300 research outputs found

    On deciding stability of multiclass queueing networks under buffer priority scheduling policies

    Full text link
    One of the basic properties of a queueing network is stability. Roughly speaking, it is the property that the total number of jobs in the network remains bounded as a function of time. One of the key questions related to the stability issue is how to determine the exact conditions under which a given queueing network operating under a given scheduling policy remains stable. While there was much initial progress in addressing this question, most of the results obtained were partial at best and so the complete characterization of stable queueing networks is still lacking. In this paper, we resolve this open problem, albeit in a somewhat unexpected way. We show that characterizing stable queueing networks is an algorithmically undecidable problem for the case of nonpreemptive static buffer priority scheduling policies and deterministic interarrival and service times. Thus, no constructive characterization of stable queueing networks operating under this class of policies is possible. The result is established for queueing networks with finite and infinite buffer sizes and possibly zero service times, although we conjecture that it also holds in the case of models with only infinite buffers and nonzero service times. Our approach extends an earlier related work [Math. Oper. Res. 27 (2002) 272--293] and uses the so-called counter machine device as a reduction tool.Comment: Published in at http://dx.doi.org/10.1214/09-AAP597 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Concave Switching in Single and Multihop Networks

    Full text link
    Switched queueing networks model wireless networks, input queued switches and numerous other networked communications systems. For single-hop networks, we consider a {(α,g\alpha,g)-switch policy} which combines the MaxWeight policies with bandwidth sharing networks -- a further well studied model of Internet congestion. We prove the maximum stability property for this class of randomized policies. Thus these policies have the same first order behavior as the MaxWeight policies. However, for multihop networks some of these generalized polices address a number of critical weakness of the MaxWeight/BackPressure policies. For multihop networks with fixed routing, we consider the Proportional Scheduler (or (1,log)-policy). In this setting, the BackPressure policy is maximum stable, but must maintain a queue for every route-destination, which typically grows rapidly with a network's size. However, this proportionally fair policy only needs to maintain a queue for each outgoing link, which is typically bounded in number. As is common with Internet routing, by maintaining per-link queueing each node only needs to know the next hop for each packet and not its entire route. Further, in contrast to BackPressure, the Proportional Scheduler does not compare downstream queue lengths to determine weights, only local link information is required. This leads to greater potential for decomposed implementations of the policy. Through a reduction argument and an entropy argument, we demonstrate that, whilst maintaining substantially less queueing overhead, the Proportional Scheduler achieves maximum throughput stability.Comment: 28 page

    Store-Forward and its implications for Proportional Scheduling

    Full text link
    The Proportional Scheduler was recently proposed as a scheduling algorithm for multi-hop switch networks. For these networks, the BackPressure scheduler is the classical benchmark. For networks with fixed routing, the Proportional Scheduler is maximum stable, myopic and, furthermore, will alleviate certain scaling issued found in BackPressure for large networks. Nonetheless, the equilibrium and delay properties of the Proportional Scheduler has not been fully characterized. In this article, we postulate on the equilibrium behaviour of the Proportional Scheduler though the analysis of an analogous rule called the Store-Forward allocation. It has been shown that Store-Forward has asymptotically allocates according to the Proportional Scheduler. Further, for Store-Forward networks, numerous equilibrium quantities are explicitly calculable. For FIFO networks under Store-Forward, we calculate the policies stationary distribution and end-to-end route delay. We discuss network topologies when the stationary distribution is product-form, a phenomenon which we call \emph{product form resource pooling}. We extend this product form notion to independent set scheduling on perfect graphs, where we show that non-neighbouring queues are statistically independent. Finally, we analyse the large deviations behaviour of the equilibrium distribution of Store-Forward networks in order to construct Lyapunov functions for FIFO switch networks

    Proportional switching in FIFO networks

    Get PDF
    We consider a family of discrete time multihop switched queueing networks where each packet movesalong a xed route. In this setting, BackPressure is the canonical choice of scheduling policy; this policy hasthe virtues of possessing a maximal stability region and not requiring explicit knowledge of tra c arrival rates.BackPressure has certain structural weaknesses because implementation requires information about each route,and queueing delays can grow super-linearly with route length. For large networks, where packets over manyroutes are processed by a queue, or where packets over a route are processed by many queues, these limitationscan be prohibitive.In this article, we introduce a scheduling policy for FIFO networks, the Proportional Scheduler, which isbased on the proportional fairness criterion. We show that, like BackPressure, the Proportional Scheduler hasa maximal stability region and does not require explicit knowledge of tra c arrival rates. The ProportionalScheduler has the advantage that information about the network's route structure is not required for scheduling,which substantially improves the policy's performance for large networks. For instance, packets can be routedwith only next-hop information and new nodes can be added to the network with only knowledge of thescheduling constraintsThe research of the rst author was partially supported by NSF grants DMS-1105668 and DMS-1203201. The research of the second author was partially supported by the Spanish Ministry of Economy and Competitiveness Grants MTM2013-42104-P via FEDER funds; he thanks the ICMAT (Madrid, Spain) Research Institute that kindly hosted him while developing this project

