
B
R

IC
S

R
S

-03-41
B

iernacka
etal.:

A
n

O
perationalF

oundation
for

D
elim

ited
C

ontinuations

BRICS
Basic Research in Computer Science

An Operational Foundation for
Delimited Continuations

Malgorzata Biernacka
Dariusz Biernacki
Olivier Danvy

BRICS Report Series RS-03-41

ISSN 0909-0878 December 2003

Copyright c© 2003, Malgorzata Biernacka & Dariusz Biernacki &
Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/03/41/

An Operational Foundation

for Delimited Continuations ∗

Ma lgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy

BRICS†

Department of Computer Science
University of Aarhus‡

November 30, 2003

Abstract

We derive an abstract machine that corresponds to a definitional inter-
preter for the control operators shift and reset. Based on this abstract
machine, we construct a syntactic theory of delimited continuations.

Both the derivation and the construction scale to the family of control
operators shiftn and resetn. The definitional interpreter for shiftn and
resetn has n + 1 layers of continuations, the corresponding abstract ma-
chine has n + 1 layers of control stacks, and the corresponding syntactic
theory has n + 1 layers of evaluation contexts.

∗To appear in the proceedings of the Fourth ACM SIGPLAN Workshop on Continuations
(CW’04), January 17, 2004, Venice, Italy.

†Basic Research in Computer Science (www.brics.dk),
funded by the Danish National Research Foundation.

‡Ny Munkegade, Building 540, DK-8000 Aarhus C, Denmark.
Email: {mbiernac,dabi,danvy}@brics.dk

1

Contents

1 Introduction 3

2 Background and related work 3
2.1 Defunctionalization . 3
2.2 This work . 5

2.2.1 Abstract machines as defunctionalized CPS programs . . 5
2.2.2 Evaluation contexts as defunctionalized continuations . . 6

2.3 Control operators for delimited continuations 6

3 From interpreter to abstract machine for shift and reset 7
3.1 An environment-based definitional interpreter 7
3.2 An environment-based abstract machine 9
3.3 A substitution-based abstract machine 9

4 Analysis 12

5 A syntactic theory 13

6 The second level of the CPS hierarchy 13

7 Going up in the CPS hierarchy 15

8 Conclusion and issues 16

List of Figures

1 A definitional interpreter for the first level of the CPS hierarchy . 8
2 An environment-based abstract machine for the first level of the

CPS hierarchy . 10
3 A substitution-based abstract machine for the first level of the

CPS hierarchy . 11
4 A substitution-based abstract machine for the second level of the

CPS hierarchy . 14

2

1 Introduction

The studies of delimited continuations can be classified in two groups: those
that use continuation-passing style (CPS) and those that rely on operational
intuitions about control instead. Of the latter, there is a large number [17, 20,
22,26,28,29,35,39,42,43], with relatively few applications. Of the former, there
is the work revolving around the control operators shift and reset [10, 11], with
relatively many applications.

The original motivation for shift and reset was a continuation-based pro-
gramming pattern involving several layers of continuations. The original spec-
ification relied both on a repeated CPS transformation and on a definitional
interpreter with several levels of continuations (as is obtained by repeatedly
transforming a direct-style interpreter into continuation-passing style). Only
subsequently have shift and reset been specified operationally, by developing op-
erational analogues of continuation semantics and of CPS transformations [15].
Beyond their original publication, shift and reset have been studied separately
by Danvy and by Filinski [7, 15, 23, 24, 33], and independently by others [4, 25,
31, 36, 46, 47].

The goal of our work is to establish an operational foundation for delimited
continuations by using CPS as a guideline. To this end, we start with the original
definitional interpreter for shift and reset. This interpreter uses two layers of
continuations: a continuation and a meta-continuation. We then defunctionalize
it into an abstract machine [1] and we construct the corresponding syntactic
theory [16], as pioneered by Felleisen and Friedman [19]. The construction
scales to shiftn and resetn.

This article is structured as follows. We first review the enabling technology
of our work: Reynolds’s defunctionalization, the observation that a defunc-
tionalized CPS program implements an abstract machine, and the observation
that Felleisen’s evaluation contexts are the defunctionalized continuations of a
continuation-passing evaluator; we also review related work (Section 2). We
then defunctionalize the original definitional interpreter for shift and reset into
an abstract machine. This abstract machine is environment-based, and we re-
state it as an abstract machine based on substitutions (Section 3). We analyze
this abstract machine and construct the corresponding syntactic theory (Sec-
tions 4 and 5). We also present the abstract machine corresponding to the
second level of the CPS hierarchy (Section 6), and we outline how the overall
approach scales to higher levels (Section 7).

2 Background and related work

2.1 Defunctionalization

In his seminal work on definitional interpreters [40], Reynolds presented a gen-
eralization of closure conversion [32]: defunctionalization. This transformation
amounts to representing a functional value not as a function, but as a first-order

3

sum where each summand corresponds to a lambda-abstraction in a source pro-
gram. Function introduction is thus represented as an injection, and function
elimination as a case dispatch. Therefore, before defunctionalization, functional
values are inhabitants of a function space and they are instances of anonymous
lambda-abstractions, and after defunctionalization, functional values are inhab-
itants of a sum. In ML, sums are represented as a data type and injections as
data-type constructors.

