavy traffic

condition (i.e., PA = jEA Pj - 1):

(a) When preemption is allowed,

PA EjEA AjE[X] + EjEA pjE[Xj](C2j - 1))
b(A)- A . (38)

2(1 - PA)

(b) If all customers have the same service requirement and preemption is not allowed,

PAE[X] EiEE Ai + E[X] EjEA pj(C . - 1)
b(A) - 2(1- PA) (39)

(c) If there are two customer classes having different service requirements and preemption

is not allowed,

b(A) PA EiEE AiE[Xi2] + EjEA pjE[Xj](c2 -1) (40)

2(1- PA)
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Proof

Based on the previous discussion we have that for all A C E:

b(A) = EpiE[Wi], (41)
iEA

where E[Wi] is the mean waiting time of the ith class under a policy that gives priority

(preemptive or nonpreemptive depending on the case considered) to the subset A and uses

FIFO inside the sets A and E - A. We next evaluate E[Wi] under different assumptions.

(a) If preemption is allowed, the customers in the set A are not influenced by customers

in E - A. Hence, we can evaluate E[Wi] by considering a EGI/G/1 system with classes

just from A, where all customers are served under the FIFO discipline. But in (35) we

have evaluated E[Wi] in heavy traffic. Substituting to (41) and rearranging (38) follows.

(b) If all customers have the same service requirement X and preemption is not allowed,

we need to find E[Wi], i E A, when we give non-preemptive priority to customers in A

over customers in E - A and within the set A we use FIFO. From Little's law we obtain:

E[Qi] = AiE[Wi], i E E. (42)

Let BJ the event that a random observer finds the server busy by a class j customer.

Clearly, P{(BJ = pj, j E E. Then, conditioning on the class a random observer finds in

service, we obtain

E[Qi] = E pjE[Qil Bj], i E E. (43)
jEE

In addition,

E[Qil B3 ] = A i E[X*] i E A, j E E - A, (44)

where E[X*] is the mean forward reccurence time of the service time distribution. This

holds, because given the event B j , the elapsed time since the initiation of the service of

the class j customer is X* and therefore, Qi is exactly the number of customers of class

i E A who arrived (according to the equilibrium renewal process) during X*. Note that

because we give priority to customers in A over those in E - A we know that when the
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service of the class j customer was initiated there were no customers present from class

i E A. From (27) we have that

E[QiJ BJ] = E[N.,(Wj + X*)] = Ai (E[Wj] + E[X*]) i, j E A, j $ i, (45)

and

E[QjI B'] = E[Ni,(Wi + X*)] A Xi (E[W,] + E[X*]) + ( - 1). (46)

Using equations (42)-(46) we obtain the following system of equations for i E A:

E[Wi] - EpjE[Wj] - pE[X*] + E[X](ci, - 1).
jEA

Solving the above system yields (39).

(c) If there are two customer classes with different requirements, and preemption is not

allowed, we follow exactly the proof of case (b) above but instead of equations (44), (45)

and (46) we use:

E[Qil B] = AiE[X;] i E A, j E E- A.

E[Qi B] = Ai (E[W] + E[X;]) ij A, j i,

and

E[Q,l B'] Ai ([W] + ) + x) + (C 1).

Using the above equations we form a IAI x AI system, which, once solved, yields (40).

Remark:

For the case of Poisson arrivals and under non-preemption, (40) is exact. Moreover,

under preemption, Poisson arrivals, and exponential service times (EM/M/1), (38) is

also exact.

4.3 Applications of the achievable performance space

Having evaluated b(A) in heavy traffic, our goal in this section is to illustrate how these

closed form formulae can be used for various purposes.
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Approximate performance analysis of priority policies

Consider a EGI/G/1 system that satisfies conservation laws under heavy traffic condi-

tions, i.e., the total traffic intensity p -- 1. Suppose that an absolute priority policy r

is used that gives highest priority to class 1, then to class 2, etc. Then from Theorem 7

piE[W1] = b({1}), piE[Wi] = b({Si}) - b((Si- 1}), where Si = {1,..., i}.

