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Abstract 

Object recognition has been extensively investigated in computer vision area, 

since it is a fundamental and essential technique in many important applications, 

such as robotics, auto-driving, automated manufacturing, and security surveillance. 

According to the selection criteria, object recognition mechanisms can be broadly 

categorized into object proposal and classification, eye fixation prediction and 

saliency object detection.  

Object proposal tends to capture all potential objects from natural images, 

and then classify them into predefined groups for image description and 

interpretation. For a given natural image, human perception is normally attracted to 

the most visually important regions/objects. Therefore, eye fixation prediction 

attempts to localize some interesting points or small regions according to human 

visual system (HVS). Based on these interesting points and small regions, saliency 

object detection algorithms propagate the important extracted information to achieve 

a refined segmentation of the whole salient objects.  

In addition to natural images, object recognition also plays a critical role in 

clinical practice. The informative insights of anatomy and function of human body 

obtained from multimodality biomedical images such as magnetic resonance imaging 

(MRI), transrectal ultrasound (TRUS), computed tomography (CT) and positron 

emission tomography (PET) facilitate the precision medicine. Automated object 

recognition from biomedical images empowers the non-invasive diagnosis and 

treatments via automated tissue segmentation, tumor detection and cancer staging.  



3 
 

The conventional recognition methods normally utilize handcrafted features 

(such as oriented gradients, curvature, Haar features, Haralick texture features, Laws 

energy features, etc.) depending on the image modalities and object characteristics. It 

is challenging to have a general model for object recognition. Superior to handcrafted 

features, deep neural networks (DNN) can extract self-adaptive features 

corresponding with specific task, hence can be employed for general object 

recognition models. These DNN-features are adjusted semantically and cognitively 

by over tens of millions parameters corresponding to the mechanism of human brain, 

therefore leads to more accurate and robust results. Motivated by it, in this thesis, we 

proposed DNN-based energy models to recognize object on multimodality images. 

For the aim of object recognition, the major contributions of this thesis can be 

summarized below: 

1. We firstly proposed a new comprehensive autoencoder model to recognize 

the position and shape of prostate from magnetic resonance images. Different from 

the most autoencoder-based methods, we focused on positive samples to train the 

model in which the extracted features all come from prostate. After that, an image 

energy minimization scheme was applied to further improve the recognition accuracy. 

The proposed model was compared with three classic classifiers (i.e. support vector 

machine with radial basis function kernel, random forest, and naive Bayes), and 

demonstrated significant superiority for prostate recognition on magnetic resonance 

images. We further extended the proposed autoencoder model for saliency object 

detection on natural images, and the experimental validation proved the accurate and 

robust saliency object detection results of our model. 

2. A general multi-contexts combined deep neural networks (MCDN) model 

was then proposed for object recognition from natural images and biomedical images. 
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Under one uniform framework, our model was performed in multi-scale manner. Our 

model was applied for saliency object detection from natural images as well as 

prostate recognition from magnetic resonance images. Our experimental validation 

demonstrated that the proposed model was competitive to current state-of-the-art 

methods. 

3. We designed a novel saliency image energy to finely segment salient 

objects on basis of our MCDN model. The region priors were taken into account in 

the energy function to avoid trivial errors. Our method outperformed state-of-the-art 

algorithms on five benchmarking datasets. In the experiments, we also demonstrated 

that our proposed saliency image energy can boost the results of other conventional 

saliency detection methods. 
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1. Introduction 

1.1. Object recognition on multimodality images 

Object recognition (or object proposal), which tends to discover a set of 

regions containing object instances on an image, is an important task in computer 

vision. As a pre-process of image classification, object recognition directly affects 

the accuracy in many computer-aided detection system, such as face detection, 

pedestrian detection [3] and action recognition [4]. 

By narrowing the criteria of selection for objects, object recognition on 

natural image can be transformed as a target-driven task, such as saliency detection 

[5]. As one of the popular topics in object recognition, saliency detection is to softly 

recognize the most informative regions or objects corresponding to the human visual 

system (HVS), thus can facilitate a wide range of multimedia applications (e.g. 

image resizing [6] and image montage [7]). Saliency detection is composed of two 

sub-areas: saliency fixation prediction and saliency object detection. While saliency 

fixation prediction focuses on human fixation locations, saliency object detection 

tends to recognize the whole meaningful regions. In this thesis, we validate our 

proposed models on natural image to investigate saliency object detection. 
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Figure 1.1 From left to right: object proposal, saliency fixation prediction by [5] and saliency 

object detection by [8]. 

Object recognition algorithm can also be applied on biomedical imaging for 

computer-aided diagnosis (CAD). With the visual depiction of the interior of human 

body, medical imaging is a necessary and effective tool for disease diagnosis and 

treatment. Various imaging modalities have been widely applied in clinical practice, 

such as magnetic resonance (MR) imaging, transrectal ultrasound (TRUS) and 

computed tomography (CT). As the serious diseases (e.g. prostate cancer [9], heart 

disease [10] and Alzheimer’s disease [11]) greatly threaten the public health, it 

desirably requires reliable computer-aided analysis for medical imaging to improve 

the efficiency of clinical treatment. 

In clinical practice, the computer-aided analyses include object recognition, 

image segmentation, tumor classification, cancer staging, etc. As an essential 

prerequisite for other imaging analyses, object recognition is a fundamental step in 

disease diagnosis. To approximate the position of objects, object recognition on 

medical image is usually tissue-driven, corresponding to the specific anatomical 

structure to be further treated. In this thesis, we also validate our proposed models to 

recognize prostate on MR images. 
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Figure 1.2 From top to bottom: MR prostate image and corresponding human annotation, CT 

liver image and corresponding human annotation. 

1.2. Challenges 

Object recognition poses some serious challenges, both on natural images and 

medical images. For saliency object detection on natural images, inappropriate priors 

and complex image scenarios usually impede precise recognition of salient objects. 

The conventional methods cannot extract the whole salient objects from complex 

image backgrounds and even generate ‘inverse’ results when using inappropriate 

priors. On medical images, the various artifacts make it more difficult to accurately 

locate the aimed anatomical structures. 
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1.2.1. Inappropriate priors 

A common approach for saliency object detection is to select several 

background seeds as the first step and then to apply various strategies to form the 

saliency map, such as cellular automata [12], manifold ranking [13, 14], bootstrap 

learning [15], Markov chain [16, 17], normalized cut [18], and foreground 

connectivity [19]. The background seeds selection thus is an essential step and 

directly affects the accuracy of the saliency detection. However, most existing 

methods [12, 15, 17, 20] simply use image boundaries as the background seeds. Such 

boundary-background seed selections are technically sound for simple image sets 

(e.g. MSRA-10K [21]), but are at risk of failing to produce saliency map for complex 

image sets (e.g. ECSSD [22] and PASCAL-S [23]) when the candidate objects are 

attached to the image boundaries. 

 

Figure 1.3 Image boundary priors sometimes lead to unsatisfied results. (From left to right: 

original images, image boundary priors, saliency maps [13] using image boundary priors) 
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1.2.2. Complex image scenarios 

In addition to inappropriate priors, the complex scenarios on natural images 

are also a big challenge for saliency object detection, especially when precise 

segmentations of objects are required. For examples, as shown in the first row of 

Figure 1.4, the saliency detection algorithm is much confused about the case of 

foreground and background sharing similar appearance in color. Sometimes, as 

shown in the second row of Figure 1.4, the algorithm cannot cognitively figure out 

which objects or regions are more attractive to human, when the foreground contains 

several candidate objects. 

 

Figure 1.4 Complex image scenarios impede the precise saliency object detection. The 

saliency maps are produced by the method in [13]. 
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1.2.3. Medical image artifacts 

Compared to natural images, medical images suffer from more types of 

artifacts. For prostate MR images, these artifacts include image noise, intensity 

inhomogeneity and blurred boundaries. 

Image noise: Circuit noise [24], transmission noise of imaging equipment 

[24], inappropriate imaging-testing position of patients and other sources of noise 

can cause the low quality of images. Gaussian noise, salt-and-pepper noise and 

speckle noise [25] are the main three types of image noise. The image noise makes 

the one-channel pixels (image intensities) distorted and less informative, which 

increases the difficulty of object (anatomical structure) recognition. 

Intensity inhomogeneity: Due to the tumors on the tissues of patients, the to-

be-tested tissues are usually coarse, which are displayed as inhomogeneous regions 

in medical images. Such intensity inhomogeneity poses serious challenges for 

common features learning of the aimed tissues. An example of intensity 

inhomogeneity on prostate MR image is shown in Figure 1.5. 

Blurred boundaries: In clinical practice, some medical images of patients 

exist blurred tissue boundaries, or even miss the boundaries. This artifact may lead to 

false-positive results by object recognition algorithms, which decreases the effect of 

CAD.  
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Figure 1.5 Inhomogeneous prostate from prostate cancer patient. The prostate region is 

delineated in red contour. 

1.3. Contributions 

To address the challenges aforementioned in previous chapters, we propose 

highly effective and robust methods, with deep networks and image energy, to 

recognize objects both on natural and biomedical images. The main contributions can 

be summarized below. 

1.3.1. A new comprehensive autoencoder model for prostate 

recognition 

In order to replace user interactions or atlas mappings for prostate seeds 

selection, we propose a new comprehensive autoencoder model to provide more 

reliable priors. The contributions of this model include: 
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1. We propose a new autoencoder-based classifier in which the training set 

consists of only positive samples, so that it can lessen the impacts by the irregular 

and complex background that may impede feature extraction. 

2. Our proposed model can provide necessary priors for later prostate 

segmentation and significantly beats classic classifiers on prostate recognition. 

3. We extend the model on natural images to recognize salient objects and 

outperforms some state-of-the-art saliency detection algorithms. 

1.3.2. A general object recognition model on multi-modality images 

Conventional handcrafted features cannot comprehensively extract intrinsic 

and latent structures of images for more precise object recognition. To tackle this 

obstacle, a multi-contexts combined deep neural networks model are proposed in this 

work. The contribution of this model include: 

1. With deep neural networks, the proposed model can semantically and 

cognitively extract salient objects from complex images and is competitive to most 

of state-of-the-art methods on popular benchmark datasets. 

2. The designed multi-contexts is more adaptive to various images for 

combination of local and global features, compared to other deep networks based 

saliency detection methods. 

3. The model is also validated on biomedical images (MRI) for prostate 

recognition, and proved the significant superiority for prior seeds selection.  
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1.3.3. A novel saliency image energy cooperating with region priors 

In order to obtained more saliency maps, we design a graph-cut based image 

energy for saliency object detection, by imposing region priors on it. The 

contributions are summarized as: 

1. While most graph-cut based energies measure the smooth penalty merely 

among adjacent pixels, we treat the image as a complete graph in superpixel scale, 

enabling smooth penalty to be measured in a holistic way. 

2.  An inherent limitation of complete graph is that it may lead to trivial 

errors. We therefore used region priors to guide the construction of the smooth 

penalty. 

3. We propose a new saliency object detection method by integrating the 

proposed saliency image energy and multi-contexts combined deep neural networks 

model, which outperforms state-of-the-art methods on five benchmarking datasets. 

4. Our proposed image energy can adopt any type of saliency map produced 

by other saliency detection methods, and thus can be a post-process and refinement 

for most existing approaches. 
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2. Background 

In this chapter, we introduce some related works on object recognition. We 

first briefly summarize the applications of object recognition both on natural and 

biomedical images, followed by an introduction of magnetic resonance imaging 

which we will typically utilize for model validation. Afterwards, we provide the 

literature review of current object recognition methods and discuss their pros and 

cons. 

2.1. Applications of object recognition 

As an important branch of image processing, object recognition can be 

applied to a wide range of algorithms and scenarios, both on natural image and 

medical image. Some typical applications of object recognition are as follows: 

 Facilitation of other image processing tasks: Many object/image 

classification methods utilize object recognition algorithms to narrow the targets to-

be-classified [26, 27]. Some image segmentation methods [28, 29] employ the 

recognized candidate objects, especially salient regions and objects, as a kind of prior 

knowledge to boost the segmentation results. 