    Proportional Switching in First-in, First-out Networks

    Get PDF
    We consider a family of discrete time multihop switched queueing networks where each packet moves along a fixed route. In this setting, BackPressure is the canonical choice of scheduling policy; this policy has the virtues of possessing a maximal stability region and not requiring explicit knowledge of traffic arrival rates. BackPressure has certain structural weaknesses because implementation requires information about each route, and queueing delays can grow super-linearly with route length. For large networks, where packets over many routes are processed by a queue, or where packets over a route are processed by many queues, these limitations can be prohibitive. In this article, we introduce a scheduling policy for first-in, first-out networks, the ProportionalScheduler, which is based on the proportional fairness criterion. We show that, like BackPressure, the ProportionalScheduler has a maximal stability region and does not require explicit knowledge of traffic arrival rates. The ProportionalScheduler has the advantage that information about the network's route structure is not required for scheduling, which substantially improves the policy's performance for large networks. For instance, packets can be routed with only next-hop information and new nodes can be added to the network with only knowledge of the scheduling constraints

    Performance analysis of queueing networks via robust optimization

    Get PDF
    Performance analysis of queueing networks is one of the most challenging areas of queueing theory. Barring very specialized models such as product-form type queueing networks, there exist very few results that provide provable nonasymptotic upper and lower bounds on key performance measures. In this paper we propose a new performance analysis method, which is based on the robust optimization. The basic premise of our approach is as follows: rather than assuming that the stochastic primitives of a queueing model satisfy certain probability laws—such as i.i.d. interarrival and service times distributions—we assume that the underlying primitives are deterministic and satisfy the implications of such probability laws. These implications take the form of simple linear constraints, namely, those motivated by the law of the iterated logarithm (LIL). Using this approach we are able to obtain performance bounds on some key performance measures. Furthermore, these performance bounds imply similar bounds in the underlying stochastic queueing models. We demonstrate our approach on two types of queueing networks: (a) tandem single-class queueing network and (b) multiclass single-server queueing network. In both cases, using the proposed robust optimization approach, we are able to obtain explicit upper bounds on some steady-state performance measures. For example, for the case of TSC system we obtain a bound of the form C(1 – {rho})–1 ln ln((1 – {rho})–1) [C(1-p) superscript -1 ln ln ((1 - p) superscript -1)]on the expected steady-state sojourn time, where C is an explicit constant and {rho} is the bottleneck traffic intensity. This qualitatively agrees with the correct heavy traffic scaling of this performance measure up to the ln ln((1 – {rho})–1) [ln ln((1 - p) superscript -1)] correction factor.National Science Foundation (U.S.) (Grant DMI-0556106)National Science Foundation (U.S.) (Grant CMMI-0726733

    Multiclass multiserver queueing system in the Halfin-Whitt heavy traffic regime. Asymptotics of the stationary distribution

    Get PDF
    We consider a heterogeneous queueing system consisting of one large pool of O(r)O(r) identical servers, where rr\to\infty is the scaling parameter. The arriving customers belong to one of several classes which determines the service times in the distributional sense. The system is heavily loaded in the Halfin-Whitt sense, namely the nominal utilization is 1a/r1-a/\sqrt{r} where a>0a>0 is the spare capacity parameter. Our goal is to obtain bounds on the steady state performance metrics such as the number of customers waiting in the queue Qr()Q^r(\infty). While there is a rich literature on deriving process level (transient) scaling limits for such systems, the results for steady state are primarily limited to the single class case. This paper is the first one to address the case of heterogeneity in the steady state regime. Moreover, our results hold for any service policy which does not admit server idling when there are customers waiting in the queue. We assume that the interarrival and service times have exponential distribution, and that customers of each class may abandon while waiting in the queue at a certain rate (which may be zero). We obtain upper bounds of the form O(r)O(\sqrt{r}) on both Qr()Q^r(\infty) and the number of idle servers. The bounds are uniform w.r.t. parameter rr and the service policy. In particular, we show that lim suprEexp(θr1/2Qr())<\limsup_r E \exp(\theta r^{-1/2}Q^r(\infty))<\infty. Therefore, the sequence r1/2Qr()r^{-1/2}Q^r(\infty) is tight and has a uniform exponential tail bound. We further consider the system with strictly positive abandonment rates, and show that in this case every weak limit Q^()\hat{Q}(\infty) of r1/2Qr()r^{-1/2}Q^r(\infty) has a sub-Gaussian tail. Namely E[exp(θ(Q^())2)]0E[\exp(\theta (\hat{Q}(\infty))^2)]0.Comment: 21 page
    corecore