We have evaluated b(Si) in heavy traffic, i.e., as long as ps - 1. But even if ps, 74 1

we can use the formulae for b(Si) as an approximation. In Section 6 we illustrate that

this approximation is quite effective as long as pi > 0.3.

Optimization of a EGI/G/1 queue

The optimal solution for the problem minuE ZiEE CiE[Wi] is an absolute priority rule.

In order to find which of the n! priorities are optimal we do not need to know the set

function b(.), as the optimal priority is the one that orders the classes according to the

index . As we argued before, we only need to know b(.) in order to understand the

performance of the optimal policy. The situation is drastically different if we want to

optimize a nonlinear objective function of the type min~Eu EiEE f(E[Wi]). In this case

we need to know b(.) in order to find the optimal policy, not only its performance. Again

using the formulae we obtained for b(.) leads to an approximation of the optimal policy

in this case.

5 Polling systems

In this section we consider the classical cyclic order polling system with general renewal

arrival streams, independent service time distributions and an exhaustive service strat-

egy. Polling systems are extensions of the ZGI/G/1 queue, since a polling system is a

EGI/G/1, in which the server follows an exhaustive cyclic policy, and there are change-

over times when the server changes classes. Our contribution in this section is that we

find in heavy traffic the performance of the mean waiting times and the cycle time by

using extensively the distributional laws.

In Section 5.1 we introduce the model and our notation. In Section 5.2, we analyze

25



the system and express the expected performance measures in terms of the first two

moments of a random variable related with the busy period in a GI/G/1, which are

calculated in Section 5.3.

5.1 Model description and notation

We consider a EGI/G/1 system, in which a single server is servicing N classes of cus-

tomers in a cyclic order 1,..., N, 1,... under an exhaustive service discipline, i.e., if

there are customers waiting to be serviced from the i - 1 class when the server starts

servicing this class, then the server processes all i - 1 class customers until the system

empties from them, and after encountering a random delay, di it starts servicing class i

customers. One can visualize this process as if there were N queues in a circle and the

server services them cyclically and exhaustively incurring a travel delay di when mov-

ing from the i - 1 to the i queue. Traditionally these systems have been called polling

systems. We use the notation of Section 2.4 for the arrival processes and service time

distributions. Let p = l Pi < 1 be the traffic intensity. Notice that the stability

condition is independent of the changeover times.

We also introduce the following additional notation:

Tik: the time that the server spends servicing the ith class in the kth visit;

t0: the station time, i.e., the time interval from the moment the server leaves class i - 1

until he leaves class i, during the kth visit;

C~i: the (k - 1)th cycle with respect to class i, i.e., the time interval from the moment

the server leaves class i - 1 in the (k - 1)th visit until he leaves class i - 1 in the kth visit

(Ck = Ck+);

A/ : the intervisit time with respect to class i, i.e., the time between the end of the

(k - l)th visit and the beginning of the kth visit to class i.

Furthermore, we let Oi = limmk_. Oi, Ci = limk_.o Cik, Ai = Vi ) Lit - LULYC~OO YI
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5.2 Analysis of the polling system

The departure point of our investigation is the following proposition

Proposition 2 In a EGI/G/1 polling system where the server is servicing customers

cyclically and exhaustively, the ezpected waiting time of class i decomposes in heavy traffic

as follows:

E[WS] E[Wi] GIG/+ E[(A2] (47)

where E[WGI/G/1] is the mean waiting time in a regular GI/G/1 queue.

Proof

Let Bi be the event that at the arrival epoch of a random observer the server is servicing

class i and by (Bi)C the complement of Bi, i.e., the event that the server is either switching

among classes or is servicing class j i (equivalently the server is in the intervisit period

of class i). By applying Little's law to the server we have that P{Bi) = Pi and hence

P((B)C} = 1 - pi.

By conditioning on the state of the server we have that:

E[Qi] = piE[QjIB1 ] + (1 - pi)E[Qil(Bi)C].