Automatic sophisticated system: The task-driven object recognitions are 

widely used in computer-integrated vision system, which dramatically improve the 

life quality and work efficiency. For examples, the digital cameras deploys face 

detection [30] algorithm to locate the focus; the use of pedestrian detection [31] in 

car surveillance system can decrease the rate of traffic crash. 
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Quantification measurement of tissue volumes: With the increasing 

number of medical images in clinic, computer-aided diagnosis is highly demanded. 

Automatic object (anatomical structure) recognition on medical images is a part of 

CAD system, which feeds the further quantification measurements of tissue volumes 

such as lung nodule classification on CT images [32], lymphoma staging [33] on 

PET/CT images and brain tumor segmentation on MR images [34]. 

2.2. Magnetic resonance imaging 

Magnetic resonance imaging (MRI) is a non-invasive medical test for disease 

diagnoses and clinical treatment. Under a strong magnetic field, the protons of to-be-

tested body are realigned and spin out of equilibrium when a radiofrequency current 

is pulsed. After the radiofrequency, the realigned protons will emit various energy 

according to the type of body organs and tissues; and the MRI sensor can capture 

such released energy to determine the position of the source, thus is able to estimate 

the insides of the to-be-tested body. A kind of medicine containing Gadolinium can 

be applied to the patient intravenously to boost the speed of realignment of protons, 

which results in a brighter MR image. 

Compared with other medical imaging modalities such as TRUS and CT, 

MRI provides high contrast images for non-bony parts and soft-tissues, and enables 

the lesion detection and cancer staging [35]. Conducting MRI test is safe to human 

body, in that it do not use the damaging radiation; for this reason MRI is particularly 

well suited to frequent imaging for diagnosis and therapy, especially in the brain. For 

prostate test, MRI produces a set of tomographic slices of a prostate volume. As 

shown in Figure 2.1, in addition to prostate, other tissues and organs (i.e. bladder, hip 

and rectum) near the prostate are also displayed on the image. 
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Figure 2.1 A typical prostate and nearby tissues and organs on MR image. 

2.3. Literature review on object recognition 

2.3.1. Saliency object detection 

Bottom-up approaches: Bottom-up based saliency object detection is a data-

driven task composed of two stages: feature extraction and saliency computation. 

Numerous low-level stimulus, such as color, texture and oriented filter responses, 

have been developed or employed as features. Following the feature extraction, the 

saliency map can be estimated at single or multiple scales by random walk [36], 

manifold ranking [14], cellular automata [12] etc. 

Since graph model [36] has been first introduced to saliency object detection, 

saliency propagation is gaining much popularity in recent years. Based on a 

constructed directed/undirected graph, saliency propagation is to propagate saliency 

values from labelled pixels (prior seeds) to unlabelled pixels. The popular 

propagation formulas may include random walk [36] and personalized PageRank 

[37]. However, in addition to the adopted propagation formulas, inappropriate prior 



25 
 

seeds and weights of graph edges also greatly affect the accuracy of results. In order 

to address such issues, Li et al. [13] pre-processed the original image with the use of 

random walk to trim the set of prior seeds. Inspired by the common teaching 

mechanism in real-world classes, Gong et al. [38] proposed a progressive 

propagation which predicts saliency values from ‘simple’ image patches to ‘difficult’ 

image patches. 

Top-down approaches: Top-down based saliency object detection is task-

driven which models the binary classification (i.e. background group and foreground 

group) via a set of training images. Compared with bottom-up approaches, top-down 

methods do not highly rely on the prior seeds and weights of graph, yet still requires 

carefully feature extraction. Gao et al. [39] pre-defined a filter bank to extract 

discriminant features which are dominated by the target regions in training set. 

Instead of the filter bank, Liu et al. [40] computed saliency values via Conditional 

Random Field (CRF) which is a flexible framework for feature incorporation in 

saliency detection. As an improvement of CRF learning, Yang et al. [41] proposed 

CRF supervised sparse coding to learn the saliency computation model including 

CRF weights and sparse coding dictionary. 

Deep learning approaches: The high-level features extracted from deep 

neural networks (DNN) can lead to a promising results in saliency detection, beating 

the most conventional methods with a significant gap. In the recent two years, one of 

the most popular DNN adopted in saliency detection is convolutional neural 

networks (CNN) [42] which emulates the functions in the animal visual cortex. 

According to the size of operated units, CNN based saliency detection can be 

categorized into pixel-wised, superpixel-wised and region-wised methods. Pixel-

wised approaches [43] generally take the whole image as input and directly output 
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the pixel-wised saliency map from a very deep neural network, such as fully 

convolutional networks (FCN) [44]. Superpixel-wised approaches [45] conduct the 

algorithms superpixel by superpixel, and then merge the estimations of each 

superpixel as the final saliency map. Region-wised approaches [46] usually exploit 

efficient image segmentation algorithms (e.g. globalized probability of boundary 

based contour detection [47]) to first partition the image into several sub-regions, and 

then extract the high-level features of each sub-regions by CNN. The experiments of 

these recent deep learning based methods demonstrate that the high-level features 

can depict the latent and intrinsic structures of input data, while the low-level cues do 

not have such capacity. 

 

Figure 2.2 Saliency maps of input image (a) generated by: (b) bottom-up approach [14], (c) 

top-down approach [48], and (d) deep learning approach [45]. 
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2.3.2.  Prostate recognition 

Atlas mapping: The works on anatomical structure recognition on medical 

images are rare, which makes the further tissue segmentation and cancer 

qualification tough to perform. Many anatomical structure segmentation approaches, 

e.g., [49, 50] are often limited by the recognition techniques in medical imaging, as 

accurate segmentation often requires approximate localization of the target 

anatomical structure as initialization. To address this challenge, conventional 

segmentations on medical images rely on semi-automatic methods thereby being 

dependent on the user [51-53].  

Alternative approaches explore the use of an image atlas to define the 

foreground/background prior seeds [49, 50]. The atlas is a global probabilistic cloud, 

respective to a specific type of imaging, such as prostate MR images [49] and liver 

CT images [54]. By stacking a set of human annotations (binary maps as shown in 

the second column of Figure 1.2), the density of each pixel/voxel on atlas indicates 

the corresponding likelihood the pixel/voxel being foreground. The atlas is then 

registered with a specific testing image so that it is applicable to the testing image. 

With the registered atlas, the foreground seeds can be selected by a defined threshold. 

However, as noted in prior studies [35], reliance on atlas are still prone to generating 

errors.  

Contour and shape based approaches: A set of works, such as contour-

based methods and deformable model based methods, exploit contour and shape 

information for prostate segmentation. Contour-based methods [51-53] usually 

extract edges and ridges in images via gradient filters, and recognize or trace the 

boundaries by their proposed schemes (e.g. the longest curvi-linear structure [52] and 
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moving masks [51, 53]). However, the edge detectors may not be always reliable due 

to the artifacts (blurred/broken boundaries) on biomedical images. 

Since deformable model was first introduced by Terzopoulos [55], it has been 

widely applied in many prostate segmentation works [56-62] with the utilization of 

contour and shape information. Deformable models are curves or surfaces and 

usually formed under the control of internal and external energies [63]. Internal 

energies preserve the smoothness of curves (surfaces) during deformation, and 

external energies force curves (surfaces) towards the anatomical structure boundaries 

[35]. By minimizing the joint internal and external energies, the deformable models 

can be evolved to the desired positions. Active shape model (ASM) [64] is one of the 

most popular modalities used in deformable prostate models [60, 65-70]. In ASM 

based methods, a statistical shape model (SSM) [71] is constructed with shape 

variations using principle component analysis (PCA) on a set of landmarks, and then 

ASM is performed to delineate the target objects. As ASM overlooks the 

interdependencies of shape and appearance [72], active appearance model (AAM) 

[73] thus is developed for the purpose of combination of shape and appearance. 

However, as noted in [72], conventional ASM and AAM based methods are hindered 

by the use of landmarks. To solve this issue, Toth et al. [72] proposed a novel 

landmark-free AAM based methods for more accurate and robust prostate 

segmentation on MRI. Other modalities applied in deformable model for prostate 

segmentation include level set [74-79], active contour model [80-85] and so on. 

Graph based approaches: Many prostate segmentation works [86-94] 

transform prostate images to (un)directed graphs, usually followed by a cost function. 

The atomic units (pixels, voxels, superpixels or supervoxels) are the nodes of graph, 

and the edge weights are represented by the ‘distances’ of pairs of nodes. The 
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essential parts of these graph based approaches are the design of edge weights on 

graphs and cost functions. Positions [86] and intensities [86, 90, 94] of pixels (voxels, 

superpixels or supervoxels) are the two extensively used measurements for edge 

weights. As the utilization of position and intensity are limited by morbid biomedical 

images with low contrast or distorted prostate, some works employ other information, 

such as prior shape knowledge [91] and image gradients [93], to estimate edge 

weights. The cost functions are various across the graph based methods, but most of 

them [87, 88, 90, 92, 94] are formulated from graph-cut model [95]. In addition to 

graph-cut, Lagrange function [86] and other special designed functions (e.g. shape 

probability function and gradient profile model in [93]) can also be applied to energy 

minimization scheme. However, the fixed parameters for balancing cost function 

need carefully tuning so that may hinder the robustness of methods across different 

datasets. 

After the construction of graph model, some other works [49, 96, 97] 

formulate segmentation as labelling propagation problem, in which unlabeled nodes 

can be predicted by pre-defined labelled nodes. Random walker [98] has been proved 

an effective and efficient algorithm to solve the labelling propagation problem in 

prostate segmentation [49, 96, 97]. As such propagation requires 

foreground/background seeds, this kind of graph-based approaches [96, 97] are 

usually semi-automated with user interactions. More recently, by employing atlas 

mappings as priors, a fully automated prostate segmentation algorithm with enhanced 

random walker is proposed in [49], however still gets trapped into the wrong seeds 

produced by atlas. 

Classification based approaches: The classification based approaches 

extract a set of image features as feature vectors, and tend to partition feature space 
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(vector space associated with feature vectors [35]) into two or more groups. The 

classic classifiers, such as support vector machine [99] and random forest [100], have 

been extensively studied in the last decades and proved favorable capacity of feature 

space partition, thus can also be applied in prostate segmentation works. Gray level 

intensity and spatial coordinate are the simple but useful common features that are 

widely used in many works [101-104]. Other computer vision features, such as 

histogram of oriented gradients [105, 106], Haar features [105, 106], curvature [103], 

Haralick texture features [104] and Laws energy features [104], are also widely 

employed to differentiate prostate. Ghosh et al. [107] imposed prior knowledge on 

texture and shape features by genetic algorithm, which achieved better segmentation 

results compared to Laws energy features. Instead of classic classifiers, Li et al. [106] 

proposed a set of location-adaptive classifiers which enable to effectively gather 

local information and propagate them to other regions. In the work of [105], Gao et 

al. proposed an extended sparse representation based classification to address the 

issue of low contrast on prostate images. Although the aforementioned features 

technically enables to differentiate prostate, such low-level descriptors cannot extract 

intrinsic structures of images and thus are still insufficient for more precise prostate 

recognition and segmentation. 

Hybrid segmentation: As the hybrid of techniques are robust to noise and 

produce superior results in the presence of shape and texture variations of the 

prostate [35], most works combine two or even more methods for prostate 

segmentation. 

As a common prostate segmentation approach, deformable models are 

usually combined with various techniques to boost the performance. Graph based 

methods and classification based methods are usually employed to initialize 
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deformable models in many works [56, 59, 76, 108, 109]. Zhan et al. [59] tentatively 

labelled voxels by proposed Gabor-SVM classifier to feed the later deformable 

surface model. More straightly, Martin et al. [56] utilized atlas to map a specific 

prostate image before deformable model. For more reliable initialization of 

deformable model, Guo et al. [108] employed deep learning features to estimate 

rough prostate recognition map. Different from aforementioned works exploiting 

priors for deformable models, the results by deformable models in the work of [110, 

111] can also be treated as location and shape priors for other techniques (i.e. 

Bayesian classification). 