As a concrete example, let us consider the Fibonacci function in continuation-
passing style:

(* fib : int * (int -> int) -> int *)

fun fib (0, k)

= k 0

| fib (1, k)

= k 1

| fib (n, k)

= fib (n-1,

fn v1 => fib (n-2,

fn v2 => k (v1+v2)))

(* main : int -> int *)

fun main n

= fib (n, fn v => v)

We defunctionalize this program by representing the continuation as a data
structure. All three source lambda-abstractions give rise to inhabitants of the
function space int -> int. We specify the data structure representing the con-
tinuation as an ML data type, and we add an apply function to interpret ele-
ments of this data type:

datatype cont = CONT0

| CONT1 of int * cont

| CONT2 of int * cont

(* apply_cont : cont * int -> int *)

fun apply_cont (CONT0, v)

= v

| apply_cont (CONT1 (n, k), v1)

= fib (n-2, CONT2 (v1, k))

| apply_cont (CONT2 (v1, k), v2)

= apply_cont (k, v1+v2)

(* fib : int * cont -> int *)

and fib (0, k)

= apply_cont (k, 0)

| fib (1, k)

= apply_cont (k, 1)

| fib (n, k)

= fib (n-1, CONT1 (n, k))

4

(* main : int -> int *)

fun main n

= fib (n, CONT0)

The constructor CONT0 is constant because the initial continuation has no free
variables. The constructor CONT1 holds the values of the two free variables of the
outer lambda-abstraction in the induction case, i.e., n and k, and the constructor
CONT2 holds the values of the two free variables of the inner lambda-abstraction
in the induction case, i.e., v1 and k. (One could have chosen to hoist the
computation n-2 from the definition of apply cont to the definition of fib. This
choice can make a difference in practice [12, 13].)

2.2 This work

The present work builds on two recent observations:

1. a defunctionalized CPS program implements an abstract machine [1, 8];
and

2. Felleisen’s evaluation contexts are defunctionalized continuations [12].

Let us describe each of these observations in more detail.

2.2.1 Abstract machines as defunctionalized CPS programs

Plotkin’s Indifference Theorem [37] states that CPS programs are independent
of their evaluation order. In Reynolds’s words [40], all the subterms in applica-
tions are ‘trivial’; and in Moggi’s words [34], these subterms are values and not
computations. Furthermore, CPS programs are tail recursive [44]. Therefore,
a defunctionalized CPS program implements the transition functions of an ab-
stract machine. Each configuration is the name of a function together with its
arguments.

Getting back to the example above, the defunctionalized definition of the
Fibonacci function can be reformatted as the following abstract machine:

• Expressible values (integers):

v ::= n

• Evaluation contexts:

C ::= CONT0 | CONT1 (n, C) | CONT2 (v, C)

5

• Initial transition, transition rules, and final transition:

n ⇒ 〈n, CONT0〉fib

〈0, k〉fib ⇒ 〈k, 0〉app
〈1, k〉fib ⇒ 〈k, 1〉app
〈n, k〉fib ⇒ 〈n− 1, CONT1 (n, k)〉fib

〈CONT1 (n, k), v1〉app ⇒ 〈n− 2, CONT2 (v1, k)〉fib

〈CONT2 (v1, k), v2〉app ⇒ 〈k, v1 + v2〉app
〈CONT0, v〉app ⇒ v

Ager, Biernacki, Danvy, and Midtgaard have built on this observation to es-
tablish a functional correspondence between evaluators and abstract machines
by relating them using closure conversion, CPS transformation, and defunc-
tionalization [1, 8]. For example, Krivine’s abstract machine corresponds to
an ordinary call-by-name evaluator and Felleisen et al.’s CEK machine to an
ordinary call-by-value evaluator. (In fact, these two machines can be derived
from the same vanilla evaluator, resp. using a call-by-name CPS transforma-
tion and a call-by-value CPS transformation [9].) The correspondence makes
it possible to exhibit the evaluators corresponding to the SECD machine [32],
the CLS machine [27], and the Categorical Abstract Machine [6], and it also
holds for call-by-need evaluators and lazy abstract machines [2], for computa-
tional effects [3], and for logic programming [5]. We apply it here to delimited
continuations.

2.2.2 Evaluation contexts as defunctionalized continuations

The realization that Felleisen et al.’s evaluation contexts are defunctionalized
continuations makes it possible to mechanically construct evaluation contexts.
This mechanical construction contrasts with having to define evaluation contexts
on a case-by-case basis [18]. Also, the ubiquitous unique-decomposition lemma
follows as a corollary when one starts from a compositional evaluator [9].

2.3 Control operators for delimited continuations

The continuation-based programming pattern that motivated shift and reset
has since been found to coincide with layered computational monads [24]. Sev-
eral implementations have been developed: a definitional interpreter [10], a CPS
transformation [11], two embeddings in Standard ML of New Jersey using call/cc
and state [15, 23], and native run-time support in a Scheme system [25]. Sus-
tained efforts have also been made to establish an equational theory of delimited
continuations [30, 31] with the goal of studying their logical content.

6

A specificity of our work is that we use CPS as a guideline. For example, pure
contexts and general evaluation contexts have long been distinguished [21,41]. In
their work [31], Kameyama and Hasegawa required this distinction. In contrast,
the distinction between contexts and meta-contexts was imposed on us by CPS.

A forerunner of our work is Murthy’s presentation at CW’92 [36], where he
designed an abstract machine for the CPS hierarchy that actually coincides with
ours. Murthy also introduced a typing system, proved it correct with respect to
the CPS translation, and used it to state local reduction rules. In contrast, we
mechanically derived our abstract machine using defunctionalization, and we
systematically derived a syntactic theory.

3 From interpreter to abstract machine for shift

and reset

We start with defining the language of the first level of the CPS hierarchy of
control operators [10].

