22 research outputs found

    Delaunay Triangulation of Manifolds

    Get PDF
    We present an algorithmic framework for producing Delaunay triangulations of manifolds. The input to the algorithm is a set of sample points together with coordinate patches indexed by those points. The transition functions between nearby coordinate patches are required to be bi-Lipschitz with a constant close to 1. The primary novelty of the framework is that it can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. The output is a manifold simplicial complex that is the Delaunay complex of a perturbed set of points on the manifold. The guarantee of a manifold output complex demands no smoothness requirement on the transition functions, beyond the bi-Lipschitz constraint. In the smooth setting, when the transition functions are defined by common coordinate charts, such as the exponential map on a Riemannian manifold, the output manifold is homeomorphic to the original manifold, when the sampling is sufficiently dense

    Delaunay Triangulation of Manifolds

    Get PDF
    International audienceWe present an algorithm for producing Delaunay triangulations of manifolds. The algorithm can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. Given a set of sample points and an atlas on a compact manifold, a manifold Delaunay complex is produced for a perturbed point set provided the transition functions are bi-Lipschitz with a constant close to 1, and the original sample points meet a local density requirement; no smoothness assumptions are required. If the transition functions are smooth, the output is a triangulation of the manifold. The output complex is naturally endowed with a piecewise flat metric which, when the original manifold is Riemannian, is a close approximation of the original Riemannian metric. In this case the output complex is also a Delaunay triangulation of its vertices with respect to this piecewise flat metric

    Delaunay triangulation of manifolds

    Get PDF
    We present an algorithmic framework for producing Delaunay triangulations of manifolds. The input to the algorithm is a set of sample points together with coordinate patches indexed by those points. The transition functions between nearby coordinate patches are required to be bi-Lipschitz with a constant close to 1. The primary novelty of the framework is that it can accommodate abstract manifolds that are not presented as submanifolds of Euclidean space. The output is a manifold simplicial complex that is the Delaunay complex of a perturbed set of points on the manifold. The guarantee of a manifold output complex demands no smoothness requirement on the transition functions, beyond the bi-Lipschitz constraint. In the smooth setting, when the transition functions are defined by common coordinate charts, such as the exponential map on a Riemannian manifold, the output manifold is homeomorphic to the original manifold, when the sampling is sufficiently dense.Nous présentons un cadre algorithmique pour construire des triangulations de Delaunay de variétés. L'entrée de l'algorithme est un ensemble de points ainsi que que des cartes locales euclidiennes indicées par ses points. Les fonctions de transition entre cartes voisines doivent être bi-Lipschitz avec une constante de Lipschitz proche de 1, mais pas nécessairement lisses. La principale nouveauté de notre approche est de permettre de traiter des variétés abstraites qui ne sont pas des sous-variétés d'un espace euclidien. L'algorithme produit un complexe simplicial qui est le complexe de Delaunay d'un ensemble perturbé des points d'entrée. On peut garantir que le complexe simplicial fourni est une variété. Dans le cas où les fonctions de transition sont lisses et que les cartes locales sont définies par l'application exponentielle sur une variété Riemannienne, le complexe calculé est homéomorphe à la variété originale quand l'échantillonnage est suffisamment dense

    An obstruction to Delaunay triangulations in Riemannian manifolds

    Get PDF
    Delaunay has shown that the Delaunay complex of a finite set of points PP of Euclidean space Rm\mathbb{R}^m triangulates the convex hull of PP, provided that PP satisfies a mild genericity property. Voronoi diagrams and Delaunay complexes can be defined for arbitrary Riemannian manifolds. However, Delaunay's genericity assumption no longer guarantees that the Delaunay complex will yield a triangulation; stronger assumptions on PP are required. A natural one is to assume that PP is sufficiently dense. Although results in this direction have been claimed, we show that sample density alone is insufficient to ensure that the Delaunay complex triangulates a manifold of dimension greater than 2.Comment: This is a revision and extension of a note that appeared as an appendix in the (otherwise unpublished) report arXiv:1303.649

    Local Criteria for Triangulation of Manifolds

    Get PDF
    We present criteria for establishing a triangulation of a manifold. Given a manifold M, a simplicial complex A, and a map H from the underlying space of A to M, our criteria are presented in local coordinate charts for M, and ensure that H is a homeomorphism. These criteria do not require a differentiable structure, or even an explicit metric on M. No Delaunay property of A is assumed. The result provides a triangulation guarantee for algorithms that construct a simplicial complex by working in local coordinate patches. Because the criteria are easily verified in such a setting, they are expected to be of general use

    Anisotropic Triangulations via Discrete Riemannian Voronoi Diagrams

    Get PDF
    The construction of anisotropic triangulations is desirable for various applications, such as the numerical solving of partial differential equations and the representation of surfaces in graphics. To solve this notoriously difficult problem in a practical way, we introduce the discrete Riemannian Voronoi diagram, a discrete structure that approximates the Riemannian Voronoi diagram. This structure has been implemented and was shown to lead to good triangulations in R^2 and on surfaces embedded in R^3 as detailed in our experimental companion paper. In this paper, we study theoretical aspects of our structure. Given a finite set of points P in a domain Omega equipped with a Riemannian metric, we compare the discrete Riemannian Voronoi diagram of P to its Riemannian Voronoi diagram. Both diagrams have dual structures called the discrete Riemannian Delaunay and the Riemannian Delaunay complex. We provide conditions that guarantee that these dual structures are identical. It then follows from previous results that the discrete Riemannian Delaunay complex can be embedded in Omega under sufficient conditions, leading to an anisotropic triangulation with curved simplices. Furthermore, we show that, under similar conditions, the simplices of this triangulation can be straightened
    corecore