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Abstract

Automatic and reliable segmentation of the prostate is an important but difficult task for various 

clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR 

prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around 

prostate boundary, and (2) the large shape variation across different patients. To tackle these two 

problems, we propose a new deformable MR prostate segmentation method by unifying deep 

feature learning with the sparse patch matching. First, instead of directly using handcrafted 

features, we propose to learn the latent feature representation from prostate MR images by the 

stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature 

hierarchy from the data, the learned features are often more concise and effective than the 

handcrafted features in describing the underlying data. To improve the discriminability of learned 

features, we further refine the feature representation in a supervised fashion. Second, based on the 

learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by 

transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a 

deformable segmentation is used to integrate a sparse shape model with the prostate likelihood 

map for achieving the final segmentation. The proposed method has been extensively evaluated on 

the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the 

deep-learned features are more effective than the handcrafted features in guiding MR prostate 

segmentation. Moreover, our method shows superior performance than other state-of-the-art 

segmentation methods.
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Index Terms

MR prostate segmentation; stacked sparse auto-encoder (SSAE); sparse patch matching; 
deformable model

I. Introduction

Prostate cancer is the second leading cause of cancer death in American men, behind only 

lung cancer [1]. As a main imaging modality for clinical inspection of prostate, Magnetic 

Resonance (MR) imaging provides better soft tissue contrast than ultrasound in a non-

invasive way, and has the emerging role in prostate cancer diagnosis and treatment [2, 3]. 

The accurate localization of the prostate is an important step for assisting the diagnosis and 

treatment, such as guiding biopsy procedure [2] and radiation therapy [3]. However, the 

manual segmentation of the prostate is tedious and time-consuming, and also suffers from 

intra- and inter-observer variability. Therefore, developing automatic and reliable 

segmentation methods for MR prostate is clinically desirable and an important task.

However, accurate prostate localization in MR images is difficult due to the following two 

main challenges. First, the appearance patterns vary a lot around the prostate boundary 

across patients. As we can see from Fig. 1 (a), the image contrasts at different prostate 

regions, i.e., the anterior, central and posterior regions, change both across different subjects 

and within each subject. Fig. 1 (b) gives the intensity distributions of prostate and 

background voxels around the prostate boundary, respectively. As shown in the figure, the 

intensity distributions highly vary across different patients and do not often follow the 

Gaussian distribution.

To evaluate the shape difference in our dataset, we adopt the PCA analysis by mapping each 

high-dimensional shape vector onto a space spanned by the first three principal components. 

Note that the shape vector is formed by the concatenation of all vertex coordinates, and then 

linearly aligned to the mean shape before PCA analysis. Fig 2 shows the distribution of 66 

prostate shapes, which also indicates the inter-patient shape variation among the shape 

repository.

A. Related Work

Recently, most studies in T2-weighted MR prostate segmentation focus on two types of 

methods: multi-atlas-based [4–7] and deformable-model-based [8, 9] segmentation methods. 

Multi-atlas-based methods are widely used in medical imaging [10–12]. Most research 

focuses on the design of sophisticated atlas selection or label fusion method. Yan et al [5] 

proposed a label image constrained atlas selection and label fusion method for prostate MR 

segmentation. During the atlas selection, label images are used to constrain the manifold 

projection of intensity images, which can relieve the misleading projection due to other 

anatomical structures. Ou et al [7] proposed an iterative multi-atlas label fusion method by 

gradually improving the registration based on the prostate vicinity between the target and 

atlas images. For deformable-model-based methods, Toth [8] proposed to incorporate 
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different features in the context of AAMs (Active Appearance Models). Besides, with the 

adoption of the level set, the issue of landmark correspondence can be avoided.

But both types of these methods require careful feature engineering to achieve good 

performance. The multi-atlas based methods require good features for identifying 

correspondences between a new testing image and each atlas image [13], while the 

deformable model relies on discriminative features for separating the target object (e.g., the 

prostate) from the background [14]. Traditionally, intensity patch is often used as features 

for the above two methods [15, 16]. However, due to the inhomogeneity of MR images, the 

simple intensity features often fail in segmentation of MR images with different contrasts 

and illuminations. To overcome this problem, recent MR prostate segmentation methods 

started to use features that are specifically designed for vision tasks, such as gradient [17], 

Haar-like wavelets [18], Histogram of Oriented Gradients (HOG) [19], SIFT [20], Local 

Binary Patterns (LBP) [21], and variance adaptive SIFT [14]. Compared to simple intensity 

features, these vision-based features show better invariance to illumination, and also provide 

some invariance to small rotation. In [22], authors showed that better prostate segmentations 

could be obtained by using the combination of these features.