Source terms consist of integer literals, variables, λ-abstractions, function
applications, applications of the successor function, shift expressions, and reset
expressions:

t ::= pnq | x | λx.t | t0 t1 | succ t | ξ k.t | <t>

In a shift expression ξ k.t, the variable k is bound in t.
Programs are closed terms.

3.1 An environment-based definitional interpreter

Figure 1 displays an interpreter for the language of the first level of the CPS
hierarchy. The syntax of terms is implemented in the ML structure Syntax as a
data type:

structure Syntax

= struct

type ide = string

datatype term = INT of int

| VAR of ide

| LAM of ide * term

| APP of term * term

| SUCC of term

| SHIFT of ide * term

| RESET of term

end

We implement the interpreter as an ML functor parameterized by the rep-
resentation of an environment instantiating the following signature:

7

functor Definitional_Interpreter (structure Env : ENV)

= struct

datatype value = INT of int

| FUNC of cont0

withtype answer = value

and cont2 = value -> answer

and cont1 = value * cont2 -> answer

and cont0 = value * cont1 * cont2 -> answer

(* eval : Syntax.term * value Env.env * cont1 * cont2

-> answer *)

fun eval (Syntax.INT n, e, k1, k2)

= k1 (INT n, k2)

| eval (Syntax.VAR x, e, k1, k2)

= k1 (Env.lookup (x, e), k2)

| eval (Syntax.LAM (x, t), e, k1, k2)

= k1 (FUNC (fn (v, k1, k2)

=> eval (t, Env.extend (x, v, e), k1, k2)),

k2)

| eval (Syntax.APP (t0, t1), e, k1, k2)

= eval (t0, e, fn (v0, k2)

=> eval (t1, e, fn (v1, k2)

=> let val (FUNC f) = v0

in f (v1, k1, k2)

end))

| eval (Syntax.SUCC t, e, k1, k2)

= eval (t, e, fn (INT n, k2) => k1 (INT (n + 1), k2), k2)

| eval (Syntax.SHIFT (k, t), e, k1, k2)

= eval (t,

Env.extend (k,

FUNC (fn (v, k1’, k2’)

=> k1 (v, fn v’

=> k1’ (v’, k2’))),

e),

fn (v, k2) => k2 v,

k2)

| eval (Syntax.RESET t, e, k1, k2)

= eval (t, e, fn (v, k2) => k2 v, fn v => k1 (v, k2))

(* main : Syntax.term -> value *)

fun main t

= eval (t, Env.empty, fn (v, k2) => k2 v, fn v => v)

end

Figure 1: A definitional interpreter for the first level
of the CPS hierarchy

8

signature ENV

= sig

type ’a env

val empty : ’a env

val extend : Syntax.ide * ’a * ’a env -> ’a env

val lookup : Syntax.ide * ’a env -> ’a

end

The evaluation function is defined by structural induction over the syntax of
terms, and uses both a continuation k1 and a meta-continuation k2. The meta-
continuation intervenes to interpret reset expressions and to apply captured
continuations. Otherwise, it is passively threaded to interpret literals, variables,
λ-abstractions, function applications, and applications of the successor function.
(If it were not for shift and reset, and if eval were curried, k2 could be eta-
reduced and the interpreter would be in ordinary continuation-passing style.)
Stuck (i.e., ill-typed) programs raise an ML pattern-matching error.

The reset control operator is used to delimit control. A reset expression
Syntax.RESET t is interpreted by interpreting t with the identity continuation
and a meta-continuation on which the current continuation has been “pushed”.
(Indeed defunctionalizing the meta-continuation yields the data type of a stack
[12].)

The shift control operator is used to abstract (delimited) control. A shift
expression Syntax.SHIFT (k, t) is superficially similar to Reynolds’s escape ex-
pression [40]: the current (delimited) continuation is captured in k, and is reset
to the identity continuation.

Applying a captured continuation is achieved by “pushing” the current con-
tinuation on the meta-continuation and applying the captured continuation to
the new meta-continuation.

Resuming a continuation is achieved by reactivating the “pushed” continu-
ation with the corresponding meta-continuation.

3.2 An environment-based abstract machine

The definitional interpreter of Figure 1 is already in continuation-passing style.
Therefore, we only need to defunctionalize its expressible values and its contin-
uations to obtain an abstract machine. This abstract machine is displayed in
Figure 2.

3.3 A substitution-based abstract machine

We go from the environment-based abstract machine of Figure 2 to a substitution-
based abstract machine displayed in Figure 3. The equivalence of these two
machines is established with a substitution lemma [45]. The substitution-based
abstract machine operates on terms where “quoted” (in the sense of Lisp) con-
texts can occur.

9

• Expressible values (integers, closures and captured continuations):

v ::= pnq | [x, t, e] | C1

• Environments:

e ::= eempty | e[x 7→ v] | e[k 7→ C1]

• Evaluation contexts and meta-contexts:

C1 ::= • | C1 (t, e) | v C1 | succ C1

C2 ::= • | C2 · C1

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, eempty , •, •〉eval
〈pnq, e, C1, C2〉eval ⇒ 〈C1, pnq, C2〉cont1

〈x, e, C1, C2〉eval ⇒ 〈C1, e (x), C2〉cont1

〈λx.t, e, C1, C2〉eval ⇒ 〈C1, [x, t, e], C2〉cont1

〈t0 t1, e, C1, C2〉eval ⇒ 〈t0, e, C1 (t1, e), C2〉eval
〈succ t, e, C1, C2〉eval ⇒ 〈t, e, succ C1, C2〉eval
〈ξ k.t, e, C1, C2〉eval ⇒ 〈t, e[k 7→ C1], •, C2〉eval
〈<t>, e, C1, C2〉eval ⇒ 〈t, e, •, C2 · C1〉eval