Furthermore, from Section 2.4 we have that:

E[QjIB] = E[Na,(Wi + X)i ) A(E[W] + E[X*]) + (Ca - 1),

where Xi* is the forward reccurence time of the service time distribution for class i. In

addition,

E[QI(Bi)c] = E[N2,(A')] = AjE[AI,

where A* is the forward reccurence time of the intervisit time for class i. The reasoning

for the above relation is that, given the event (Bi)C, at the arrival of the random observer

the elapsed time from the beginning of the intervisit time is A and therefore, as the

service policy is exhaustive, the Qi customers that are waiting in queue upon the arrival
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of the random observer must have arrived during Li. Combining the above relations we

have that:

E[Qi] pAi(E[W] + E[Xi*]) + pi 1) + ( 1 - pi)AiE[A]. (48)

Using the fact that E[Qi] = AiE[Wi] and that as we proved in [2]

E[WGI/G/1] , 2piE[Xi] + E[Xi](cl, - 1)
2 (1- pi)

we prove (47).

Remark:

The above decomposition result generalizes the decomposition result in polling systems

with Poisson arrivals, in which Wi = WiGI /l e A* (see for example Fuhrmann and

Cooper [5]). Our result shows that in heavy traffic the expected waiting time decomposes

even if we have general renewal arrivals.

Based on the above proposition we need to calculate E[Ai] and var[Ai]. We next

present the equations that describe the system.

Fundamental equations of the system

From the definitions that we introduced in the previous section we obtain:

Oi = di + Tik , (49)

i-1 N

Cik = E ok + E - 1, (50)
j=l j=i

ak = Cik - k- l 1+ di, (51)

c ,k+~l = Ck 1 -+ ok- . (52)

Before stating the rest of the fundamental equations of the system we should notice that

under heavy traffic conditions the intervisit time --j oo for all queues j = 1,..., N and

visits k. Hence the beginning of the busy period for queue j, denoted by Bj, constitutes

a random incidence for the jth arrival process. Subsequently, the beginning of the Ith

sub-busy period for the jth queue, denoted by B1,j, is also a random incidence for the
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jth arrival process. Hence under heavy traffic conditions Bj,l Bj V , j.

Let, now, Nk be the number of customers that the server finds upon his arrival in the jth

queue at his kth visit. Due to the nature of the cyclic model these customers must have

arrived during the intervisit time A4. According to the previous discussion, the arrival

of the server to queue j constitutes a random incidence for the arrival process of the jth

queue, hence by looking backwards in time as in the proof of the distributional laws we

obtain

N ·, N* (Ak)
.7 ajx $/'

Moreover, we know that Tjk, the time the server spends servicing the jth queue in the kth

visit is independent of the service discipline. Hence, we can assume for the moment that

we use non-preemptive LIFO (Last-In-First-Out) to conclude that under heavy traffic

conditions:

.* B,, (53)

1=1

where Bj,l represents the Ith sub-busy period of the jth queue, in which, due to the heavy

traffic conditions , is identical distributed with the busy period Bj. Thus, for all i

No, (A)
-k di + Z Bij. (54)

j=1

Relations (49)-(54) constitute the equations that characterize the polling system. Our

strategy to find E[Wi] is to first find the first two moments of Bj, then proceed to find

E[Ai] and var[Ai].

Step 1: Evaluation of E[Bi], var[Bi]

These quantities in the expressions we have derived so far are calculated explicitly in

Section 5.3 (Theorem 9) and are given as follows:

E[Bi] = E[X]
1 - pi

[] = ([X])2
_ (E[Xi])2 E[var[N*,(Xi)]]E[1is] = (E[ _p) + (E(x-p)2 [X-% - pI/Li 1_i)3 1 pi)2 (1 - p)3
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STEP 2: Evaluation of E[Ai].

Using (50), and (51) and letting k -- oo we have that in steady state:

N

E[Ai] = E[Ci] - E[Oi] + di, E[Ci] = E E[j].
j=l

Notice that E[Ci] is independent of i and we denote it by C. Therefore,

N

= E[0j], (55)
j=l

E[Ai] = C - E[90] + di. (56)

Furthermore, from (54) we have that

E[9] di + AiE[A]E[B].

