383 research outputs found

    Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching

    Get PDF
    Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Deep Learning in Medical Image Analysis

    Get PDF
    The computer-assisted analysis for better interpreting images have been longstanding issues in the medical imaging field. On the image-understanding front, recent advances in machine learning, especially, in the way of deep learning, have made a big leap to help identify, classify, and quantify patterns in medical images. Specifically, exploiting hierarchical feature representations learned solely from data, instead of handcrafted features mostly designed based on domain-specific knowledge, lies at the core of the advances. In that way, deep learning is rapidly proving to be the state-of-the-art foundation, achieving enhanced performances in various medical applications. In this article, we introduce the fundamentals of deep learning methods; review their successes to image registration, anatomical/cell structures detection, tissue segmentation, computer-aided disease diagnosis or prognosis, and so on. We conclude by raising research issues and suggesting future directions for further improvements

    Deep Networks Based Energy Models for Object Recognition from Multimodality Images

    Get PDF
    Object recognition has been extensively investigated in computer vision area, since it is a fundamental and essential technique in many important applications, such as robotics, auto-driving, automated manufacturing, and security surveillance. According to the selection criteria, object recognition mechanisms can be broadly categorized into object proposal and classification, eye fixation prediction and saliency object detection. Object proposal tends to capture all potential objects from natural images, and then classify them into predefined groups for image description and interpretation. For a given natural image, human perception is normally attracted to the most visually important regions/objects. Therefore, eye fixation prediction attempts to localize some interesting points or small regions according to human visual system (HVS). Based on these interesting points and small regions, saliency object detection algorithms propagate the important extracted information to achieve a refined segmentation of the whole salient objects. In addition to natural images, object recognition also plays a critical role in clinical practice. The informative insights of anatomy and function of human body obtained from multimodality biomedical images such as magnetic resonance imaging (MRI), transrectal ultrasound (TRUS), computed tomography (CT) and positron emission tomography (PET) facilitate the precision medicine. Automated object recognition from biomedical images empowers the non-invasive diagnosis and treatments via automated tissue segmentation, tumor detection and cancer staging. The conventional recognition methods normally utilize handcrafted features (such as oriented gradients, curvature, Haar features, Haralick texture features, Laws energy features, etc.) depending on the image modalities and object characteristics. It is challenging to have a general model for object recognition. Superior to handcrafted features, deep neural networks (DNN) can extract self-adaptive features corresponding with specific task, hence can be employed for general object recognition models. These DNN-features are adjusted semantically and cognitively by over tens of millions parameters corresponding to the mechanism of human brain, therefore leads to more accurate and robust results. Motivated by it, in this thesis, we proposed DNN-based energy models to recognize object on multimodality images. For the aim of object recognition, the major contributions of this thesis can be summarized below: 1. We firstly proposed a new comprehensive autoencoder model to recognize the position and shape of prostate from magnetic resonance images. Different from the most autoencoder-based methods, we focused on positive samples to train the model in which the extracted features all come from prostate. After that, an image energy minimization scheme was applied to further improve the recognition accuracy. The proposed model was compared with three classic classifiers (i.e. support vector machine with radial basis function kernel, random forest, and naive Bayes), and demonstrated significant superiority for prostate recognition on magnetic resonance images. We further extended the proposed autoencoder model for saliency object detection on natural images, and the experimental validation proved the accurate and robust saliency object detection results of our model. 2. A general multi-contexts combined deep neural networks (MCDN) model was then proposed for object recognition from natural images and biomedical images. Under one uniform framework, our model was performed in multi-scale manner. Our model was applied for saliency object detection from natural images as well as prostate recognition from magnetic resonance images. Our experimental validation demonstrated that the proposed model was competitive to current state-of-the-art methods. 3. We designed a novel saliency image energy to finely segment salient objects on basis of our MCDN model. The region priors were taken into account in the energy function to avoid trivial errors. Our method outperformed state-of-the-art algorithms on five benchmarking datasets. In the experiments, we also demonstrated that our proposed saliency image energy can boost the results of other conventional saliency detection methods
    corecore