〈•, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈C1 (t, e), v, C2〉cont1 ⇒ 〈t, e, v C1, C2〉eval
〈[x, t, e] C1, v, C2〉cont1 ⇒ 〈t, e[x 7→ v], C1, C2〉eval

〈C′
1 C1, v, C2〉cont1 ⇒ 〈C′

1, v, C2 · C1〉cont1

〈succ C1, pnq, C2〉cont1 ⇒ 〈C1, pn + 1q, C2〉cont1

〈C2 · C1, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 2: An environment-based abstract machine for the first level
of the CPS hierarchy

10

• Source syntax, including values:

t ::= v | x | t0 t1 | succ t | ξ k.t | <t>
v ::= pnq | λx.t | C1

• Evaluation contexts and meta-contexts:

C1 ::= • | C1 t | v C1 | succ C1

C2 ::= • | C2 · C1

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, •, •〉eval
〈pnq, C1, C2〉eval ⇒ 〈C1, pnq, C2〉cont1

〈λx.t, C1, C2〉eval ⇒ 〈C1, λx.t, C2〉cont1

〈C′
1, C1, C2〉eval ⇒ 〈C1, C′

1, C2〉cont1

〈t0 t1, C1, C2〉eval ⇒ 〈t0, C1 t1, C2〉eval
〈succ t, C1, C2〉eval ⇒ 〈t, succ C1, C2〉eval
〈ξ k.t, C1, C2〉eval ⇒ 〈t{C1/k}, •, C2〉eval
〈<t>, C1, C2〉eval ⇒ 〈t, •, C2 · C1〉eval
〈•, v, C2〉cont1 ⇒ 〈C2, v〉cont2

〈C1 t, v, C2〉cont1 ⇒ 〈t, v C1, C2〉eval
〈(λx.t) C1, v, C2〉cont1 ⇒ 〈t{v/x}, C1, C2〉eval

〈C′
1 C1, v, C2〉cont1 ⇒ 〈C′

1, v, C2 · C1〉cont1

〈succ C1, pnq, C2〉cont1 ⇒ 〈C1, pn + 1q, C2〉cont1

〈C2 · C1, v〉cont2 ⇒ 〈C1, v, C2〉cont1

〈•, v〉cont2 ⇒ v

Figure 3: A substitution-based abstract machine for the first level
of the CPS hierarchy

11

4 Analysis

In this section we analyze the transitions of the substitution-based abstract
machine and we identify the ones that correspond to reduction rules in the
language.

The abstract machine from Figure 3 is a small-step operational semantics
of the language [38]. We can think of a configuration 〈t, C1, C2〉eval of the
machine as the following decomposition of the initial term into a meta-context
C2, a context C1, and an intermediate term t:

C2 # C1[t]

where # separates the context and the meta-context. Notice that in most
transitions the meta-context component is not used. (Similarly, most occur-
rences of the meta-continuation could be eta-reduced in a curried version of the
interpreter, in Figure 1.)

Next, we observe that the eval-transitions correspond to decomposing a
term: depending on its structure, a subpart of the term is chosen to be evaluated
next, and the contexts are updated accordingly. Each of the cont1- and cont2-
transitions handles a situation when a value is reached. In this case either a
reduction is performed or further decomposition takes place.

Based on the distinction between decomposition and reduction, we single
out the following reduction rules from the transitions of the machine:

(succ) C2 # C1[succ pnq] → C2 # C1[pn + 1q]
(βλ) C2 # C1[(λx.t) v] → C2 # C1[t{v/x}]
(ξλ) C2 # C1[ξ k.t] → C2 # •[t{C1/k}]
(βctx) C2 # C1[C′

1 v] → C2 · C1 # C′
1[v]

(val) C2 · C1 # •[v] → C2 # C1[v]
(val′) • # •[v] → v

Note that (βλ) is the usual call-by-value β-reduction. We renamed it to indicate
that the applied term is a λ-abstraction, since we can also apply a captured
context, as in (βctx). The (ξλ) rule can be considered as applying an abstraction
λk.t to the current context. Moreover, the (βctx) rule can be seen as performing
both a reduction and a decomposition. It is a reduction because an application
of a context with a hole to a value is reduced to the value plugged into the
hole; and it is a decomposition because it changes the meta-context, as if the
application were enclosed in a reset. Finally, the (val) rule allows us to pass the
boundary of a context, when the term inside it has been reduced to a value.

The (βctx) rule and the (ξλ) rule give a justification for representing a cap-
tured context C1 as a term λx.<C1[x]>, as found in other work on shift and
reset [31, 36]. In particular, the need for delimiting the captured context is a
consequence of the (βctx) rule.

What is more, the (βctx) rule captures the set of extra reduction rules needed
by Murthy to prove the representation theorem [36].

12

5 A syntactic theory

A syntactic theory provides a reduction relation on expressions by defining val-
ues, evaluation contexts, and redexes [16, 18, 19, 49]. In the present case,

• the values are already specified in the (substitution-based) abstract ma-
chine;

• the evaluation contexts are already specified in the abstract machine, as
the data-type part of defunctionalized continuations; and

• we can read the redexes off the transitions of the abstract machine, as
done in Section 4.