Combining the last equation with (56) we obtain:

E[Ai] +E[B and E[Oi] di + AiE[Bi] (57)1 + AjE[B] 1 + A1E[Bi]'

Substituting in (55) we, finally, obtain:

C 1 N.~~ At~~E[]d~~ *(58)
iEl +AXiE[Bi]

STEP 3: Evaluation of var[Ai].

The idea in this step is to express var[Ai] as a function of var[Cik] for k = 1,..., N and

then evaluate var[Cik] by solving an N x N system. Notice, first, that from (51):

var[Aik] = var[Ck] + var[Oik-] - 2Cov[Cik, Oik-].

Thus, in steady state

var[A i] = var[Ci] + var[0] - 2i, (59)

where yi = limk.oo Cov[Cik, O-1]. In the next proposition we calculate var[0i] and 7i as

functions of var[Ci].
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Proposition 3 Under heavy traffic:

var var[Ci] - 2 CAi(var[Bi] + ci(E[Bi])2)
1 - (AjE[Bi])2 (1 - (AiE[Bi]) 2)(1 + AE[Bi])'

2 O(61)7i - ,var[Ci] - var[Ci+l] 2p+ A__ '(61)

where

Ai = E[C]Ai(var[Bi] + c2i(E[Bi])2)(1 - pi)3.

Proof

From (54), we obtain

E[ei] di + AXE[Ai]E[Bi],

var[O,] (AjE[B]) 2 var[/A1] + Aivar[Bi]E[Ai] + Ai c2i(E[Bi])2 E[Ai].

Now, combining the previous relation with (57) and (59) we obtain (60). By taking

variances in both sides of (52) we obtain

VeiC+,] =var[C,]+var[Oi -' ]+var[O ']+2 (Cov[Ci,Oi] - Cov[C, 0i-'] - Cov[lO,9i-1]).

(62)

We first evaluate E[Oik-'Ojk] as follows:

E[Oih' j] = E[8i-1IE[jk Cjk sk-1].

However, from (51) and (59) we have:

N. (Cj-t-' +dj)

3j' - dj + B j,1,
1=1

and therefore,

E[Oij'-' j] dE[Oi -']( + AjE[Bj]) + AjE[Bj] (E[ik-'Cjk] - E[Oj-'OiL]) .

Using Cov[Zi, Z 2] = E[Z1 Z 2] - E[Z1]E[Z2] and taking limits in the previous relation we

obtain

lim Cov[i-h1, Ok] AiE[Bi](yi - var[il]), (63)
k--oo
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Similarly,

lim Cov[Ck, O] A )iE[Bi](var[Ci] - 7r), (64)
k-.-oo

Substituting (60), (63) and (64) to (62) we obtain (61). [

Until now we have expressed var[Ai] as linear functions of the quantities var[Cj],

j = 1,..., N. We next form an N x N linear system to calculate var[Cj].

STEP 4: Formulation of an N x N linear system.

In this step we follow exactly the analysis of the polling system with Poisson arrivals

presented in [14]. Namely, we use (50) to assert that:

i-1 N

Cov[Oh-l, C] = ZCO[O,-, 0 + ZCo]v[O'-l, 0- l],
j=1 j=i

or equivalently,
i-1 N

,i = var[6i] + E y;j + Z zji, (65)
j=1 j=i+l

where xij = limr,_ Cov[0/k, 9j] and yij = lim._ Cov[Oik-l, jk]. Then, we show that Zij

and yij are linear in var[Ck] and thus (65) can be written as:

i-1 N N N

i=var[i]+ H) + ) ()var[Ck] + G + EG()var[Ck].
j=1 k=1 j=i+l k=l

Finally we combine the last equation with (61) to obtain the following N x N linear

system of equations, where we substitute for E[Bi] from Step 1. We do not present the

details because they are identical with the analysis in [14].