Classification based approaches are usually followed by a graph-cut based 

cost function in a set of works [87, 90, 103, 112, 113]. On one hand, such 

combination focuses on local features in patch classification phase; on the other hand, 

the correlations of neighboring patches/pixels can be taken into account for 

smoothness in cost function. Other hybrid segmentation methods can be found in [50] 

(atlas and shape model combined), [114] (level set and registration combined) and 

[115] (representation learning and labelling propagation combined). 
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3. A new comprehensive autoencoder 

model for prostate recognition 

Automated anatomical structure recognition is an essential prerequisite in 

precision medicine such as tissue segmentation, physiological signal measurement 

and disease classification. It poses a challenging task because of the insufficient color 

information of pixels and low signal-to-noise ratio in medical images [51]. Previous 

works have been proposed to tackle anatomical structure recognition problems based 

on handcrafted features, such as steerable feature, on a wide array of imaging 

modalities, e.g., ileocecal valves [116], polyps [117], and livers [118] in abdominal 

CT, and heart chambers in ultrasound [119]. However, to our best knowledge, no 

work has been done on prostate recognition in MR images, although prostate cancer 

accounts for the second highest mortality rate among various types of cancer on 

males [120] and MR images prove effective for prostate diagnoses and treatments 

[35]. In addition to the insufficient color and speckle information, MR image 

artifacts, such as low contrast and blurred tissue boundary, make it even more 

difficult to accurately locate the prostate. 

In this chapter, we propose a novel prostate recognition method on MR 

images which combines handcrafted features with deep autoencoder networks. 

Autoencoder (AE) is an unsupervised learning algorithm and is capable of extracting 

and reproducing the statistical structure for a given dataset [121]. Different from the 

most works which embed a classifier on the top of the last layer in deep neural 

network [11, 122], we propose a novel method to compute prostate recognition map 

through taking advantage of outstanding capability of autoencoder for data 
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reconstruction. Afterwards, we design an image energy minimization scheme to 

generate a stronger prostate recognition map with consideration of the relationship 

among neighboring pixels. The following methods are based on our previous works 

in [2]. 

3.1. Prostate recognition method 

As shown in Figure 3.1, our prostate recognition method consists of four 

stages. Firstly, early feature descriptors are extracted to feed the proposed stacked 

autoencoder. Secondly, we train a prostate stacked autoencoder (SAE) classifier in 

iteration. Thirdly, the likelihood of a pixel belonging to the prostate can be estimated 

via our proposed new algorithm. Lastly, an image energy minimization scheme is 

applied to optimize the recognition result. 

 

Figure 3.1 Pipeline of our method. (a) Early feature extraction. (b) Superpixel reconstruction 

via proposed prostate AE model. (c) Superpixel classification. (d) Refinement via proposed 

image energy. 
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3.1.1. Early feature descriptors 

Instead of merely using the pixel intensity values, we adopt two early features, 

i.e. the intensity descriptor and the position descriptor as the input for the deep 

autoencoder network, which reflects pixel-value and spatial information respectively. 

Formally, an image 𝐼 ∈ ℝ𝑚×𝑛  is segmented into 𝑁  superpixels via the SLIC 

algorithm [123]. We denote a superpixel as 𝑃. As suggested in [124], the superpixel 

is first whitened via zero phase component analysis (ZCA) to make the pixels less 

correlated with each other. An early feature vector 𝑓(𝑃) is then derived for 𝑃 with 

details as follows. 

Intensity descriptor: Intensity histogram is an effective measure to describe 

the intensity distribution of an image patch. Hence, we adopt the intensity histogram 

𝐼𝐻(𝑃) as the intensity descriptor for superpixel 𝑃. In our experiment, the number of 

bins is set to 20 empirically. Then, the intensity histogram 𝐼𝐻(𝑃) ∈ ℝ20×1  is 

normalized to have a uniform sum to eliminate the effect caused by the different 

number of pixels within different superpixels. 

Position descriptor: From our observation, most prostate tissues are 

approximately located at the centre area of patient MR image. This is the assumption 

on which many works are based, especially those where probabilistic atlases were 

employed [49, 50]. Thus, such prior knowledge is informative for prostate detection. 

Since the superpixels are of irregular shapes, we exploit bounding boxes to 

approximate their spatial locations. We denote the bounding box of 𝑃 as 

 𝐶(𝑃) = {𝑐𝑣(𝛼𝑣,1, 𝛼𝑣,2): 𝑣 = 1,2} (3.1) 

where 𝑐1 and 𝑐2 are the top-left coordinate and bottom-right coordinate of 𝐶(𝑃) in 

image 𝐼 ∈ ℝ𝑚×𝑛 respectively. 𝛼𝑣,1 and 𝛼𝑣,2 are 𝑐𝑣’s values corresponding to x-axis 
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and y-axis respectively. The position descriptor 𝑃𝑂𝑆(𝑃) ∈ ℝ4×1 of superpixel 𝑃 is 

then calculated by 

 𝑃𝑂𝑆(𝑃) = {𝑡(𝑣, 𝑢) =
𝛼𝑣,𝑢

(2 − 𝑢)𝑛 + (𝑢 − 1)𝑚
: 𝑣 = 1,2; 𝑢 = 1,2} (3.2) 

Early feature vector: With the early feature descriptors proposed above, a 

superpixel-wise feature vector 𝑓(𝑃) with 24 dimensions is generated as 

 𝑓(𝑃) = {𝐼𝐻(𝑃); 𝑃𝑂𝑆(𝑃)} ∈ ℝ24×1 (3.3) 

 

Figure 3.2 Illustration of Intensity descriptor and position descriptor. 

3.1.2. Prostate stacked autoencoder model 

After obtaining the early feature vectors of prostate superpixels, we can build 

a stacked auto-encoder (SAE) to extract high-level features and perform the 

reconstruction of input early feature vectors for later classification. An autoencoder 

consists of encoding process and decoding process. In the encoding process, the AE 

tends to learn a set of encoding weights to construct a code vector given the input 
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vector; similarly, in the decoding process, it learns another set of decoding weights to 

map the code vector into an approximate reconstruction for the input vector. 

To train a single-hidden-layered prostate AE, a training set 𝐹 = {𝑓(𝑃𝑖): 𝑖 =

1,2, … , 𝐾} containing 𝐾 early feature vectors of prostate superpixels are input to the 

AE. Each node is fully connected by undirected weight matrix with an associated 

bias value between each layer (i.e. input layer, hidden layer and output layer). The 

input vector 𝑓(𝑃𝑖)  is transformed into a hidden feature representation 𝑎𝑖  by an 

activation function 𝑔(∙) with the following formula: 

 𝑎𝑖(𝑓(𝑃𝑖); 𝜃
(1)) = 𝑔(𝑊(1)𝑓(𝑃𝑖) + 𝑏

(1)) (3.4) 

where 𝜃(1) is the parameter vector including weight matrix 𝑊(1) and bias term 𝑏(1); 

as a common practice, we use the sigmoid function 𝑔(𝜙) = 1/(1 + exp(−𝜙)) as the 

activation function. A decoder then maps the hidden feature representation 𝑎𝑖 back to 

an approximate reconstruction 𝑓(𝑃1) ∈ ℝ
24×1 in a similar transformation 

 𝑓(𝑃1)(𝑎𝑖; 𝜃
(2)) = 𝑔(𝑊(2)𝑎𝑖 + 𝑏

(2)) (3.5) 

With the training set 𝐹 of 𝐾 samples, the latent features of input data can be learned 

by minimizing the cost function 

 𝐽(𝜃) =
1
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2

𝐾

𝑖=1
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 (3.6) 

where the first term in 𝐽(𝜃) is an average sum-of-squares error term and the second 

term is a weight decay term that tends to decrease the magnitude of the weight and 

prevent overfitting [125], with a weight decay parameter λ . 𝑠(1)  and 𝑠(2)  are the 

numbers of nodes in the first layer (input layer) and second layer (hidden layer) 

respectively. A sparsity constraint is usually imposed on the hidden nodes to enhance 
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the probability of linear separability [126] and the overall cost function (5) is 

modified as 

 𝐽(𝜃) =
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 𝐾𝐿(𝜌||�̂�) = 𝜌 log
𝜌

�̂�𝑗
+ (1 − 𝜌) log

1 − 𝜌

1 − �̂�𝑗
 (3.8) 

where 𝜌 is a small value close to zero, which specifies the desired level of sparsity. 

�̂�𝑗 = ∑ [𝑎𝑖]𝑗/𝐾
𝐾
𝑖=1  is the average activation of the 𝑗-th hidden node and the Kullback-

Leibler (𝐾𝐿 ) divergence provides the sparsity constraint. 𝛽  is the weight of the 

sparsity penalty term. We use gradient descent optimization algorithm [127] to 

update θ  in iterations and back-propagation algorithm is applied to calculate the 

partial derivatives in this process. 

As [126, 128] suggested, to fully utilize the ability of deep neural networks, 

we further construct stacked autoencoder (SAE) to perform feature presentation to 

learn highly nonlinear and complex patterns in the input images. As shown in 

Figure 3.3, in a stacked autoencoder structure, the original data, i.e. the early feature 

vector, is input to the first (bottom) auto-encoder, and its hidden nodes (or units) are 

concatenated as a new feature vector which is used as the input data for training the 

subsequent (higher-level) auto-encoder. The greedy layer-wise algorithm is adopted 

to obtain the corresponding parameter 𝜃(𝑙) of the 𝑙-th layer. After the training of each 

sub-AE is complete, back-propagation is applied again to tune the parameters of all 

layers at one time. Typically in our work, we stack three AEs to construct the 

prostate SAE model and hence obtain a totally six layer network including three 

encoding layers and three decoding layers. 
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Figure 3.3 Architecture of the proposed SAE. The output of each layer is the input for its 

subsequent layer. The output of the last layer is a reconstruction for input data. 

3.1.3. Superpixel classification 

With the well trained SAE model, the superpixels of the input image can thus 

be classified. Different from other deep learning algorithms (i.e. convolution neural 

network), not only can auto-encoder learn intrinsic and latent feature presentation for 

input data, it is also capable of data reconstruction. Therefore, we can calculate the 

reconstruction errors for each superpixel in a prostate MR image via the fixed 

prostate SAE model. Specifically, with the all parameters 𝐼 = {𝜃(𝑙): 𝑙 = 1,2, … , 𝐿} 

learned in SAE, for a superpixel P, set 

 𝑓(𝑃)(𝑙+1) = 𝑔(𝑊(𝑙)𝑓(𝑃)(𝑙) + 𝑏(𝑙)) (3.9) 

where 𝑙 is the index of network layer. We initialize the first step of the iteration 

𝑓(𝑃)(𝑙) as the early feature vector 𝑓(𝑃) of the superpixel P. Then the reconstruction 

error of 𝑃 is calculated by 𝑓(𝑃) and 𝑓(𝑃)(𝐿+1): 

 𝑒𝑟𝑟(𝑃) = ∑ exp(𝜏‖𝑓(𝑃)𝜔 − 𝑓(𝑃)
(𝐿+1)

𝜔
‖
2
)

24

𝜔=1

 (3.10) 



39 
 

where 𝑓(𝑃)𝜔  and 𝑓(𝑃)(𝐿+1)
𝜔

 are the 𝜔th  elements of 𝑓(𝑃)  and 𝑓(𝑃)(𝐿+1) 

respectively. 𝜏  controls the distance between different superpixel’s reconstruction 

errors within an image and is set to 100 empirically. We adopt the reconstruction 

error to measure the probability of a superpixel being prostate tissue. This is because 

as the SAE model is learned from the set of prostate superpixels, the prostate 

superpixel should have a lower reconstruction error than the background superpixel 

does and vice versa. 

After calculating the reconstruction errors of all the superpixels in an image 

𝐼 ∈ ℝ𝑚×𝑛, we may obtain a weak prostate detection map 𝐷𝐴𝐸 = {𝑑𝐴𝐸𝑖 ∈ [0,1]: 𝑖 =

1, … ,𝑚 × 𝑛} . 𝐷𝐴𝐸  is calculated without considering the spatial and intensity 

coherence among superpixels, hence it is a local estimation. In the next sub-section, a 

refined prostate detection map with better supressed background, more smooth inner 

region and clear boundary is generated based on 𝐷𝐴𝐸. 