Furthermore, we can read the decomposition function off the eval-transitions
of the abstract machine:

decompose(t) = decompose′ (t, •, •)
decompose′ (t0 t1, C1, C2) = decompose′ (t0, C1 t1, C2)

decompose′ (succ t, C1, C2) = decompose′ (t, succ C1, C2)
decompose′ (<t>, C1, C2) = decompose′ (t, •, C2 · C1)
decompose′ (v, C1 t, C2) = decompose′ (t, v C1, C2)

The plug function is immediate to write:

plug (t, •, •) = t
plug (t, •, C2 · C1) = plug (<t>, C1, C2)
plug (t, C1 t′, C2) = plug (t t′, C1, C2)
plug (t, v C1, C2) = plug (v t, C1, C2)

plug (t, succ C1, C2) = plug (succ t, C1, C2)

As a side benefit of starting from a compositional evaluator, the unique-
decomposition lemma holds as a corollary.

All the points of this section were already made in Felleisen and Friedman’s
original article on control operators and abstract machines [19], except for the
last one, which is new. We are currently studying how to mechanize the con-
struction of syntactic theories from abstract machines, based on Danvy and
Nielsen’s converse mechanical construction [14].

6 The second level of the CPS hierarchy

We can easily generalize the results from the previous sections to an arbitrary
level of the CPS hierarchy. Let us consider the second level. Starting from
the standard definitional interpreter with three layers of continuations [10], we
derive the corresponding environment-based abstract machine, using the same
method as in Section 3.3. The equivalent substitution-based machine is pre-
sented in Figure 4. The configurations of the machine are extended with one

13

• Source syntax, including values:
t ::= v | x | t0 t1 | succ t | ξ k.t | <t> | ξ2 k.t | <t>2

v ::= pnq | λx.t | C1 | C2

• Evaluation contexts, meta-contexts and meta-meta-contexts:
C1 ::= • | C1 t | v C1 | succ C1

C2 ::= • | C2 · C1

C3 ::= • | C3 · (C2 · C1)

• Initial transition, transition rules, and final transition:

t ⇒ 〈t, •, •, •〉eval
〈pnq, C1, C2, C3〉eval ⇒ 〈C1, pnq, C2, C3〉cont1

〈λx.t, C1, C2, C3〉eval ⇒ 〈C1, λx.t, C2, C3〉cont1

〈C′
1, C1, C2, C3〉eval ⇒ 〈C1, C′

1, C2, C3〉cont1

〈t0 t1, C1, C2, C3〉eval ⇒ 〈t0, C1 t1, C2, C3〉eval
〈succ t, C1, C2, C3〉eval ⇒ 〈t, succ C1, C2, C3〉eval
〈ξ k.t, C1, C2, C3〉eval ⇒ 〈t{C1/k}, •, C2, C3〉eval
〈<t>, C1, C2, C3〉eval ⇒ 〈t, •, C2 · C1, C3〉eval

〈ξ2 k.t, C1, C2, C3〉eval ⇒ 〈t{C2 · C1/k}, •, •, C3〉eval
〈<t>2, C1, C2, C3〉eval ⇒ 〈t, •, •, C3 · (C2 · C1)〉eval

〈•, v, C2, C3〉cont1 ⇒ 〈C2, v, C3〉cont2

〈C1 t, v, C2, C3〉cont1 ⇒ 〈t, v C1, C2, C3〉eval
〈(λx.t) C1, v, C2, C3〉cont1 ⇒ 〈t{v/x}, C1, C2, C3〉eval

〈C′
1 C1, v, C2, C3〉cont1 ⇒ 〈C′

1, v, C2 · C1, C3〉cont1

〈(C′
2 · C′

1) C1, v, C2, C3〉cont1 ⇒ 〈C′
1, v, C′

2, C3 · (C2 · C1)〉cont1

〈succ C1, pnq, C2, C3〉cont1 ⇒ 〈C1, pn + 1q, C2, C3〉cont1

〈C2 · C1, v, C3〉cont2 ⇒ 〈C1, v, C2, C3〉cont1

〈•, v, C3〉cont2 ⇒ 〈C3, v〉cont3

〈C3 · (C2 · C1), v〉cont3 ⇒ 〈C1, v, C2, C3〉cont1

〈•, v〉cont3 ⇒ v

Figure 4: A substitution-based abstract machine for the second level
of the CPS hierarchy

14

component corresponding to the additional continuation of the interpreter. Ob-
serve that the transitions of the machine for Level 1 are “embedded” in the
machine for Level 2—the extra component is threaded but not used.

Just as for the first level, the configuration of the machine 〈t, C1, C2, C3〉eval

corresponds to the following decomposition of the initial term:

C3 #2 C2 #1 C1[t]

where the additional context C3 represents the rest of the term outside the
innermost reset2.

Again, we can read the set of reduction rules off the transitions of the ma-
chine. The embedding of the transitions of the previous machine in the current
one is materialized in the fact that all the reduction rules for Level 1 are pre-
served (the first five rules below), and they do not interact with the extra layer
of contexts:

(succ) C3 #2 C2 #1 C1[succ pnq] → C3 #2 C2 #1 C1[pn + 1q]
(βλ) C3 #2 C2 #1 C1[(λx.t) v] → C3 #2 C2 #1 C1[t{v/x}]
(ξλ) C3 #2 C2 #1 C1[ξ k.t] → C3 #2 C2 #1 •[t{C1/k}]
(βctx) C3 #2 C2 #1 C1[C′

1 v] → C3 #2 C2 · C1 #1 C′
1[v]

(val) C3 #2 C2 · C1 #1 •[v] → C3 #2 C2 #1 C1[v]
(ξ2λ) C3 #2 C2 #1 C1[ξ2 k.t] → C3 #2 • #1 •[t{C2 · C1/k}]
(βctx2) C3 #2 C2 #1 C1[C′

2 · C′
1 v] → C3 · (C2 · C1) #2 C′

2 #1 C′
1[v]

(val2) C3 · (C2 · C1) #2 • #1 •[v] → C3 #2 C2 #1 C1[v]
(val′2) • #2 • #1 •[v] → v

The three new rules (ξ2λ), (βctx2), and (val2) are straightforward generaliza-
tions of their counterparts for shift and reset. Shift2 captures not one, but two
contexts (up to the nearest enclosing reset2), and reset2 pushes the first two con-
texts onto the third one. Finally, the (val2) rule allows us to pass the boundary
of a context, when the term inside it has been reduced to a value.