1NN i-iG( " - c ia)r var[CC]

j~i+ j=1~2.~~~22 N i-i

1 - pi2p-i ,+ G - H(') var) -[CZ+o]

1i- pi j=i+ j=1
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where G(k) and H(k) are recursively given asSO3~

G(k) (ej - bip i i(k) - j (k) + i(k)

Hi(k) , (ej - bp)H(k) + aiH(k)fo )
ij+l 0,- a1 , ai-l,j+1 i-,j

for k= 0,1,2,...,N and i - j 3, where

Pi

Pi-1 (1 - P
Pi

1 - pi
pj (1 - pj)

ej ,,.-pj+
Pj+i

G( 0) 1 + pjA
3,3 1 - pj

G ) 0 Pj
30 0

if k = j + 1,

else,

,+(O)j Pi Pj+1 [A j 1- P Aj+,
J+l,j (1 - p) (1- pj+)L P 1- P+1pj1- pj+l ~3l

Pi Pi+L
2(1-pj+l)

Pj Pj+l (1-2pj+l)
2(1-pj+l)

O

Pi
pj (-2p

2
+2pj-1)

2(1 -pj )

0

if k=j+ 1,

if k=j+2,

else,

if k = j,

if k = j + 1,

else,

H(O) 1 - Pj=Aj+i
1+l'i "" 1 - Pj

-pj

12p (1 - 2pj+1)

0

if k=j+l,

if k=j+2,

else,

H(k) ej(.) (k) forj+2,j eHj+ 2,+j+'l + +2,j+1 k> ,

G()2,j +2Gk) -e 2 k) - jbj+2G (k) for k > 0 .
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(67)

(68)

H()~ pj Aj,

G (k)j7+l,j ""

j(.j k {) 

H (k)j l..,



After solving the system simple substitution into (59) yields the analytic formula for

var[Ai] and thus we conclude the analysis.

Remarks:

1. The above asymptotic method is exact for a system with Poisson arrivals under

any traffic intensity p < 1, and we obtain the results presented in [14].

2. The previous approach can be easily generalized to allow general random delays

di.

5.3 Evaluation of the first two moments of B

In this section we evaluate the first two moments of B the busy period distribution of a

queueing system, under the following condition:

Condition R:

The starting point of a busy period constitutes a random incidence for the arrival process.

This condition naturally arises in analyzing polling systems in heavy traffic, since the

server returns to a queue after a very long time and therefore, his arrival at the queue (and

therefore, the initiation of a busy period) constitutes a random incidence for the arrival

process. Notice, however, that B is not the actual busy period in a regular GI/G/1

queue (except if the arrival is Poisson). The technique we use is a generalization of the

classical sub-busy period decomposition argument presented by Takacs in [16].

Consider a general queueing system with a single renewal arrival process with arrival

rate A and square coefficient of variation c 2. Denote by X the r.v. corresponding to the

service time distribution and by E[X] and c2 its mean and square coefficient of variation,

respectively. Denote, also, by p the traffic intensity. Furthermore, denote by B the r.v.

that corresponds to the busy period distribution under condition R. Let E[B], E[B2] be

the first two moments of B.
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Theorem 9 In a GI/G/1 queue the following relations hold:

E[B] = E[X] (69)

and

,: (E[X])' + E[X]Et(X)]E[B2 ] = (E[X])2( 1 (E (E[ -) (70)
p~l (1 - )2 (1 - )3

Proof

We start by noticing that the duration of a busy period is invariant under any service

discipline as long as it is work conserving. Hence, we can use the last-in-first-out (LIFO)

service discipline. Assume that during the first customers waiting time K customers

arrived. Each of these K customers initiates a sub-busy period, i.e., the time interval

initialized by a customer entering service that lasts as long as all customers that arrived

after him are being served (see also [11] p. 210).