3.1.4. Refinement 

Given a one-channel image 𝐼, our task in this stage is to assign a label 𝑂𝑝 ∈

{0,1} to a pixel 𝑝 to measure whether 𝑝 belongs to foreground or not. For the set of 

pixels’ labelling 𝑂 = {𝑂𝑝: 𝑝 ∈ 𝐼} , this can be solved by minimizing the energy 

function [15] 

 𝐸(𝑂) =∑𝐻(𝑂𝑝) + 𝜉 ∑
1

1 + √3(𝐼𝑝 − 𝐼𝑞)2
∙ 𝑇(𝑂𝑝 ≠ 𝑂𝑞)

(𝑝,𝑞)∈𝑌𝑝∈𝐼

 (3.11) 

where 𝑌 is a set of all pairs of neighboring pixels. 𝐻(𝑂𝑝) is the cost for assigning a 

label 𝑂𝑝  to a pixel 𝑝 . We directly use local estimated detection map 𝐷𝐴𝐸  to 

approximate the label-cost of pixels. Specifically, 𝐻(𝑂𝑝) is set to 𝐷𝐴𝐸(𝑝) if 𝑂𝑝 is a 

background label and 1 − 𝐷𝐴𝐸(𝑝) if 𝑂𝑝 is a foreground label. The second term in  
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(3.11) encourages intensity and spatial coherence by penalizing discontinuities [95] 

between neighboring pixels, with the parameter 𝜉  controlling the scale of 

discontinuity penalty. 𝑇(⋅) is 1 if the condition inside the parentheses is true and 0 

otherwise. 

We adopt minimum cut/maximum flow algorithms [95] to minimize (3.11) 

and generate the corresponding prostate detection map 𝐷𝑚𝑓. Then 𝐷𝐴𝐸 and 𝐷𝑚𝑓 are 

linearly combined as the final prostate detection map: 

 𝐷 =
𝐷𝐴𝐸 + 𝐷𝑚𝑓

2
 (3.12) 

We directly use 𝐷 to measure the probability of each pixel being prostate. 

3.2. Experiment and evaluation 

3.2.1. Setup and dataset 

The prostate MR Image Segmentation 2012 (PROMISE12) database [129] is 

used in this study. It contains 50 cases, with each case composed of 15 to 54 prostate 

transverse T2-weighted MR images. Manual segmentation are available for each case 

and used as the ground truth. 

In the prostate SAE model, the hyperparameters of each sub-AE, i.e. the 

number of hidden nodes Z, and weight decay parameter λ, are derived empirically 

and listed in Table 3.1. 
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Table 3.1 Hyperparameters in the prostate SAE model. 

 sub-AE 1 sub-AE 2 sub-AE 3 

𝑍 60 40 16 

𝜆 8e-4 4e-4 4e-4 

 

3.2.2. Evaluation metrics 

Following the works of [8, 13, 15], we adopt precision-recall (PR) curve, F-

measure and mean absolute error (MAE) to evaluate the performance of our 

proposed method. Specifically, precision and recall are defined as 

 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑ 𝐴(𝑖) ∙ 𝐵(𝑖)𝑖∈𝐴

𝐵(𝑖)
 

(3.13) 

 
𝑟𝑒𝑐𝑎𝑙𝑙 =

∑ 𝐴(𝑖) ∙ 𝐵(𝑖)𝑖∈𝐴

𝐴(𝑖)
 

(3.14) 

where 𝐴 and 𝐵 are the ground truth and saliency map by the algorithm respectively 

and both normalized in the range of [0, 255]. Then, we binarize the continuous 

saliency map with the fixed threshold from 0 to 255 with an increment of 1 to 

construct the PR curve. 

Generally, neither 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛  and 𝑟𝑒𝑐𝑎𝑙𝑙  can individually and 

comprehensively evaluate a certain algorithm [130]. For this reason, a harmonic 

metric (i.e. F-measure) is adopted to measure the comprehensive performance of an 

algorithm: 

 𝐹𝜂 =
(1 + 𝜂2) ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝜂2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.15) 
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where 𝜂 is to balance the weights of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 and 𝑟𝑒𝑐𝑎𝑙𝑙. As high 𝑟𝑒𝑐𝑎𝑙𝑙 can be 

easier achieved compared to high 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (e.g. simply full foreground map leads 

to 100% recall score), 𝜂2 is usually set to 0.3 to emphasize the weight of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 

[8, 13, 14, 130]. 

As PR curve and F-measure focus on the true positive saliency assignments, 

i.e. recognizing salient region, we adopt MAE score to measure the results of non-

saliency recognition by a certain algorithm. MAE is defined as  

 𝑀𝐴𝐸 =
∑ |�̅�(𝑖) − �̅�(𝑖)|𝑖𝜖�̅�

𝑁𝑝𝑖𝑥𝑒𝑙
 (3.16) 

where �̅� and �̅� are the ground truth and saliency map by the algorithm respectively 

and both normalized in the range of [0, 1]; 𝑁𝑝𝑖𝑥𝑒𝑙  is the number of pixels on the 

image. A lower MAE score means the better capacity of minimizing the gaps 

between ground truth and saliency map. 

3.2.3. Experimental results 

As suggested in [15], to achieve better performances, we computed five 

recognition maps using five superpixel scales with 𝑁 = 200, 250, 300, 350, 400 

respectively in an image. Then, we linearly combined the five recognition maps as 

the final recognition result. For each image, we resized it to 320∗320 pixels, and 

increased its contrast by mapping the intensity values to new values such that 1% of 

data is saturated at low and high intensities of the image [131]. 10-fold cross 

validation was performed here on the PROMISE12 dataset. As shown in Figure 3.4, 

our proposed stacked autoencoder can recognize the position and rough shape of the 

prostates. After the image minimization, the obtained recognition maps are more 

accurate and even can segment the aimed prostate. 
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Figure 3.4 Examples of prostate recognition results by our method. Left to right: original 

prostate MR image, rough recognition map by proposed prostate stacked autoencoder, and 

final recognition map. 
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3.2.4. Evaluation 

We evaluated the recognition performance using precision-recall (PR) curve 

and F-measure [15, 132]. An atlas-based seeds-selection in segmentation approach 

(RW) [49] and three popular classifiers, i.e. support vector machine (SVM) with 

radial basis function kernel, random forest (RF), and naive Bayes (NB), were chosen 

as comparison methods. 

Both Table 3.2 and Figure 3.5 demonstrate that our method outperform the 

four comparison methods in terms of both PR curve and F-measure. More 

specifically, even our unrefined results outperform the refined results of the 

comparison methods in precision. This is mainly attributed to the SAE for high-level 

feature learning and data reconstruction, while the comparison methods recognize 

prostate directly from the low-level early features. Figure 3.4 qualitatively 

demonstrates that our proposed refinement significantly contributes to foreground 

smoothness and background suppression. The refinement poses relatively low effect 

around the prostate with blurred boundary as illustrated in the second row of 

Figure 3.4. The reason is that the neighboring pixels around the boundary does not 

differentiate much, thus causing a large penalty in the second term of (3.11), which 

encourages to assign same labels to these pixels around the boundary of prostate. 

However, from Table 3.2, it can be seen that our proposed refinement improves all 

the methods in precision and F-measure. 
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Table 3.2 Precision and F-measures of our method and comparison methods for prostate 

recognition on PROMISE12 database, and the Pearson product-moment correlation 

coefficient (PPMCC) of the two steps. The best results in each column are shown in bold. 

 Precision F-measure 

 Not refined Refined Not refined Refined 

OURS 0.8515 0.8699 0.6798 0.6832 

RW 0.8284 0.8286 0.6617 0.6220 

SVM 0.5554 0.6394 0.5415 0.6238 

RF 0.4870 0.5506 0.5189 0.5766 

NB 0.3539 0.4894 0.3906 0.5033 

PPMCC 0.9943 0.9258 

 

Figure 3.5 PR curves of our method and comparison methods for prostate recognition on 

PROMISE12 database. The recognition results by comparison methods are also refined by 

our proposed approach for better evaluation (solid lines). 

3.3. Application of saliency object detection 

We have proposed an automatic prostate recognition method on MR images 

based on SAE. One of the major contributions is that we let the SAE itself serve as a 
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classifier to focus on the prostate feature extraction. Inspired by this idea, in this 

chapter, we try to extend the prostate stacked autoencoder model to recognize salient 

objects on natural image. The works of [20, 126] have studied the AE in saliency 

detection. However, [126] focused on saliency fixation prediction and cannot be 

directly applied in saliency object detection. In [20], they only utilized AE for 

classification and still heavily relied on boundary-background priors. 

3.3.1. Method extension 

In order to obtain reliable prior seeds, we first propose an AE-based approach 

to search the background seeds. Afterwards, another AE based on prostate stacked 

autoencoder model is performed hierarchically to form the final saliency map via 

data reconstruction capability inherent in AE. 

 

Figure 3.6 Overview of the extended method for saliency object detection. 
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Background search: For a three-channel image patch 𝑝𝑏𝑠 with the size of 

𝑚 ×𝑚  pixels from the training image 𝐼 , the input vector 𝑓(𝑝𝑏𝑠)  of background 

search SAE (BS-SAE) is obtained by 

 𝑓(𝑝𝑏𝑠) = [
𝑔(𝑝𝑏𝑠)

𝑔(𝐼)
] (3.17) 

where 𝐼 ∈ ℝ𝑚×𝑚×3 is the resized image of 𝐼, and following [8], 𝑚 is set to 51 in this 

work; 𝑔(∙) is the vectorization operation, and thus we have 𝑓(𝑝𝑏𝑠) ∈ ℝ
15606×1. With 

the feature representations of each image patch by the trained BS-SAE model, we 

use softmax regression to measure the probability of each image patch being 

background. This generates a background mask 𝑀𝑏𝑠 of 𝐼, which can be utilized for 

further foreground estimation. As shown in Figure 3.7, compared to the conventional 

boundary-background priors [13-15, 17, 20, 133, 134], such background mask can 

capture the background region semantically and cognitively, thus it is adaptive for 

background search. 

 



48 
 

 

Figure 3.7 Examples of background mask by BS-SAE. 

Foreground estimation: We then extend the prostate stacked autoencoder 

model for estimation of finer object saliency, with the guidance of the background 

mask. To improve the efficiency of our algorithm, we transform 𝑀𝑏𝑠 to a superpixel-

wise background mask and use superpixel as the atomic unit in further operation. 

This can be easily implemented by calculating the mean value of pixels belonging to 

one superpixel as the probability of the superpixel being background. For brevity, we 

use 𝑀𝑏𝑠 to denote the superpixel-wise background mask unless otherwise specified. 

With the testing image 𝐼 and the corresponding background mask 𝑀𝑏𝑠 , we 

construct the foreground estimation SAE model (FE-SAE) to extract the foreground 

of 𝐼. Different from the BS-SAE model, the RGB histogram of the superpixel, with 

20 bins in each color channel, are exploited as the input vector of the FE-SAE; and 

there is no softmax regression in FE-SAE, thus it is totally an unsupervised learning 
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model. Only those superpixels whose values on 𝑀𝑏𝑠 are more than 0.7 are selected as 

the training set for the FE-SAE model. 

After the training of FE-SAE, we calculate the reconstruction residual 𝑟𝑝𝑓𝑒 for 

each superpixel 𝑝𝑓𝑒 of 𝐼 by 

 𝑟𝑝𝑓𝑒 = ‖ℎ(𝑝𝑓𝑒) − ℎ̅(𝑝𝑓𝑒)‖ (3.18) 

where ℎ(𝑝𝑓𝑒) is the original input vector corresponding to 𝑝𝑓𝑒 and ℎ̅(𝑝𝑓𝑒) is the data 

reconstruction of ℎ(𝑝𝑓𝑒)  by FE-SAE. Following the idea of proposed prostate 

stacked autoencoder model, as the FE-SAE is constructed by the background 

superpixels, the superpixels belonging to background have low reconstruction 

residual, while those belonging to foreground have high reconstruction residual. 

Hence, we use the reconstruction residual to measure the saliency value of 𝑝𝑓𝑒 with 

the following formula: 

 

{
  
 

  
 𝑠𝑝𝑓𝑒 =

1

1 + 𝑒
𝜉(𝑢−𝑟𝑝𝑓𝑒)

𝑢−𝑣

𝑢 = max{𝑟𝑝: 𝑝 ∈ 𝒟}

𝑣 =
1

|𝒟|
∑ 𝑟𝑝
𝑝∈𝒟

 (3.19) 

where 𝜉 is the smooth factor and set to 6 empirically; 𝑟𝑝 is the reconstruction residual 

of superpixel 𝑝 by (3.18); and 𝒟 is the training set of FE-SAE. 