7 Going up in the CPS hierarchy

Having seen that much, one can write reduction rules for an arbitrary level of
the hierarchy, or reconstruct the corresponding abstract machine even without
repeating the whole procedure.

At the nth level of the hierarchy, all the operators shift1, reset1, . . . , shiftn,
and resetn are available. The nth level contains n + 1 evaluation contexts and
each context Ci can be viewed as a stack of nonempty contexts Ci−1. The terms
are decomposed as

Cn+1 #n Cn #n−1 Cn−1 #n−2 · · · #2 C2 #1 C1[t],

where each #i represents a delimited context up to Level i. All the control
operators that occur already at the kth level (with k < n) of the hierarchy do
not use the contexts k + 2, . . . , n.

15

The transitions of the machine for Level k are “embedded” in the machine
for Level k+1—the extra components are threaded but not used. The 0th level
corresponds to the CEK machine and the ordinary lambda-calculus under call
by value.

8 Conclusion and issues

We have used CPS as a guideline to establish an operational foundation for
delimited continuations. Starting from a call-by-value evaluator for λ-terms
with shift and reset, we have mechanically constructed the corresponding ab-
stract machine. From this abstract machine, it is straightforward to construct
a syntactic theory of delimited control that, by construction, is compatible with
CPS—both for one-step reduction and for evaluation.

The whole approach scales seamlessly to account for the shiftn and resetn

family of delimited-control operators.
Defunctionalization provided a key to connect CPS and operational intu-

itions about control. Indeed most of the time, control stacks are defunctional-
ized continuations. We do not know whether CPS is the ultimate answer, but
the present work shows yet another example of its usefulness. It is like nothing
can go wrong with CPS.

Acknowledgments: We are grateful to Mads Sig Ager, Julia Lawall, Jan
Midtgaard, and the anonymous referees for their comments. This work is sup-
ported by the ESPRIT Working Group APPSEM II (http://www.appsem.org).

References

[1] Mads Sig Ager, Dariusz Biernacki, Olivier Danvy, and Jan Midtgaard.
A functional correspondence between evaluators and abstract machines.
In Dale Miller, editor, Proceedings of the Fifth ACM-SIGPLAN Interna-
tional Conference on Principles and Practice of Declarative Programming
(PPDP’03), pages 8–19. ACM Press, August 2003.

[2] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between call-by-need evaluators and lazy abstract machines. Tech-
nical Report BRICS RS-03-24, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, June 2003. Accepted for publica-
tion in Information Processing Letters.

[3] Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A functional correspon-
dence between monadic evaluators and abstract machines for languages
with computational effects. Technical Report BRICS RS-03-35, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark,
November 2003.

16

[4] Kenichi Asai. Online partial evaluation for shift and reset. In Peter Thie-
mann, editor, Proceedings of the 2002 ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation (PEPM 2002),
SIGPLAN Notices, Vol. 37, No 3, pages 19–30, Portland, Oregon, March
2002. ACM Press.

[5] Dariusz Biernacki and Olivier Danvy. From interpreter to logic engine by
defunctionalization. Technical Report BRICS RS-03-25, DAIMI, Depart-
ment of Computer Science, University of Aarhus, Aarhus, Denmark, June
2003. Presented at the 2003 International Symposium on Logic-based Pro-
gram Synthesis and Transformation (LOPSTR 2003).

[6] Guy Cousineau, Pierre-Louis Curien, and Michel Mauny. The categorical
abstract machine. Science of Computer Programming, 8(2):173–202, 1987.

[7] Olivier Danvy. Type-directed partial evaluation. In Guy L. Steele Jr., ed-
itor, Proceedings of the Twenty-Third Annual ACM Symposium on Prin-
ciples of Programming Languages, pages 242–257, St. Petersburg Beach,
Florida, January 1996. ACM Press.

[8] Olivier Danvy. A rational deconstruction of Landin’s SECD machine. Tech-
nical Report BRICS RS-03-33, DAIMI, Department of Computer Science,
University of Aarhus, Aarhus, Denmark, October 2003.

[9] Olivier Danvy. On evaluation contexts, continuations, and the rest of the
computation. In Hayo Thielecke, editor, Proceedings of the Fourth ACM
SIGPLAN Workshop on Continuations, Technical report, Department of
Computer Science, Queen Mary’s College, Venice, Italy, January 2004. In-
vited talk.

[10] Olivier Danvy and Andrzej Filinski. Abstracting control. In Wand [48],
pages 151–160.

[11] Olivier Danvy and Andrzej Filinski. Representing control, a study of
the CPS transformation. Mathematical Structures in Computer Science,
2(4):361–391, 1992.

[12] Olivier Danvy and Lasse R. Nielsen. Defunctionalization at work. In Har-
ald Søndergaard, editor, Proceedings of the Third International ACM SIG-
PLAN Conference on Principles and Practice of Declarative Programming
(PPDP’01), pages 162–174, Firenze, Italy, September 2001. ACM Press.

[13] Olivier Danvy and Lasse R. Nielsen. On one-pass CPS transformations.
Technical Report BRICS RS-02-03, DAIMI, Department of Computer Sci-
ence, University of Aarhus, Aarhus, Denmark, January 2002. Accepted for
publication in the Journal of Functional Programming.