Under Condition R, the number K of customers that arrive during the first service

time that has duration X, is exactly N*(X). Moreover, the beginning of every sub-busy

period constitutes a random incidence for the arrival process. If Bl is the duration of

the Ith sub-busy period
N'(X)

B=X+ Z Bl,
1=1

where Bl has exactly the same distribution as B. Taking first and second moments we

obtain:

E[B] = E[X] + E[Na(X)]E[B], (71)

N'(X) N'(X)
E[B 2] = E[X 2] + 2E[X E B] + E[( E Bi)2], (72)

i=l i=l

Since E[N~(X)] = AE[X] we obtain:

E[B] E[X]
1-p

Moreover,
N'(X)

E[X C Bi] = AE[B]E[X 2], (73)
i=l
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N;(X)

E[( Bi)2] = AE[X]E[B2] - (E[B])2 [AE[X] - E[var[N*(X)]] - A2E[X2]]. (74)
i=1

Substituting, (73) and (74) in (72) we prove (70). O

6 Numerical results

Our goal in this section is to evaluate numerically our proposed asymptotic method for

the following systems:

(1) a single class GI/G/1 queue under FIFO,

(2) a multi-class GI/G/1 queue under FIFO,

(3) a multi-class GI/G/1 queue under a strict priority discipline,

(4) a polling system with general renewal arrivals.

Our goal is to address the following questions:

(a) What is the accuracy of our methods compared with simulation?

(b) How large p has to be for the results to be accurate?

(c) In the cases (1) and (2) above, in which there are alternative heavy traffic results,

how the two methods differ?

6.1 The single class GI/G/1 queue

We consider a single class queue with the arrival process being either an Erlang-2 (E 2 )

or Erlang-4 (E 4) and the service time process being exponential. In Table 2 we give the

expected waiting time as a function of the traffic intensity for the simulation (Act.), our

method (DL) and the traditional heavy traffic approach (HT).

As expected, the efficiency of both methods increases with the traffic intensity, and it

is of approximately the same order of magnitude, although our method is slightly closer.

Furthermore, it is interesting to notice that our method provides a lower bound to the

expected waiting time. We do not know if this happens accidentally. The fact that the

heavy traffic method provides an upper bound is well known. Also the results for the

E 2/M/1 are better than E 4/M/1. This is expected since our method is exact for the
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The E4 /M/1 Queue The E2 /M/1 Queue

P Act. DL HT Eff of DL Eff of HT Act. DL HT Eff of DL Eff of HT

0.40 0.234 0.042 0.417 17.95% 178.06% 0.366 0.250 0.500 68.31% 136.61%

0.50 0.416 0.250 0.625 60.1% 150.24% 0.600 0.500 0.750 83.34% 125.00%

0.60 0.707 0.563 0.937 79.63% 132.60% 0.963 0.875 1.125 90.86% 128.57%

0.70 1.208 1.084 1.458 89.73% 134.50% 1.573 1.500 1.750 98.04% 111.25%

0.75 1.610 1.500 1.875 93.17% 116.45% 2.060 2.000 2.250 97.08% 109.22%

0.80 2.228 2.125 2.500 96.50% 112.21% 2.804 2.750 3.000 98.07% 106.99%

0.85 3.256 3.167 3.542 97.27% 108.77% 4.041 4.000 4.250 98.98% 106.25%

0.90 5.302 5.250 5.625 99.02% 106.09% 6.550 6.500 6.750 99.23% 103.05%

Table 2: The expected waiting time in a E 4 /M/1 and an E 2 /M/1 Queue.

Poisson case, the closer the arrival process is to a Poisson process the better our method

becomes.