Considering the complex background which may impede the precise 

foreground estimation, we hierarchically conduct foreground estimation algorithm in 

regional scales for better performance. Specifically, the testing image 𝐼  is first 

segmented into two regions by Ncut algorithm [135]. Two individual FE-SAEs are 

then constructed respectively under the two regions and each superpixel of 𝐼  is 
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assigned to the saliency value by (3.19) with the corresponding FE-SAE. In the next 

hierarchy, we segment the two regions respectively to generate four smaller regions 

and construct four individual FE-SAEs corresponding to these regions. Each 

superpixel of 𝐼 is assigned to the new saliency value by (3.19) in this hierarchy. Note 

that in each segmentation operation, only two sub-regions are generated and the 

region is no longer segmented when |𝒟′| ≤ 0.3 × |𝒜| or |𝒟′| ≥ 0.7 × |𝒜|, where 𝒟′ 

and 𝒜 are the training set and superpixel set respectively corresponding to the region. 

This process is repeated until there regions to be segmented are exhausted. Finally, 

the saliency value of the superpixel is obtained by linearly combining the saliency 

values of each hierarchy. The constructed binary segmentation tree is shown in 

Figure 3.6 and the hierarchical foreground estimation algorithm is summarized in 

Algorithm 1. 

Algorithm 1: Hierarchical Foreground Estimation 

Input: testing image 𝐼, background mask 𝑀𝑏𝑠 

Output: saliency map 𝑆 = {𝑠𝑝} 

1. 𝑆 ← 1 −𝑀𝑏𝑠 

2. segment 𝐼 into two regions 𝐼1 and 𝐼2 by Ncut algorithm [135] 

3. 𝒪 ← {𝐼1, 𝐼2} 
4. while 𝒪 ≠ ∅: 

5.  for each 𝑅 ∈ 𝒪: 

6.   select training set 𝐷𝑅
′  according to 𝑀𝑏𝑠 

7.   train FE-SAE 

8.   for each superpixel 𝑝 ∈ 𝑅: 

9.    calculate saliency value 𝑠𝑝
′  by (3.20) 

10.    𝑠𝑝 ← (𝑠𝑝 + 𝑠𝑝
′ )/2 

11.   end for 

12.  remove 𝑅 from 𝒪 

13.   if 0.3 × |𝑅| ≤ |𝐷𝑅
′ | ≤ 0.7 × |𝑅| then: 

14.   segment 𝑅  into two regions 𝑅1  and 𝑅2  by 

   Ncut algorithm 

15.    𝒪 ← 𝒪⋃{𝑅1, 𝑅2} 
16.   end if 

17.  end for 

18. end while 
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3.3.2. Experimental results 

For BS-SAE model, we stack three AEs to extract feature representation in 

high-level manners, with 7000, 3500 and 2000 hidden nodes in each AE, respectively. 

As the MSRA-10K [21] dataset provides a large variety of natural images and the 

corresponding pixel-wise saliency annotations, we randomly selected 9000 images 

from the dataset to train the BS-SAE and left out 1000 images for use in the 

validation. As suggested in [20, 126], before input to BS-SAE, 𝑓(𝑝𝑏𝑠)  is corrupted 

to enhance the robustness across a large training set, in which some of the units are 

set to be zero randomly. For FE-SAE model, we stacked two AEs to boost the 

performance of data reconstruction, with 60 hidden nodes in each of the AE. As the 

number of training samples is small (generally less than 250), we did not corrupt the 

original input vector in FE-SAE to make the trained model more specific to the small 

training set. The two models were both implemented with Theano frame [136, 137], 

which enabled the use of GPU to boost the speed in the training phase. The 

hyperparameters in the training of BS-SAE and FE-SAE are listed in Table 3.3. 

Table 3.3 The hyperparameters in the training of two models. 

 BS-SAE FE-SAE 

 Pre-training Fine-tuning Pre-training Fine-tuning 

Training epoch 15 60 15 100 

Learning rate 1e-2 

1e-6 in first 

20 epochs; 

8e-8 in last 

40 epochs. 

1e-2 1e-3 
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Figure 3.8 visually depicts that our proposed background search and 

foreground estimation method (BSFE) achieves best qualitative performance against 

comparison methods. For example, as shown in the first row, BSFE successfully 

recognized the whole saliency object while most of the other methods only 

recognized the main body of the airplane but failed to capture the wing and the 

landing gears. Such favorable performance is largely attributed to the BS-SDAE, as 

it can semantically infer the whole structure of the airplane from the learned features. 

Similarly in the fifth row, contrary to our method which accurately recognized the 

bicycle and the child as the salient objects, even the boundary-background priors 

based comparison methods (e.g. LR12 and MC13) failed to capture the bicycle 

which covers and in contact with the bottom of the image. 
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Figure 3.8 Example results of our proposed BSFE method. From left to right in the first, 

third and fifth row: original images, saliency maps by BSFE and HS13 [22]. From left to 

right in the second, forth, and sixth row: saliency maps by LR12 [138], MC13 [17] and 

RR15 [13]. 

3.3.3. Evaluation 

We evaluated our proposed algorithm on four public benchmark datasets, i.e. 

ECSSD [22], PASCAL-S [23], SED1 [139] and SED2 [139]. Six popular state-of-

the-art algorithms which employ image boundaries as background seeds were chosen 

as comparison methods, including RR15 [13], HS13 [22], MC13 [17], MR13 [14], 

FT09 [140] and LR12 [138]. Following [8, 13, 15], we adopt F-measure (FM), 

precision-recall (PR) curve and mean absolute error (MAE) [13] to evaluate the 

performances. The evaluation results shown in Figure 3.9 quantitatively demonstrate 

the superiority of our method on most datasets. Note that our BSFE method even 

achieved double-best results in terms of FM and MAE on PASCAL-S and SED2 

datasets which contain more challenging scenarios with complex structures and 

double-salient-objects.  
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Figure 3.9 The PR curve, FM and MAE of benchmarking methods on four public datasets. 

The best and second best results are padded with red and blue rectangle respectively. 

As convolutional neural networks (CNN) is powerful for feature extraction 

and data analysis, we also compared our proposed algorithm with a CNN based 

method (MDCL [45] proposed in 2015). The qualitative comparison and quantitative 

comparison in terms of F-measure and MAE are shown in Figure 3.10, Table 3.4 and 

Table 3.5 respectively. The comparison results shows that our BSFE method cannot 

achieve the better performance of CNN based method. The main reason is that 

compared to CNN, SAE is not sufficient to extract high-level features with relative 

shallow layers and may loss original spatial information during input vectorization. 
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However, as shown in Figure 3.7 and Figure 3.9, our BSFE method can still provide 

the more meaningful and reliable prior seeds and thus boost the final recognition 

results according to the comparisons with conventional boundary-seeds methods. 

Table 3.4 F-measure of our BSFE method and CNN based method (MCDL) on 

benchmarking datasets. 

 PASCAL-S ECSSD SED1 SED2 

BSFE 0.6699 0.7080 0.8137 0.7815 

MDCL 0.6998 0.7469 0.8581 0.7847 

 

Table 3.5 MAE of our BSFE method and CNN based method (MCDL) on benchmarking 

datasets. 

 PASCAL-S ECSSD SED1 SED2 

BSFE 0.1926 0.2046 0.1132 0.1374 

MDCL 0.1597 0.1752 0.0875 0.1074 
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Figure 3.10 Example results of our BSFE method and CNN based method (MCDL). From 

left to right: original images, the saliency maps produced by BSFE and MCDL. 

3.4. Summary 

In this chapter, we have proposed an automatic prostate recognition method 

on MR images based on SAE. Compared to the most existing works with AE, we let 

the SAE itself serve as a classifier to focus on the prostate feature extraction. An 

image energy minimization scheme is then proposed to optimize the prostate 

recognition map constructed by SAE. Our method is compared against three 

benchmark classifiers and atlas-based seeds-selection approach on the PROMISE12 

database, demonstrating superiority in both PR curves and F-measures. Furthermore, 

we have also extended the AE-based prostate recognition model for the aim of 

saliency object detection, and achieved competitive results on popular public datasets. 

  



57 
 

4. A general object recognition model via 

multi-contexts combined deep neural 

networks 

Object recognition has been extensively studied in many works. Specifically, 

for saliency object detection, most conventional methods form a rough saliency map 

with various prior knowledge, such as flash cues [141], boundary-background priors 

(image boundaries are treated as background seeds) [13-15, 17, 20, 133, 134], and 

dark channel [15], and then construct the final saliency map. However, these priors 

are not always reliable. For example, in the first row of Figure 1.3, the plants at the 

bottom side of the image ‘pops’ out, compared to the consistent regions at the other 

sides of the image, and thus tends to be labeled as false positive areas. To lessen such 

negative impacts, Na et.al. [15] proposed a novel method which estimates saliency 

value with supported vector machine directly learned from the tested image itself. 

Such self-shallow-learning approaches significantly improve the performance 

compared to those none-learning approaches [17, 133]. However, the methods are 

often limited by the insufficient number of training samples. It may fail to construct a 

strong classifier for the challenging images. Different from the aforementioned 

approaches, the works of [13, 14, 142] adopt a certain number of seeds over the 

image to infer the remaining unlabeled pixels by formulating energy minimization 

scheme, which less rely on the prior knowledge. However, as these algorithms [13, 

14, 142] directly use low level-cues, e.g. RGB/CIELab color values, to estimate the 

distance among pixels, such labelling propagation approach may produce stochastic 

result for the image where the foreground and background share similar appearance. 
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As for anatomical structure recognition on biomedical images, many works highly on 

atlas maps to register a specific image. However, the errors produced by atlas maps 

still impede precise recognition of anatomical structure from biomedical images. 

To address the aforementioned issues, we proposed a general deep networks 

based model for object recognition on natural and biomedical images in multi-scales. 

Different from other multi-scales methods [45], we specially designed the structure 

of input data so that the model can infer the relations among different scales 

automatically. 

4.1. Object recognition method 

Our proposed multi-contexts combined convolutional neural networks 

(MCDN) for object recognition is superpixel-wised. Superpixel algorithms, such as 

NC [143], FH [144], QS [145] and SLIC [123], tend to cluster pixels perceptually 

which serves as the atomic regions in many computer vision tasks. Following the 

most saliency detection works [14, 15, 38, 134], we adopt SLIC algorithm to 

partition the image into 𝑁𝑠𝑝 non-overlapping superpixels. 

4.1.1. Input data preparation  

The existing works [8, 45] integrate independent DNNs with handcrafted 

functions to exploit saliency map in multi-scales. However, the relatively small 

number of parameters in handcrafted functions sometimes cannot well depict the 

correlations of multi-scaled intermediates, thus may cognitively and semantically 

conflict with the intentions of DNNs. Comparably, we construct a uniform DNN to 

learn such integration automatically and adaptively, with the concatenation of the 

multi-contexts. We first construct the input data to feed DNN.  
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For a superpixel 𝑝  of an image 𝐼  with three channels, we extract the 

corresponding local-context and global-context. The local context of 𝑝 is the region 

composed by itself and its neighboring superpixels. The global context of 𝑝 is the 

image 𝐼 . Thus, the input data 𝐹𝑝  of DNN, with respective to the superpixel 𝑝, is 

composed of local-context 𝐹𝑝
𝑙𝑜𝑐𝑎𝑙 and global-context 𝐹𝑝

𝑔𝑙𝑜𝑏𝑎𝑙
:  

 𝐹𝑝 = [
𝐹𝑝
𝑙𝑜𝑐𝑎𝑙

𝐹𝑝
𝑔𝑙𝑜𝑏𝑎𝑙] (4.1)  

In order to mark 𝑝 on 𝐼, the values at the region of 𝑝 are set to zero on the global 

context. As the global context can infer the region of 𝑝 from the local context, there 

is no color information loss during such padding operation. 

