3,367 research outputs found

    Vertex-Coloring 2-Edge-Weighting of Graphs

    Full text link
    A kk-{\it edge-weighting} ww of a graph GG is an assignment of an integer weight, w(e){1,,k}w(e)\in \{1,\dots, k\}, to each edge ee. An edge weighting naturally induces a vertex coloring cc by defining c(u)=uew(e)c(u)=\sum_{u\sim e} w(e) for every uV(G)u \in V(G). A kk-edge-weighting of a graph GG is \emph{vertex-coloring} if the induced coloring cc is proper, i.e., c(u)c(v)c(u) \neq c(v) for any edge uvE(G)uv \in E(G). Given a graph GG and a vertex coloring c0c_0, does there exist an edge-weighting such that the induced vertex coloring is c0c_0? We investigate this problem by considering edge-weightings defined on an abelian group. It was proved that every 3-colorable graph admits a vertex-coloring 33-edge-weighting \cite{KLT}. Does every 2-colorable graph (i.e., bipartite graphs) admit a vertex-coloring 2-edge-weighting? We obtain several simple sufficient conditions for graphs to be vertex-coloring 2-edge-weighting. In particular, we show that 3-connected bipartite graphs admit vertex-coloring 2-edge-weighting

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source sVs\in V to a destination tVt\in V that includes all vertices specified by a set WV\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    Self-Assembly of Geometric Space from Random Graphs

    Full text link
    We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.Comment: 26 pages, 9 figures, 2 appendice

    A look at cycles containing specified elements of a graph

    Get PDF
    AbstractThis article is intended as a brief survey of problems and results dealing with cycles containing specified elements of a graph. It is hoped that this will help researchers in the area to identify problems and areas of concentration

    Zero Forcing Sets and Bipartite Circulants

    Full text link
    In this paper we introduce a class of regular bipartite graphs whose biadjacency matrices are circulant matrices and we describe some of their properties. Notably, we compute upper and lower bounds for the zero forcing number for such a graph based only on the parameters that describe its biadjacency matrix. The main results of the paper characterize the bipartite circulant graphs that achieve equality in the lower bound.Comment: 22 pages, 13 figure

    Revolutionaries and spies: Spy-good and spy-bad graphs

    Get PDF
    We study a game on a graph GG played by rr {\it revolutionaries} and ss {\it spies}. Initially, revolutionaries and then spies occupy vertices. In each subsequent round, each revolutionary may move to a neighboring vertex or not move, and then each spy has the same option. The revolutionaries win if mm of them meet at some vertex having no spy (at the end of a round); the spies win if they can avoid this forever. Let σ(G,m,r)\sigma(G,m,r) denote the minimum number of spies needed to win. To avoid degenerate cases, assume |V(G)|\ge r-m+1\ge\floor{r/m}\ge 1. The easy bounds are then \floor{r/m}\le \sigma(G,m,r)\le r-m+1. We prove that the lower bound is sharp when GG has a rooted spanning tree TT such that every edge of GG not in TT joins two vertices having the same parent in TT. As a consequence, \sigma(G,m,r)\le\gamma(G)\floor{r/m}, where γ(G)\gamma(G) is the domination number; this bound is nearly sharp when γ(G)m\gamma(G)\le m. For the random graph with constant edge-probability pp, we obtain constants cc and cc' (depending on mm and pp) such that σ(G,m,r)\sigma(G,m,r) is near the trivial upper bound when r<clnnr<c\ln n and at most cc' times the trivial lower bound when r>clnnr>c'\ln n. For the hypercube QdQ_d with drd\ge r, we have σ(G,m,r)=rm+1\sigma(G,m,r)=r-m+1 when m=2m=2, and for m3m\ge 3 at least r39mr-39m spies are needed. For complete kk-partite graphs with partite sets of size at least 2r2r, the leading term in σ(G,m,r)\sigma(G,m,r) is approximately kk1rm\frac{k}{k-1}\frac{r}{m} when kmk\ge m. For k=2k=2, we have \sigma(G,2,r)=\bigl\lceil{\frac{\floor{7r/2}-3}5}\bigr\rceil and \sigma(G,3,r)=\floor{r/2}, and in general 3r2m3σ(G,m,r)(1+1/3)rm\frac{3r}{2m}-3\le \sigma(G,m,r)\le\frac{(1+1/\sqrt3)r}{m}.Comment: 34 pages, 2 figures. The most important changes in this revision are improvements of the results on hypercubes and random graphs. The proof of the previous hypercube result has been deleted, but the statement remains because it is stronger for m<52. In the random graph section we added a spy-strategy resul
    corecore