104 research outputs found

    A Rational Deconstruction of Landin's SECD Machine with the J Operator

    Full text link
    Landin's SECD machine was the first abstract machine for applicative expressions, i.e., functional programs. Landin's J operator was the first control operator for functional languages, and was specified by an extension of the SECD machine. We present a family of evaluation functions corresponding to this extension of the SECD machine, using a series of elementary transformations (transformation into continu-ation-passing style (CPS) and defunctionalization, chiefly) and their left inverses (transformation into direct style and refunctionalization). To this end, we modernize the SECD machine into a bisimilar one that operates in lockstep with the original one but that (1) does not use a data stack and (2) uses the caller-save rather than the callee-save convention for environments. We also identify that the dump component of the SECD machine is managed in a callee-save way. The caller-save counterpart of the modernized SECD machine precisely corresponds to Thielecke's double-barrelled continuations and to Felleisen's encoding of J in terms of call/cc. We then variously characterize the J operator in terms of CPS and in terms of delimited-control operators in the CPS hierarchy. As a byproduct, we also present several reduction semantics for applicative expressions with the J operator, based on Curien's original calculus of explicit substitutions. These reduction semantics mechanically correspond to the modernized versions of the SECD machine and to the best of our knowledge, they provide the first syntactic theories of applicative expressions with the J operator

    First-Class Functions for First-Order Database Engines

    Full text link
    We describe Query Defunctionalization which enables off-the-shelf first-order database engines to process queries over first-class functions. Support for first-class functions is characterized by the ability to treat functions like regular data items that can be constructed at query runtime, passed to or returned from other (higher-order) functions, assigned to variables, and stored in persistent data structures. Query defunctionalization is a non-invasive approach that transforms such function-centric queries into the data-centric operations implemented by common query processors. Experiments with XQuery and PL/SQL database systems demonstrate that first-order database engines can faithfully and efficiently support the expressive "functions as data" paradigm.Comment: Proceedings of the 14th International Symposium on Database Programming Languages (DBPL 2013), August 30, 2013, Riva del Garda, Trento, Ital

    Refunctionalization at Work

    Get PDF
    We present the left inverse of Reynolds's defunctionalization and we show its relevance to programming and to programming languages. We present two methods to put a program that is almost in defunctionalized form into one that is actually in defunctionalized form, and we illustrate them with a recognizer for Dyck words and with Dijkstra's shunting-yard algorithm

    Refunctionalization at Work

    Get PDF
    We present the left inverse of Reynolds's defunctionalization and we show its relevance to programming and to programming languages. We propose two methods to transform a program that is almost in defunctionalized form into one that is actually in defunctionalized form, and we illustrate them with a recognizer for Dyck words and with Dijkstra's shunting-yard algorithm

    An Operational Foundation for Delimited Continuations

    Get PDF
    We derive an abstract machine that corresponds to a definitional interpreter for the control operators shift and reset. Based on this abstract machine, we construct a syntactic theory of delimited continuations. Both the derivation and the construction scale to the family of control operators shift_n and reset_n. The definitional interpreter for shift_n and reset_n has n + 1 layers of continuations, the corresponding abstract machine has n + 1 layers of control stacks, and the corresponding syntactic theory has n + 1 layers of evaluation contexts.See also BRICS-RS-05-24

    Supporting Separate Compilation in a Defunctionalizing Compiler

    Get PDF
    Defunctionalization is generally considered a whole-program transformation and thus incompatible with separate compilation. In this paper, we formalize a modular variant of defunctionalization which can support separate compilation. Our technique allows modules in a Haskell-like language to be separately defunctionalized and compiled, then linked together to generate an executable program. We provide a prototype implementation of our modular defunctionalization technique and we discuss the experiences of its application in a compiler from a large subset of Haskell to low-level C code, based on the intensional transformation

    Towards Compatible and Interderivable Semantic Specifications for the Scheme Programming Language, Part I: Denotational Semantics, Natural Semantics, and Abstract Machines

    Get PDF
    We derive two big-step abstract machines, a natural semantics, and the valuation function of a denotational semantics based on the small-step abstract machine for Core Scheme presented by Clinger at PLDI'98. Starting from a functional implementation of this small-step abstract machine, (1) we fuse its transition function with its driver loop, obtaining the functional implementation of a big-step abstract machine; (2) we adjust this big-step abstract machine so that it is in defunctionalized form, obtaining the functional implementation of a second big-step abstract machine; (3) we refunctionalize this adjusted abstract machine, obtaining the functional implementation of a natural semantics in continuation style; and (4) we closure-unconvert this natural semantics, obtaining a compositional continuation-passing evaluation function which we identify as the functional implementation of a denotational semantics in continuation style. We then compare this valuation function with that of Clinger's original denotational semantics of Scheme

    On the Relation of Interaction Semantics to Continuations and Defunctionalization

    Get PDF
    In game semantics and related approaches to programming language semantics, programs are modelled by interaction dialogues. Such models have recently been used in the design of new compilation methods, e.g. for hardware synthesis or for programming with sublinear space. This paper relates such semantically motivated non-standard compilation methods to more standard techniques in the compilation of functional programming languages, namely continuation passing and defunctionalization. We first show for the linear {\lambda}-calculus that interpretation in a model of computation by interaction can be described as a call-by-name CPS-translation followed by a defunctionalization procedure that takes into account control-flow information. We then establish a relation between these two compilation methods for the simply-typed {\lambda}-calculus and end by considering recursion

    Derivation of a Virtual Machine For Four Variants of Delimited-Control Operators

    Get PDF

    An Operational Foundation for Delimited Continuations in the CPS Hierarchy

    Get PDF
    We present an abstract machine and a reduction semantics for the lambda-calculus extended with control operators that give access to delimited continuations in the CPS hierarchy. The abstract machine is derived from an evaluator in continuation-passing style (CPS); the reduction semantics (i.e., a small-step operational semantics with an explicit representation of evaluation contexts) is constructed from the abstract machine; and the control operators are the shift and reset family. At level n of the CPS hierarchy, programs can use the control operators shift_i and reset_i for
    • …
    corecore