4.1.2. Convolutional neural networks training 

Due to the broadly-validated steady performance, we adopt the AlexNet 

model [42] to construct DNN in this work, with a softmax regression at the top of the 

last network layer to estimate the probabilities of suerpixels being salient. In order to 

achieve non-linear transformation, the rectified linear unit (ReLU) [146] is utilized in 

the proposed DNN structure. Additionally, the batch normalization [147] is inserted 

following each convolutional layer (except the last layer), which boosts the training 

phase with high learning rate and lessens the impacts by weights initialization. 

Table 4.1 is the detailed structure of this deep networks. 
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Table 4.1 The detailed structure of our proposed deep network. c: convolutional layer; b: 

batch normalization layer; r: ReLU layer; f: fully connected layer; s: softmax regression 

layer. 

Layer Type Channel 

Filter 

size 

Conv. 

stride 

Conv. 

pad 

Pooling 

size 

Pooling 

stride 

Input size 

1 c+b+r 96 11×11 4 0 3×3 2 227×227×6 

2 c+b+r 256 5×5 1 2 3×3 2 55×55×96 

3 c+b+r 384 3×3 1 1 N/A N/A 27×27×256 

4 c+b+r 384 3×3 1 1 N/A N/A 13×13×384 

5 c+b+r 256 3×3 1 1 3×3 2 13×13×384 

6 c+b+r 4096 6×6 1 0 N/A N/A 6×6×256 

7 f+b+r 4096 1×1 1 0 N/A N/A 1×1×4096 

8 f+s 2 1×1 1 0 N/A N/A 1×1×4096 

 

Given the training superpixel set 𝒜 = {𝑝} and the corresponding label set 

ℬ = {𝑏𝑝}, the input data set {𝐹𝑝} can be obtained as described in chapter 4.1.1. The 

local-context and global-context in each 𝐹𝑝 are both resized to 227×227×3 to fit the 

structure of proposed deep network, thus we have 𝐹𝑝 ∈ ℝ
227×227×6 . The deep 

network is then trained by the training set 𝒜 , with the aim of minimizing the 

following cost function: 

 𝐽(𝜃) = −
1

|𝒜|
∑∑𝑇(𝑏𝑝 = 𝑗)

1

𝑗=0𝑝∈𝒜

log𝑃(𝑏𝑝 = 𝑗|𝑥) +
𝜆

2
∑𝜃𝑧

2

𝑍

𝑧=1

 (4.2)  

 𝑃(𝑏𝑝 = 𝑗|𝑥) =
exp(𝑥𝑗)

∑ exp(𝑥𝑖)
1
𝑖=0

 (4.3) 

where 𝑇(⋅) is 1 if the condition inside the parentheses is true and 0 otherwise; 𝑥 is 

the output of the penultimate layer; 𝑃(𝑏𝑝 = 𝑗|𝑥) is the probability labeling 𝑏𝑝 as 𝑗; 𝜆 
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is a fixed parameter and set to 0.0005 empirically; 𝑍 is the total number of layers in 

the network; and 𝜃𝑧 is the weight of the 𝑧-th layer. The second term of (4.2) is to 

balance the first term such that it restricts 𝜃 from growing too large unless necessary 

[148], thus improves the generalization of the trained network. To enable 

backpropagation of 𝐽(𝜃), we calculate the partial derivative 

 
𝜕

𝜕𝑥𝑗
𝐽(𝜃) = −

1

|𝒜|
∑(𝑇(𝑏𝑝 = 𝑗) − 𝑃(𝑏𝑝 = 𝑗|𝑥))

𝑝∈𝒜

 (4.4)  

which allows the loss gradient to flow back to the former layers and thus updates 𝜃 

by the gradient descent optimization algorithm [127] in iterations. 

4.1.3. Superpixel classification 

In testing phase, the image is first partitioned into 𝑁𝑠𝑝 superpixels and then 

extracted corresponding input data by (4.1) for each superpixels. With the well-

trained multi-contexts combined DNN, we can predict the likelihood of each 

superpixel belonging to the class 𝑗 by (4.3), where the value 1 of 𝑗 is foreground and 

0 is background. Afterwards, 𝑃(𝑏𝑝 = 1|𝑥) can be utilized to estimate the saliency 

value of the superpixel. 

4.2. Validation of saliency object detection 

4.2.1. Setup and dataset 

As the MSRA-10K [21] dataset covers a large variety of scenarios with pixel-

level saliency annotations, in the experiment on saliency object detection, we 

randomly select 9,000 images from it to compose the training set to train the 

proposed multi-contexts combined DNN, and leave 1,000 images for validation. The 

aim of validation is to evaluate the performance of the current trained DNN 
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following each training epoch, and do not update the learnable parameters in DNN. 

The algorithm was implemented with MatConvNet framework [149] and the training 

process for the DNN was conducted on a PC with Intel 6-Core i7-5820K 3.3GHz 

CPU, 64GB RAM and a GeForce GTX TITAN X 12GB GPU. Other detailed 

hyperparameters in the training phase of the DNN are listed in Table 4.2. 

Table 4.2 The hyperparameters in the training phase of the DNN for saliency object 

detection. 

𝑁𝑠𝑝 Batch size Momentum Training epoch Learning rate 

200 200 0.9000 20 

20-point logarithm space 

between 0.1 to 0.0001 

 

In testing phase, we run our proposed algorithm on five benchmark datasets, 

i.e. PASCAL-S [23], ECSSD [22], SED1 [139], SED2 [139] and DUT-OMRON [14]. 

PASCAL-S contains 850 natural images which are built for the validation of the 

PASCAL VOC 2010 segmentation challenge with complex structures. ECSSD 

contains 1,000 images from the Internet. SED1 contains 100 single-salient-object 

images, while SED2 contains 100 double-salient-object images that is more 

challenging compared to SED1. DUT-OMRON contains 5,168 images with more 

challenging scenarios compared to the aforementioned four datasets. The pixel-wise 

ground truth masks of all the images on the five datasets are available by manual 

segmentations.   
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4.2.2. Experimental results 

We evaluate our proposed MCDN method against nine state-of-the-art 

methods, including MCDL [45], DRFI [150], BL [15], MC [17], MR [14], RR [13], 

HS [22], BSCA [12] and DSR [151] on PASCAL-S [23], ECSSD [22], SED1 [139], 

SED2 [139] and DUT-OMRON [14] datasets respectively. The comparison methods 

are set by default parameters published in their original papers or codes, and are 

conducted under the same environment. The experimental results, in terms of PR 

curve, F-measure and MAE, are quantitatively shown in Figure 4.1, Table 4.3 and  

Table 4.4 respectively. 
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Figure 4.1 PR curves of our method (MCDN) and the counterparts. 

Table 4.3 F-measure of our method (MCDN) and the counterparts. The best and second best 

results are shown in red and blue. 

 PASCAL-S ECSSD SED1 SED2 

DUT-

OMRON 

MCDN 0.7041 0.7430 0.8619 0.7575 0.6444 

MCDL 0.6998 0.7469 0.8581 0.7847 0.6509 

BL 0.6228 0.7161 0.8404 0.7934 0.5798 

BSCA 0.6694 0.7180 0.8319 0.7797 0.6171 

DRFI 0.6938 0.7358 0.8638 0.8226 0.6640 

RR 0.6388 0.7097 0.8429 0.7692 0.6127 

HS 0.6451 0.6975 0.8246 0.7815 0.6161 

MC 0.6675 0.7028 0.8442 0.7755 0.6273 

DSR 0.6506 0.6986 0.8186 0.7868 0.6269 

MR 0.6188 0.7076 0.8410 0.7705 0.6108 
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Table 4.4 MAE of our method (MCDN) and the counterparts. The best and second best 

results are shown in red and blue. 

 PASCAL-S ECSSD SED1 SED2 

DUT-

OMRON 

MCDN 0.1625 0.1813 0.0911 0.1279 0.1166 

MCDL 0.1597 0.1752 0.0875 0.1074 0.1183 

BL 0.2493 0.2620 0.1900 0.1403 0.2401 

BSCA 0.2238 0.2235 0.1548 0.1583 0.1908 

DRFI 0.2098 0.2256 0.1485 0.1403 0.1496 

RR 0.2316 0.2235 0.1409 0.1614 0.1845 

HS 0.2637 0.2686 0.1632 0.1951 0.2274 

MC 0.2317 0.2513 0.1645 0.1804 0.1863 

DSR 0.2079 0.2263 0.1599 0.1894 0.1388 

MR 0.2588 0.2358 0.1431 0.1639 0.1868 

 

According to Table 4.3, although DFRI performs best on three datasets, our 

proposed MCDN method ranks top-2 on four out of five datasets, which proves the 

robustness of MCDN. The two deep networks based methods (i.e. MCDN and 

MCDL) place the top-2 positions on all five datasets, in terms of MAE. However, 

MCDL beats our method on four datasets. We will discuss this competition and the 

results in Chapter 4.2.3. From the examples in Figure 4.2, not only does MCDN 

recognize the rough positions and shapes of the salient object, but also can well 

suppress the background. 
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Figure 4.2 Saliency example maps by our method and conventional methods. From top to 

bottom: original images, saliency maps produced by our method (MCDN), BL [15] and MR 

[14]. 
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4.2.3. Comparison with other deep networks based method 

In this chapter, we evaluate the performances of MCDN and other deep 

networks based saliency object detection methods. Typically, we choose one of the 

state-of-the-art counterparts, i.e. MDCL [45] proposed in 2015, as the comparison. 

We conduct our method and MCDL with the same environment, including training 

set, training epoch and learning rate. Both are implemented with AlexNet model. 

As shown in Figure 4.3, compared to the results by MCDL, MCDN can 

produce more smoothed saliency maps. Our higher performance than MCDL is 

attributed to two aspects. Firstly, MCDL puts the to-be-classified superpixel at the 

center of the image but does not precisely mark it. In contrast, our method directly 

marks the to-be-classified superpixel for DNN. As our DNN can precisely locate the 

to-be-classified superpixel, it outperforms MCDL. Secondly, as discussed in 

Chapter 4.1.1, the combination of mulit-context by deep learning also attributes to 

the better performance of our method. Noted that MCDL beats our method in terms 

of MAE. The reason is that as our method intends to produce more smoothed inner 

regions and suppressed background, the false-positive and false-negative results 

greatly increase MAE score of our method. 
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Figure 4.3 Saliency example maps by our method and deep networks based methods. From 

top to bottom: original images, saliency maps produced by our method (MCDN) and MCDL 

[45]. 
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4.3. Validation of prostate recognition 

4.3.1. Setup and dataset 

We used prostate MR Image Segmentation 2012 (PROMISE12) dataset [129]. 

This set contains 50 cases which are from multi-center and multi-vendor, and with 

different acquisition protocols [89]. Each case comprises of a set of transversal T2-

weighted MR images, and pixel-wised prostate annotations by experts.  

Different from the natural images, the prostate MR image is one-channel-

intensity image so that the input data 𝐹𝑝 is two dimensions. The other settings for 

saliency object detection (Chapter 4.2), including the hyperparameters of DNN and 

PC configurations, are shared here. 

In the application of prostate recognition, we applied ten-fold cross validation 

on the dataset.  Specifically, the dataset was randomly partitioned into ten groups; 

nine groups constituted the training set and the left one group was used for testing. 

We performed such validation in iterations until all the groups were tested. 

4.3.2. Experimental results 

Atlas probability maps provide favorable foreground priors and are widely 

applied in many prostate segmentation algorithms [49, 50] for seeds selection. We 

compare our MCDN method with the atlas-based seeds-selection proposed in one of 

the prostate segmentation work (RW) [49]. We use the default parameter settings in 

[49] for comparison. The MCDN method strongly beats the atlas-based seeds-

selection, both in terms of precision and F-measure. Figure 4.4 visually shows the 

significant superiority of our method. Although the atlas-based seeds-selection in [49] 
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can recognize the prostate, it leads to more false-positive cases compared to our 

method.  

Table 4.5 Precision and F-measure of our method (MCDN) and atlas-based seeds-selection 

(RW). 

 MCDN RW 

Precision 0.9285 0.8284 

F-measure 0.8383 0.6617 
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Figure 4.4 Comparisons of our method (MCDN) and atlas-based seeds-selection in prostate 

recognition. From left to right: original prostate MR image (prostate regions are delineated in 

red contours), recognition results by our method and RW [49]. 