[14] Olivier Danvy and Lasse R. Nielsen. Syntactic theories in practice. Tech-
nical Report BRICS RS-02-04, DAIMI, Department of Computer Science,

17

University of Aarhus, Aarhus, Denmark, January 2002. A preliminary
version appears in the informal proceedings of the Second International
Workshop on Rule-Based Programming (RULE 2001), Electronic Notes in
Theoretical Computer Science, Vol. 59.4.

[15] Olivier Danvy and Zhe Yang. An operational investigation of the CPS
hierarchy. In S. Doaitse Swierstra, editor, Proceedings of the Eighth Euro-
pean Symposium on Programming, number 1576 in Lecture Notes in Com-
puter Science, pages 224–242, Amsterdam, The Netherlands, March 1999.
Springer-Verlag.

[16] Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory
of Control and State in Imperative Higher-Order Programming Languages.
PhD thesis, Department of Computer Science, Indiana University, Bloom-
ington, Indiana, August 1987.

[17] Matthias Felleisen. The theory and practice of first-class prompts. In
Jeanne Ferrante and Peter Mager, editors, Proceedings of the Fifteenth
Annual ACM Symposium on Principles of Programming Languages, pages
180–190, San Diego, California, January 1988. ACM Press.

[18] Matthias Felleisen and Matthew Flatt. Programming languages and
lambda calculi. Unpublished lecture notes. http://www.ccs.neu.edu/
home/matthias/3810-w02/readings.html, 1989-2003.

[19] Matthias Felleisen and Daniel P. Friedman. Control operators, the SECD
machine, and the λ-calculus. In Martin Wirsing, editor, Formal Description
of Programming Concepts III, pages 193–217. Elsevier Science Publishers
B.V. (North-Holland), Amsterdam, 1986.

[20] Matthias Felleisen, Daniel P. Friedman, Bruce Duba, and John Merrill. Be-
yond continuations. Technical Report 216, Computer Science Department,
Indiana University, Bloomington, Indiana, February 1987.

[21] Matthias Felleisen and Robert Hieb. The revised report on the syntactic
theories of sequential control and state. Theoretical Computer Science,
103(2):235–271, 1992.

[22] Matthias Felleisen, Mitchell Wand, Daniel P. Friedman, and Bruce F. Duba.
Abstract continuations: A mathematical semantics for handling full func-
tional jumps. In Robert (Corky) Cartwright, editor, Proceedings of the
1988 ACM Conference on Lisp and Functional Programming, pages 52–62,
Snowbird, Utah, July 1988. ACM Press.

[23] Andrzej Filinski. Representing monads. In Hans-J. Boehm, editor, Pro-
ceedings of the Twenty-First Annual ACM Symposium on Principles of
Programming Languages, pages 446–457, Portland, Oregon, January 1994.
ACM Press.

18

[24] Andrzej Filinski. Representing layered monads. In Alex Aiken, editor,
Proceedings of the Twenty-Sixth Annual ACM Symposium on Principles
of Programming Languages, pages 175–188, San Antonio, Texas, January
1999. ACM Press.

[25] Martin Gasbichler and Michael Sperber. Final shift for call/cc: direct im-
plementation of shift and reset. In Simon Peyton Jones, editor, Proceedings
of the 2002 ACM SIGPLAN International Conference on Functional Pro-
gramming, SIGPLAN Notices, Vol. 37, No. 9, pages 271–282, Pittsburgh,
Pennsylvania, September 2002. ACM Press.

[26] Carl Gunter, Didier Rémy, and Jon G. Riecke. A generalization of excep-
tions and control in ML-like languages. In Simon Peyton Jones, editor,
Proceedings of the Seventh ACM Conference on Functional Programming
and Computer Architecture, pages 12–23, La Jolla, California, June 1995.
ACM Press.

[27] John Hannan and Dale Miller. From operational semantics to abstract
machines. Mathematical Structures in Computer Science, 2(4):415–459,
1992.

[28] Robert Hieb and R. Kent Dybvig. Continuations and concurrency. In
Proceedings of the Second ACM SIGPLAN Symposium on Principles &
Practice of Parallel Programming, SIGPLAN Notices, Vol. 25, No. 3, pages
128–136, Seattle, Washington, March 1990. ACM Press.

[29] Robert Hieb, R. Kent Dybvig, and Claude W. Anderson, III. Subcontinu-
ations. Lisp and Symbolic Computation, 5(4):295–326, December 1993.

[30] Yukiyoshi Kameyama. A type-theoretic study on partial continuations. In
Jan van Leeuwen, Osamu Watanabe, Masami Hagiya, Peter D. Mosses, and
Takayasu Ito, editors, Theoretical Computer Science, Exploring New Fron-
tiers of Theoretical Informatics, International Conference IFIP TCS 2000,
Proceedings, volume 1872 of Lecture Notes in Computer Science, pages
489–504, Sendai, Japan, August 2000. Springer-Verlag.

[31] Yukiyoshi Kameyama and Masahito Hasegawa. A sound and complete
axiomatization of delimited continuations. In Olin Shivers, editor, Proceed-
ings of the 2003 ACM SIGPLAN International Conference on Functional
Programming, pages 177–188, Uppsala, Sweden, August 2003. ACM Press.

[32] Peter J. Landin. The mechanical evaluation of expressions. The Computer
Journal, 6(4):308–320, 1964.

[33] Julia L. Lawall and Olivier Danvy. Continuation-based partial evaluation.
In Carolyn L. Talcott, editor, Proceedings of the 1994 ACM Conference on
Lisp and Functional Programming, LISP Pointers, Vol. VII, No. 3, Orlando,
Florida, June 1994. ACM Press.