6.2 3-Classes GI/G/1 queue under FIFO

We consider a GI/G/1 queue under FIFO with three customer classes: Classes 1 and

3 have E 2 arrivals while class 2 has E 4 arrivals. All services are exponential of rate

1. The performance of our asymptotic method as well as the heavy traffic method as

p pi P2 Ps Act. DL HT Eff. of DL Eff. of HT

0.5 0.1 0.1 0.3 0.674 0.456 1.225 67.59% 181.75%

0.6 0.1 0.2 0.3 1.000 0.775 1.563 77.53% 156.2%

0.7 0.2 0.2 0.3 1.605 1.384 2.167 86.20% 135.00%

0.8 0.2 0.3 0.3 2.737 2.388 3.313 87.26% 1 121.03%

0.9 0.3 0.3 0.3 6.297 6.200 6.875 98.46% 109.17%

Table 3: Numerical results for the waiting time in a 3-classes FIFO GI/G/1 queue.
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described in [8] is depicted in Table 3 as a function of the traffic intensity. Notice that,

once again, our method is closer. Furthermore, it is interesting to notice that for the

same total traffic intensity both methods perform worse in the case of the multi-class

queue than in the single-class case (see Table 2).

6.3 2-Classes GI/G/1 queue under absolute priority policy

We consider a GI/G/1 system with 2 classes of customers,under an absolute priority rule

that gives non-preemptive priority to class 1. The data for the system is presented in

Table 4.

Class Interarrival distr. Arrival rate Service distr. Service rate

1 Erlang 2 Pi Exponential 1

2 Erlang 3 0.5 * P2 Exponential 2

Table 4: Data for a 2-class priority queue.

The performance of the asymptotic approzimation method is summarized in Table 5

as a function of the vector of traffic intensities {P1, P2}. Notice that as long as the

high priority class is concerned, the method performs better than in the case of a single

class GI/G/1 queue (see also Table 2). This is expected since our asymptotic method

performs better as the waiting time increases. Furthermore, by taking a single class

GI/G/1 queue, with any arrival process as input, adding a second class and imposing a

non-preemptive priority rule, we cause an increase of the waiting time for the initial class

and consequently we improve the performance of our method in evaluating the waiting

time of that class. Consequently, the accuracy of the method in evaluating the mean

waiting time of the low priority class is extremely good even when this class has a low

traffic intensity as long as pi is greater or equal to 0.4 and hence the waiting time for

the second priority class is high.
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P High priority class Low priority class

_ Pi DL Actual Efficiency P 2 DL Actual Efficiency

0.6 0.4 0.416 0.542 76.75% 0.2 1.25 1.411 88.59%

0.7 0.4 0.500 0.625 80.00% 0.3 1.945 2.094 92.88%

0.7 0.5 0.700 0.813 86.10% 0.2 2.612 2.776 94.09%

0.8 0.5 0.800 0.914 87.54% 0.3 4.417 4.566 96.74%

0.8 0.6 1.125 1.228 91.16% 0.2 6.042 6.192 97.58%

0.8 0.4 0.584 0.707 82.60% 0.4 3.334 3.447 96.72%

0.9 0.5 0.900 1.005 89.55% 0.4 9.834 9.923 99.10%

0.9 0.6 1.250 1.351 92.52% 0.3 13.34 13.35 99.93%

Table 5: Numerical results for the waiting time in a 2-classes priority GI/G/1 queue.

6.4 4-Classes GI/G/1 queue under absolute priority policy

In order to further check the robustness of our method we consider in this section a

GI/G/1 system with 4 classes of customers under an absolute priority non-preemptive

rule. The service time distributions for all nodes are Exponential with unit rate (recall

that in order for the strong conservation laws to hold for such a system we require that

all classes have the same service time distribution) and the characteristics of the different

arrival processes are being summarized in Table 6:

System Class 1 arrivals Class 2 arrivals Class 3 arrivals Class 4 arrivals

Distr. Rate Distr. Rate Distr. Rate Distr. Rte

A Erlang 2 0.4 Erlang 3 0.2 Erlang 2 0.1 Erlang 3 0.1

B Erlang 2 0.2 Erlang 3 0.1 Erlang 2 0.1 Erlang 3 0.4

Table 6: Data for a 4-classes priority GI/G/1 queue.

Table 7 verifies that our method is accurate even when the traffic intensity is small

(for example we have an 81.2% efficiency for p = 0.2). Moreover, it constitutes an
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accurate estimate of the actual waiting time of class i if the total traffic intensity for all

classes that have priority greater or equal to class i, is greater than 0.4.