4.4. Summary 

In this chapter, we have proposed a general deep neural networks based 

method for object recognition on natural and biomedical images. By integrating the 

local and global contexts in input data, our model extracts high-level features in 

multi-scales thus achieves better results compared to conventional methods with 

handcrafted features. Experimental validation on saliency object detection and 

prostate recognition demonstrated that our model is robust to different types of object 

recognitions across various datasets. 
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5. A novel saliency image energy 

cooperating with region priors 

Many tasks such as image segmentation [152, 153], restoration [154], object 

recognition [155], and texture synthesis [156] can be solved through the optimization 

of image energy functions constructed in variety of ways. It can be effectively and 

efficiently minimized by max-flow algorithm [95] to solve binary labeling task. 

Saliency detection with energy minimization [13, 14, 142] has been studied for many 

years. Wei et al. [142] define geodesic saliency to form image energy and apply 

Dijkstra’s algorithm to discover the shortest path over the image from background to 

foreground. The works of [13, 14] are based on manifold ranking, which minimize 

the defined energy by differential method. In order to obtain more precise saliency 

maps, in this chapter, we propose a novel saliency image energy and the refined 

saliency maps can be formed by minimizing the proposed image energy. The region 

priors are imposed on the image energy to guide the recognition and segmentation of 

saliency objects on the basis of our proposed three observations. 

5.1. Method 

Our proposed saliency image energy is composed of smooth penalty and data 

penalty. The aim of smooth penalty is to encourage smooth inner regions and distinct 

region boundaries. Instead of exploiting the distance of pixels with color appearance, 

we adopt image segmentation approach to generate pre-segments and use them as 

region priors over the image, and then formulate smooth penalty on that basis. The 

data penalty represents the label-preferences of pixels, which can be directly 

estimated by the saliency map from most conventional approaches, e.g. [14, 17]. 
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However, as described in Chapter 4, the conventional approaches may fail to assign 

precise labels to pixels on complex images, thus eventually deteriorate the 

performance of the whole image energy in saliency detection. To achieve better 

performance, we adopt the saliency map generated by the proposed multi-contexts 

combined DNN for more reliable label-preferences as the data penalty. The labels for 

saliency detection can be thus assigned to each pixel by finding the minimum 

solution for the image energy. In this way, the deep networks based image energy 

(DNIE) is our proposed new saliency object detection method. The pipelines of the 

DNIE approach for saliency object detection is shown in Figure 5.1. In the remaining 

parts of this chapter, we mainly focus on the formulation of the smooth penalty and 

the method to produce the final saliency map according to the proposed saliency 

image energy.  

 

Figure 5.1 The pipelines of our proposed DNIE approach for saliency detection. (a) Image 

energy construction with data penalty by multi-contexts combined DNN model (Chapter 4) 

and smooth penalty by region-priors. (b) Image energy minimization for saliency proposals. 

(c) Saliency estimation. In DNN model, the third dimensions of layers are visually omitted in 

this figure. 
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5.1.1. Problem formulation 

We use superpixel by SLIC algorithm [123] as the basic homogenous region 

in the further operations. Formally, an image 𝐼 is partitioned into a superpixel set 

𝒫 = {𝑝1, 𝑝2, … , 𝑝𝑁} with 𝑁 elements, where we always ignore the image notation 𝐼 

for simplification. The saliency detection on image 𝐼  aims to find a labeling 

configuration ℒ = {𝑙𝑝1 , 𝑙𝑝2 , … , 𝑙𝑝𝑁}  for each superpixel 𝑝𝑖  in 𝒫 , where 𝑙𝑝𝑖 ∈ {0,1} 

represents background and foreground respectively. ℒ is then transferred into a soft 

labeling configuration ℒ∗ = {𝑙𝑝1
∗ , 𝑙𝑝2

∗ , … , 𝑙𝑝𝑁
∗ } to estimate the probability of 𝑝𝑖  being 

salient. For brevity, we omit the subscript to notate the element in a set such that 𝑝 is 

the general notation of 𝑝𝑖 in 𝒫. 

A proper labeling configuration should appropriately maintain the individual 

label-preferences of superpixels by observation or pre-specified likelihood function, 

and meanwhile tend to produce the smooth saliency region and suppressed 

background. Based on this motivation, we find the best labeling configuration by 

minimizing the following image energy: 

 

𝐸(ℒ) = (1 − 𝑤)∑𝐷(𝑙, 𝑝) + 𝑤 ∑ 𝑉(𝑙𝑝, 𝑙𝑞 , 𝑝, 𝑞)

𝑝,𝑞∈𝒫𝑝∈𝒫

 

𝑠. 𝑡. 𝑙𝑝 + 𝑙𝑞 = 1 

(5.1) 

where 𝐷(𝑙, 𝑝) is the data penalty to assign label 𝑙 to 𝑝 based on the label-preferences 

and 𝑉(𝑙𝑝, 𝑙𝑞 , 𝑝, 𝑞) is the pairwise smooth penalty to assign different labels 𝑙𝑝, 𝑙𝑞 to 𝑝, 

𝑞 respectively. The weighting factor 𝑤 controls the weight between these two terms 

in (5.1). 
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5.1.2. Data penalty 

The data penalty initializes the label-preferences of a superpixel, which 

makes the image energy a task-driven (i.e. saliency-driven) scheme. In DNIE 

approach, the saliency map generated by multi-contexts combined DNN is adopted 

to estimate the data penalty: 

 𝐷(𝑙, 𝑝) = 𝑃𝑝(𝑙 = 1|𝜃) ∙ 𝑇(𝑙 = 1) + (1 − 𝑃𝑝(𝑙 = 1|𝜃)) ∙ 𝑇(𝑙 = 0) (5.2) 

where 𝑇(⋅) is 1 if the condition inside the parentheses is true and 0 otherwise; 𝑃𝑝(𝑙 =

1|𝜃) has been defined in chapter 4.1. 

In addition to the multi-contexts combined DNN, our proposed saliency 

image energy can also adopt other types of saliency maps produced by conventional 

low-cues based methods, such as MR [14] and MC [17]. The data penalty of 𝑝 

corresponding to the saliency map 𝑆𝑎𝑙 is  

 𝐷(𝑙, 𝑝) = 𝑆𝑎𝑙(𝑝) ∙ 𝑇(𝑙 = 1) + (1 − 𝑆𝑎𝑙(𝑝)) ∙ 𝑇(𝑙 = 0) (5.3) 

5.1.3. Smooth penalty 

The smooth penalty estimates the cost of assigning pairwise superpixels with 

different labels. In DNIE approach, since the data penalty is produced by the high-

level image representations from DNN, which is superior to those low-level cues [8, 

45], the smooth penalty aims to generate results in accordance with the data penalty. 

It tends to separate saliency objects from background with clear region appearance, 

integrating with the data penalty. Instead of merely using low-level cues, we adopt 

image segmentation algorithm to generate region-prior to explore the differences 

among superpixels in calculating smooth penalty as follows. This is different from 
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some traditional region-smoothness works [15, 157], which simply rely on low-level 

cues. 

The image 𝐼 is segmented into 𝑀 regions, denoted as ℛ = {𝑟1, 𝑟2, … , 𝑟𝑀}, via 

graph-based segmentation algorithm [144], and the region-prior 𝒪 = {ℴ𝑝 ∈ ℛ} of 𝐼 is 

then generated, where ℴ𝑝 is the region containing superpixel 𝑝. With the region-prior 

𝒪, for saliency detection, the smooth penalty should follow the three observations: 

Observation 1. For common images, the probability of a pair of superpixels sharing 

a same label is increasing, with their position distance decreasing. 

Observation 2. A pair of superpixels belonging to different regions, with a large 

position distance, often tend to take different labels, as the saliency region is compact 

in most cases. 

Observation 3. In the same region, especially the simple and consistent region (e.g. 

sky and ocean), the superpixels with similar appearance often share same labels. 

The observation 1 and 2 are fundamental guides to the definition of smooth 

penalty, and the observation 3 is an additional one improving the labeling results 

over the whole image energy. Therefore, based on these observations, for a pair of 

superpixels 𝑝, 𝑞 in image 𝐼, the smooth penalty 𝑉(𝑙𝑝, 𝑙𝑞 , 𝑝, 𝑞) is defined as 

 

𝑉(𝑙𝑝, 𝑙𝑞 , 𝑝, 𝑞) =
𝑇(ℴ𝑝 ≠ ℴ𝑞)

1 + 𝐺(𝑝, 𝑞) + 𝐺(ℴ𝑝, ℴ𝑞)
+ 

𝑇(ℴ𝑝 = ℴ𝑞)

1 + ||𝑐𝑝 − 𝑐𝑞|| ∙ 𝑇(𝐻(𝑝) = 𝐻(𝑞)) + 𝐺(𝑝, 𝑞) ∙ 𝑇(𝐻(𝑝) ≠ 𝐻(𝑞))
 

𝑠. 𝑡.𝑙𝑝 + 𝑙𝑞 = 1 

(5.4) 

We explain (5.4) in details as follows. The subjection term in (5.4) ensures 

that the smooth penalty is the cost of assigning different labels to pairwise 
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superpixels. The first term of (5.4) is the external-region contrasted penalty which 

estimates the cost of assigning labels to pairwise superpixels belonging to different 

regions, while the second term of (5.4) is the inner-region smooth penalty which 

determines the cost of labeling pairwise superpixels within same region. The position 

distance term 𝐺(𝑢, 𝑣) captures the Observation 1, as a small 𝐺(𝑢, 𝑣) leads a large 

smooth penalty encouraging same label to pairwise superpixels with small position 

distance. In accordance with Observation 2, the region-difference term 𝐺(ℴ𝑝, ℴ𝑞) is 

imposed on the first term of (5.4) to discourage the assignment of same labels to 

superpixels within different regions. Inspired by Observation 3, the calculation of the 

RGB distance for superpixels with similar appearance is added to the second term of 

(5.4) to improve the results with smooth saliency region and suppressed background.  

5.1.4. Saliency proposals and estimation 

Given the exposition of data penalty and smooth penalty, the image energy 

can be formulated by (5.1) and the labeling configuration ℒ (𝑤)  can then be 

determined by minimizing (5.1) under a specific weighting factor 𝑤. In this work, we 

adopt the max-flow algorithm in [95] to minimize (5.1). To achieve better 

performance, instead of using fixed weighting factors in (5.1) to control the weights 

among data penalty and smooth penalty [157], we generate saliency proposals {ℒ (𝑤)} 

under different values of 𝑤  and then integrate {ℒ (𝑤)}  to ℒ  as the final labeling 

configuration of the image energy minimization scheme, with the normalized 

coefficients by Gaussian function. 

As the labeling configuration ℒ is a binary result, similar to [15], we linearly 

combine ℒ with {𝑃𝑝(𝑙 = 1|𝜃)} that is defined in chapter 4.1 to obtain a soft labeling 

configuration ℒ∗ as follows 
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 𝐿∗ = {𝑙𝑝
∗ } = {

𝑙𝑝 + 𝑃𝑝(𝑙 = 1|𝜃)

2
} (5.5) 

where 𝑙𝑝 ∈ ℒ corresponds to the superpixel 𝑝 in 𝒫 of the image 𝐼. Then we estimate 

the probability of superpixel 𝑝 being foreground as 𝑙𝑝
∗ , and the saliency map can thus 

be obtained. 

5.2. Experiment and evaluation 

5.2.1. Overall performance of DNIE 

Some example saliency maps by DNIE are shown in Figure 5.2 in which 

DNIE has a better visually results. For example, while low-cues based approach 

cannot recognize the bus on the image of the first column of Figure 5.2, DNIE 

enables to capture the parts of the bus. Although DNN based approach can also 

recognize the same parts of the bus, the inner regions are not as smooth as the 

recognized regions by DNIE. This superiority is attributed to the proposed smooth 

penalty in the saliency image energy.  
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Figure 5.2 Saliency object detection results of different methods. From top to bottom: 

original image, our proposed DNIE, DNN based approach (MCDL [45]) and low-cues based 

approach (MR [14]). 