19

[34] Eugenio Moggi. Notions of computation and monads. Information and
Computation, 93:55–92, 1991.

[35] Luc Moreau and Christian Queinnec. Partial continuations as the dif-
ference of continuations, a duumvirate of control operators. In Manuel
Hermenegildo and Jaan Penjam, editors, Sixth International Symposium
on Programming Language Implementation and Logic Programming, num-
ber 844 in Lecture Notes in Computer Science, pages 182–197, Madrid,
Spain, September 1994. Springer-Verlag.

[36] Chethan R. Murthy. Control operators, hierarchies, and pseudo-classical
type systems: A-translation at work. In Olivier Danvy and Carolyn L.
Talcott, editors, Proceedings of the First ACM SIGPLAN Workshop on
Continuations (CW 1992), Technical report STAN-CS-92-1426, Stanford
University, pages 49–72, San Francisco, California, June 1992.

[37] Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theo-
retical Computer Science, 1:125–159, 1975.

[38] Gordon D. Plotkin. A structural approach to operational semantics. Tech-
nical Report FN-19, DAIMI, Department of Computer Science, University
of Aarhus, Aarhus, Denmark, September 1981.

[39] Christian Queinnec and Bernard Serpette. A dynamic extent control op-
erator for partial continuations. In Robert (Corky) Cartwright, editor,
Proceedings of the Eighteenth Annual ACM Symposium on Principles of
Programming Languages, pages 174–184, Orlando, Florida, January 1991.
ACM Press.

[40] John C. Reynolds. Definitional interpreters for higher-order programming
languages. Higher-Order and Symbolic Computation, 11(4):363–397, 1998.
Reprinted from the proceedings of the 25th ACM National Conference
(1972), with a foreword.

[41] Dorai Sitaram. Models of Control and their Implications for Programming
Language Design. PhD thesis, Computer Science Department, Rice Uni-
versity, Houston, Texas, April 1994.

[42] Dorai Sitaram and Matthias Felleisen. Control delimiters and their hierar-
chies. Lisp and Symbolic Computation, 3(1):67–99, January 1990.

[43] Dorai Sitaram and Matthias Felleisen. Reasoning with continuations II:
Full abstraction for models of control. In Wand [48], pages 161–175.

[44] Guy L. Steele Jr. Rabbit: A compiler for Scheme. Master’s thesis, Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978. Technical report AI-TR-474.

[45] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey Approach to
Programming Language Theory. The MIT Press, 1977.

20

[46] Eijiro Sumii. An implementation of transparent migration on standard
Scheme. In Matthias Felleisen, editor, Proceedings of the Workshop on
Scheme and Functional Programming, pages 61–64, Montréal, Canada,
September 2000. Rice Technical Report 00-368.

[47] Philip Wadler. Monads and composable continuations. In Carolyn L. Tal-
cott, editor, Special issue on continuations (Part II), Lisp and Symbolic
Computation, Vol. 7, No. 1, pages 39–55, 1994.

[48] Mitchell Wand, editor. Proceedings of the 1990 ACM Conference on Lisp
and Functional Programming, Nice, France, June 1990. ACM Press.

[49] Yong Xiao, Amr Sabry, and Zena M. Ariola. From syntactic theories to
interpreters: Automating proofs of unique decomposition. Higher-Order
and Symbolic Computation, 14(4):387–409, 2001.

21

Recent BRICS Report Series Publications

RS-03-41 Malgorzata Biernacka, Dariusz Biernacki, and Olivier Danvy.
An Operational Foundation for Delimited Continuations. De-
cember 2003. 21 pp.

RS-03-40 Andrzej Filinski and Henning Korsholm Rohde. A Denota-
tional Account of Untyped Normalization by Evaluation. De-
cember 2003. 29 pp.

RS-03-39 J̈org Abendroth. Applyingπ-Calculus to Practice: An Example
of a Unified Security Mechanism. November 2003. 35 pp.

RS-03-38 Henning B̈ottger, Anders Møller, and Michael I.
Schwartzbach. Contracts for Cooperation between Web
Service Programmers and HTML Designers. November 2003.
23 pp.

RS-03-37 Claude Cŕepeau, Paul Dumais, Dominic Mayers, and Louis
Salvail. Computational Collapse of Quantum State with Appli-
cation to Oblivious Transfer. November 2003. 30 pp.

RS-03-36 Ivan B. Damg̊ard, Serge Fehr, Kirill Morozov, and Louis Sal-
vail. Unfair Noisy Channels and Oblivious Transfer. November
2003.

RS-03-35 Mads Sig Ager, Olivier Danvy, and Jan Midtgaard. A Func-
tional Correspondence between Monadic Evaluators and Ab-
stract Machines for Languages with Computational Effects.
November 2003. 31 pp.

RS-03-34 Luca Aceto, Willem Jan Fokkink, Anna Inǵolfsdóttir, and Bas
Luttik. CCS with Hennessy’s Merge has no Finite Equational
Axiomatization. November 2003. 37 pp.

RS-03-33 Olivier Danvy. A Rational Deconstruction of Landin’s SECD
Machine. October 2003. 32 pp. This report supersedes the
earlier BRICS report RS-02-53.

RS-03-32 Philipp Gerhardy and Ulrich Kohlenbach. Extracting Her-
brand Disjunctions by Functional Interpretation. October 2003.
17 pp.

RS-03-31 Stephen Lack and Paweł Sobociński. Adhesive Categories. Oc-
tober 2003. 25 pp.