Class 1 Class 2 Class 3 Class 4

DL Act. Eff. DL Act. Eff. DL Act.| Eff. DL Act. Eff.

A 0.92 1.04 88.4% J 2.08 2.36 88.5% 4.44 4.76 93.4% 8.47 8.94 94.8%

B 0.69 0.84 81.2% 0.86 1.17 74.0% 1.29 1.55 83.3% 4.10 4.40 93.1%

Table 7: Numerical results for a 4-classes GI/G/1 under absolute priorities.

6.5 10-Nodes polling system

We consider a polling system with 10 nodes under an exhaustive cyclic policy. The

performance of our method (DL) is presented in Table 8 for 5 different systems. For all

the systems the service distribution is common for all nodes and it is Exponential with

rate 1 and the delay di = 2 for all i. The rest of the data are contained in Tables 9 and

10.

System Total DL Actual Efficiency

traffic intensity mean waiting time mean waiting time

A 0.40 15.96 16.43 97.1 %

B 0.75 30.54 30.50 100.1 %

C 0.90 69.60 68.67 101.4 %

D 0.94 123.65 119.75 96.8 %

E 0.85 64.67 63.59 101.6 %

Table 8: Numerical results for a 10-nodes polling system

It is interesting to note that the asymptotic method performs extremely well even

when the total traffic intensity is relatively small (0.4). Furthermore, by comparing the

results we presented for different queueing systems we see that the performance of our
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Syst. Node 1 Node 2 Node 3 Node 4 Node 5

|P1 Ca P2 c p3 Ca P4 Ica P5 IC

A .04 1/2 .04 1/2 .04 1/2 .04 1/2 .04 1/2

B .05 1/2 .05 1/2 .05 1/2 .05 1/2 .05 1/2

C .01 1/2 .01 1/2 .01 1/2 .01 1/2 .41 1/2

D .01 1/2 .02 1/4 .01 1/6 .02 1/4 .41 1/2

E .09 1/2 .09 1/8 .09 1/2 .09 1/8 .04 1/2

Table 9: Data for the first 5 nodes of the 10-node polling system.

System Node 6 Node 7 Node 8 Node 9 Node 10

I _ I cP6 P7 aCt PI caIa ,Pio I C l_
A .04 1/4 .04 1/4 .04 1/4 .04 1/4 .04 1/4

B .05 1/4 .05 1/4 .05 1/4 .05 1/4 .25 1/4

C .01 1/4 .01 1/4 .01 1/4 .01 1/4 .41 1/4

D .01 1/6 .02 1/6 .01 1/2 .02 1/4 .41 1/2

E .09 1/8 .09 1/2 .09 1/8 .09 1/2 .09 1/8

Table 10: Data for the last 5 nodes of the 10-node polling system.

method as a function of the traffic intensity, in polling systems is better than for any

other system. Notice that systems A and E are symmetric, where systems B,C,D are

highly asymmetric. In all cases, however, the performance of the method is not affected.

6.6 A 2-Node polling system

In order to check the robustness of our method, we consider a 2-node polling system,

whose corresponding data is presented in Table 11. Table 12 presents the performance

of our method as a function, only, of the traffic intensity of both queues. Notice, once

again, that the the proposed method performs very well, even under moderate traffic,

i.e., even for p = 0.5.
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Table 11: Data for the 2-node polling system.

6.7 Insights from the numerical results

The following conclusions can be drawn from the numerical results, as well as from the

nature of our method:

1. Our asymptotic method performs better as the waiting time increases. Therefore,

the method performs substantially better when it predicts that the answer is large.

Under this light it should not be surprising that the method performs extremely

well in polling systems, (the presence of delays further increases the waiting time),

very well in priority systems and satisfactorily for systems under FIFO even for

moderate traffic. Interestingly, the performance of our method is inversely propor-

tional to the difficulty of the system.

2. As our method is exact for Poisson arrivals, the closer the arrival processes are to

Poisson the better the performance of the method.
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