We evaluate our proposed DNIE algorithm against nine state-of-the-art 

methods, including MCDL [45], DRFI [150], BL [15], MC [17], MR [14], RR [13], 

HS [22], BSCA [12] and DSR [151] on PASCAL-S [23], ECSSD [22], SED1 [139], 

SED2 [139] and DUT-OMRON [14] datasets respectively. These benchmark 

datasets have been introduced in the chapter 3.3. 

The PR-curves of our DNIE method and state-of-the-art methods are drawn 

in Figure 5.3. According to PR-curves, DNIE can achieve the high performance on 

PASCAL-S, ECSSD and SED1 datasets, which is competitive to the top-1 method 

among the chosen comparisons. On SED2 and DUT-OMRON datasets, DNIE also 

favorably ranks top-3 among state-of-the-art counterparts. 
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Figure 5.3 PR curve of benchmarking methods on five datasets. 

Table 5.1 summaries F-measure of our DNIE method and state-of-the-art 

counterparts. F-measure can evaluate the comprehensive performance of a certain 

algorithm. The proposed DNIE beats the other methods on PASCAL-S, ECSSD and 

SED1 datasets, and achieves the second best results on DUT-OMRON dataset, which 

demonstrates that DNIE is robust across the different datasets. 
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Table 5.1 F-measure of benchmarking methods on five datasets. The best and second best 

results are shown in red and blue. 

 PASCAL-S ECSSD SED1 SED2 

DUT-

OMRON 

DNIE 0.7112 0.7479 0.8712 0.7904 0.7847 

MCDL 0.6998 0.7469 0.8581 0.7847 0.6509 

BL 0.6228 0.7161 0.8404 0.7934 0.5798 

BSCA 0.6694 0.7180 0.8319 0.7797 0.6171 

DRFI 0.6938 0.7358 0.8638 0.8226 0.6640 

RR 0.6388 0.7097 0.8429 0.7692 0.6127 

HS 0.6451 0.6975 0.8246 0.7815 0.6161 

MC 0.6675 0.7028 0.8442 0.7755 0.6273 

DSR 0.6506 0.6986 0.8186 0.7868 0.6269 

MR 0.6188 0.7076 0.8410 0.7705 0.6108 

 

Table 5.2 summaries MAE of our DNIE method and state-of-the-art 

counterparts. DNIE ranks top-2 on the five benchmarking datasets. 
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Table 5.2 MAE of benchmarking methods on five datasets. The best and second best results 

are shown in red and blue. 

 PASCAL-S ECSSD SED1 SED2 

DUT-

OMRON 

DNIE 0.1580 0.1790 0.0869 0.1217 0.1082 

MCDL 0.1597 0.1752 0.0875 0.1074 0.1183 

BL 0.2493 0.2620 0.1900 0.1403 0.2401 

BSCA 0.2238 0.2235 0.1548 0.1583 0.1908 

DRFI 0.2098 0.2256 0.1485 0.1403 0.1496 

RR 0.2316 0.2235 0.1409 0.1614 0.1845 

HS 0.2637 0.2686 0.1632 0.1951 0.2274 

MC 0.2317 0.2513 0.1645 0.1804 0.1863 

DSR 0.2079 0.2263 0.1599 0.1894 0.1388 

MR 0.2588 0.2358 0.1431 0.1639 0.1868 

 

5.2.2. Evaluation on smooth penalty 

As any other types of data penalty can be adopted to formulate our proposed 

image energy (IE), to evaluate our proposed saliency smooth penalty and its 

robustness, we further use the saliency maps generated by comparison methods to 

estimate the data penalty of IE. We then minimize the formulated IE and form the 

corresponding saliency maps as described in Chapter 5.1.4. 

The results of F-measure in Figure 5.4 prove favorable improvements for all 

the comparison methods by 0.56% to 3.35% on SED1, 0.42% to 2.31% on SED2 and 
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0.09% to 3.50% on ECSSD. The detailed improvements for each comparison 

methods are shown in Figure 5.4. 
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Figure 5.4 Quantitative improvements of state-of-the-art methods by our proposed image 

energy (IE). 

As our proposed saliency image energy can boost the performance of existing 

methods, it can be utilized as the post-processing for other saliency detection 

methods which leads to smoother inner regions and more distinct region boundaries. 

For example, as shown in the starfish image of Figure 5.5, while some regions are 

wrongly labelled as foreground by multi-contexts combined DNN, the proposed 

image energy can well-suppress them. Since some parts of starfish are not captured 

by MCDL method, the results are improved by the image energy. Although MR 

method satisfactorily recognizes the starfish, the image energy enhances the saliency 

region so that decreases the mean absolute error. 
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Figure 5.5 Examples of the improvements by proposed saliency image energy. From left to 

right: original images; original saliency maps by (a) multi-contexts combined DNN, (b) 

MCDL [45], (c) MR [14]; smoothed saliency maps after image energy minimization. 
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5.2.3. Comparison with other image energy 

Carreira and Sminchisescu [158] proposed a novel image energy method 

(CMCP) for object segmentation. In 2014, Li et al. [23] applied CMCP algorithm to 

segment objects from a given eye fixation map produced by GBVS [36]. We 

performed such CMCP+GBVS on PASCAL-S dataset and measure the 

corresponding F-measure and MAE. The comparisons of CMCP+GBVS and our 

proposed DNIE method are listed in Table 5.3. 

Table 5.3 F-measure and MAE of CMCP+GBVS and DNIE on PASCAL-S dataset. 

 CMCP+GBVS DNIE 

F-measure 0.7111 0.7112 

MAE 0.2130 0.1580 

 

Although our method and GBVS+CMCP almost achieve the same F-measure 

(0.7112 vs 0.7111), our method strongly beats GBVS+CMCP in terms of MAE 

(0.1580 vs 0.2130). This is attributed to the following two reasons: 

(a) CPMC measures the smooth penalty merely among adjacent pixels, while 

our work treats the image as a complete graph in superpixel scale, enabling smooth 

penalty to be measured in a holistic way; 

(b) An inherent limitation of complete graph may lead to trivial errors. We 

therefore use region priors to guide the construction of the smooth penalty. 
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5.3. Summary 

In this chapter, we have proposed a novel image energy with deep neural 

network to recognize the saliency object. An image segmentation approach is 

adopted to generate region-prior for image energy formulation. The saliency map can 

be eventually calculated by image energy minimization. In the experiments, we have 

evaluated our approach in comparison with nine state-of-the-art methods on five 

benchmark datasets. The experimental results show that our proposed approach 

favorably outperform the comparison methods. Furthermore, we have constructed the 

region-prior-based image energy with the data penalty measured by the results of 

comparison methods to evaluate the smooth penalty. The significant improvement of 

comparison methods prove an effective post-process served by our proposed image 

energy. 
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6. Discussion, conclusion and future work 

6.1. Discussion 

We discuss the overall performance of the three proposed object recognition 

models by directly comparing them over the same datasets. According to the 

experimental results in chapter 3, chapter 4 and chapter 5, the quantitative 

comparisons of the proposed BSFE, MCDN and DNIE methods can be summarized 

in Table 6.1 and Table 6.2. 

Table 6.1 F-measure of BSFE, MCDN and DNIE on saliency detection datasets. The best 

and second best results are shown in red and blue. 

 PASCAL-S ECSSD SED1 SED2 

BSFE 0.6699 0.7080 0.8137 0.7815 

MDCN 0.7041 0.7430 0.8619 0.7575 

DNIE 0.7112 0.7479 0.8712 0.7904 

 

Table 6.2 MAE of BSFE, MCDN and DNIE on saliency detection datasets. The best and 

second best results are shown in red and blue. 

 PASCAL-S ECSSD SED1 SED2 

BSFE 0.1926 0.2046 0.1132 0.1374 

MDCN 0.1625 0.1813 0.0911 0.1279 

DNIE 0.1580 0.1790 0.0869 0.1217 
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MCDN significantly outperforms BSFE in terms of F-measure and MAE. 

The superiority of MCDN can be attributed to the following two factors. Firstly, 

MCDN conducts convolution processing over the hidden layers, thus captures more 

detailed structures of input data; secondly, while BSFE requires vectorization input 

to SAE which may loss spatial information, MCDN directly adopt original multi-

scaled images to DNN so that the spatial information can be feed-forwarded across 

the deep neural networks. While MDCN estimates the recognition maps superpixel 

by superpixel, DNIE refines the recognitions in global views by proposed saliency 

image energy. As shown in Figure 6.1, as the improvement of MDCN, DNIE can 

boost the recognition results by smoothing the inner regions and suppressing the 

outer backgrounds. 
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Figure 6.1 Example results of BSFE, MCDN and DNIE for saliency detection. From top to 

bottom: original images, saliency maps produced by BSFE, MCDN and DNIE. 

Although our proposed MCDN and DNIE methods beat the state-of-the-art 

counterparts, they cannot generate more precise recognition maps in the case of 

complex foregrounds and multi-objects. For examples, as shown in the left column 

of Figure 5.2, our method fails to capture the windows of the bus as the main body 

and windows of the bus share much differential features. The semantic segmentation 

may address this challenge, in which the model is specially trained for the purpose of 

bus segmentation. As shown in the right column of Figure 4.3, some target objects 

are abandoned by our proposed algorithm when over two objects appear in the image. 

The main reason of this case is that the deep networks are trained by single-object 

image sets, thus it is not well adaptive to multi-objects images.  

6.2. Conclusion 

In this thesis, we proposed three object recognition models on multimodality 

images to solve the recognition challenges. 
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Firstly, we proposed a new comprehensive autoencoder for prostate 

recognition, followed by an image minimization scheme for refinement. Different 

from the most existing works with autoencoder, we let autoencoder itself serve as a 

classifier to focus on the prostate feature extraction, and the impacts by the irregular 

and complex background can be thus decreased. The comparative experiments with 

three classic classifiers and one atlas-based seeds-selection demonstrated the 

significant superiority of our proposed model for prostate recognition. We then 

applied the model on saliency object detection, and also achieved favorable 

performance on public datasets. 

Secondly, in order to solve the challenges by complex imaging scenarios, we 

employed deep neural networks for feature extraction. As deep neural networks are 

invented on the basis of human brain machanism and contain more than tens of 

thousands parameters, the deep networks features can semantically and cognitively 

represent the intrinsic data structures of input data. Different from other multi-scaled 

deep networks methods, we proposed a uniform model to extract local and global 

features, thus do not require handcrafted combination of multi-scaled results. We 

validated this multi-contexts combined deep neural networks model for saliency 

object detection and prostate recognition. The favourable experiments results showed 

that our proposed object recognition model is effective and robust both on natural 

and biomedical images. 

Thirdly, we designed a novel saliency image energy for the aim of more 

precise saliency object detection. To make the model more suitable for saliency 

detection, we imposed region priors on the image energy, on the basis of our three 

observations. Then we proposed a new saliency detection algorithm via integrating 

the saliency image energy and multi-contexts combined deep neural networks model. 
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The proposed new algorithm was compared with current state-of-the-art saliency 

detection methods on five well-recognized datasets. The experimental results showed 

that our algorithm can gain accurate and robust saliency recognitions. We further 

evaluated our proposed saliency energy model individually and demonstrated that it 

can be a post-process and refinement for most existing approaches. 

6.3. Future work 

In the future, we will investigate the algorithms of cancer detection and tumor 

staging with the recognized tissue and organ. Compared to tissue and organ 

recognition, the image noise and intensity inhomogeneity on biomedical images pose 

more significant challenges for cancer detection and tumor staging, as the speck may 

be labelled as false-positive cancer. Although deep neural networks may also be 

employed to address this issue, it still needs necessary improvements for accurate 

and robust results. Employing prior knowledge can be used to boost the performance 

of current deep neural networks, under the limitation of computation and memory 

capacities. For example, fully convolutional networks [44] can be applied on saliency 

object detection to generate dense pixel-wise recognition maps. However, the object 

boundaries cannot be precisely delineated as the detailed local contexts are gradually 

decayed during feedforward in deep neural networks. In this case, some 

segmentation priors (such as superpixel used in [43]) should be introduced to deep 

neural networks so that the results are encouraged to evolve into desirables. However, 

for cancer detection and tumor staging, the proper ways for such integration and the 

satisfactory balances between handcrafted priors and (un)supervised learning are still 

remained to be further studied. 
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