One major limitation of the aforementioned handcrafted features is incapable of adapting to 

data at hand. That means the representation power and effectiveness of these features could 

vary across different kinds of image data. To deal with this limitation, the learning based 

feature representation methods [23, 24] are developed to extract latent information, which 

can be adapted to the data at hand. As one important type of feature learning methods, deep 

learning recently becomes a hot topic in machine learning [23], computer vision [25], and 

many other research fields including medical image analysis [26]. Compared with 

handcrafted features, which need expert knowledge for careful design and also lack 

sufficient generalization power to different domains, deep learning is able to automatically 

learn effective feature hierarchies from the data. Therefore, it draws an increasing interest in 

the research communities. For example, Vincent et al. [27] showed that the features learned 

by deep belief network and the stacked denoising auto-encoder beat the state-of-the-art 

handcrafted features for the digit classification problem in the MINST dataset. Farabet et al. 

[28] proposed to use convolutional network to produce feature representation, which is more 

powerful in the application of scene labeling than the engineered features, and also achieved 

the state-of-the-art performance. In the field of medical image analysis, Shin et al. [29] 

applied the stacked auto-encoders to organ identification in MR images, which shows the 

potential of deep learning method for application to medical images. In summary, compared 

with handcrafted features, deep learning has the following advantages: (1) Instead of 

designing effective features for a new task by trial and error, deep learning largely saves 

researchers’ time by automating this process. Also, it is capable to exploit the complex 

feature patterns, which the manual feature engineering is not good at. (2) Unlike the 

handcrafted features, which are usually shallow in representation due to the difficulty of 

designing abstract high-level features, deep learning is able to learn the feature hierarchy in a 

layer-by-layer manner, by first learning the low-level features and then recursively building 

more comprehensive high-level features based on the previously learned low-level features. 

(3) When unsupervised pre-training is combined with supervised fine-tuning, the deep-

Guo et al. Page 3

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



learned features can be optimized for a certain task, such as segmentation, thus boosting the 

final performance.

B. Our Contribution

Motivated by the above factors, we propose to learn the hierarchical feature representation 

from MR prostate images by deep feature learning. These learned features are further 

integrated in a sparse patch matching framework to find the corresponding patches in the 

atlas images for label propagation. Finally, a deformable model is adopted to segment the 

prostate by combining the shape prior with the prostate likelihood map derived from sparse 

patch matching. The main contribution of our method lies in threefold:

• Instead of using handcrafted features, we propose to learn the latent 

feature representation from prostate MR images by the stacked sparse 

auto-encoder (SSAE) [30, 31], which includes an unsupervised pre-

training step and also a task-related fine-tuning step.

• By using deep-learned features for measuring inter-patch similarity, a 

sparse patch matching method is proposed for finding the corresponding 

patches in the atlas images and then transferring their prostate labels from 

atlases to the new prostate image.

• A deformable model is adopted to further enforce a sparse shape 

constraint during segmentation, which aims to cope with the large 

variation existing in prostate shape space.

The proposed method has been extensively evaluated on the T2-weighted MR prostate 

image dataset, which contains 66 3D images. The manual prostate segmentations are 

provided by a radiation oncologist for the evaluation purpose. Experimental results show 

that the sparse patch matching with deep-learned features achieve better segmentation 

accuracy than using the handcrafted features, as well as the simple intensity features. 

Besides, compared to other state-of-the-art prostate segmentation methods, our method 

obtains competitive segmentation accuracy.

C. Brief Outline of Our method

The proposed MR prostate segmentation framework is composed of two levels (Fig. 3). The 

first level (two upper panels of Fig. 3) learns the deep feature representation and then applies 

sparse patch matching with the deep-learned features for deriving the prostate likelihood 

map. Based on the produced likelihood map, the second level (lower panel of Fig. 3) consists 

of a deformable model by enforcing the shape prior during the evolution of prostate 

segmentation.

The rest of the paper is organized as follows. In Section II, we present the stacked sparse 

auto-encoder for feature learning and the sparse patch matching framework for deriving the 

prostate likelihood map in the first level. Section III elaborates both the deformable model 

and the sparse shape model in the second level. Section IV evaluates the proposed 

segmentation method on the T2-weighted prostate MR dataset. Finally, conclusive remarks 

are presented in Section V.
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II. First Level: Learning Deep Feature Representation and Sparse Patch 

Matching

The goal of this level is to learn a latent feature representation for MR prostate images, and 

then use them to infer a likelihood map of prostate gland for a new image. To achieve this 

goal, two main stages (i.e., learning stage and testing stage) are conducted as illustrated in 

the two upper panels of Fig. 3. First, in the learning stage, the intrinsic feature hierarchy 

from MR prostate image patches is learned by using a deep learning framework, namely the 

stacked sparse auto-encoder (SSAE). Then, in the testing stage, each image patch from both 

atlas and target images is first represented by the features learned from the SSAE network. 

Then, these features are integrated into a sparse patch matching method for estimating the 

prostate likelihood map by transferring the label information from atlas images to the target 

image.

The organization of this section is as follows. In Section II.A, we first investigate the 

limitation of handcrafted features in MR prostate segmentation, and give our motivation of 

adopting deep learning features. Afterwards, we introduce the feature learning method in 

Section II.B, and the sparse patch matching in Section II.C, respectively.

A. The Limitation of Handcrafted Features in MR Prostate Segmentation

Since our sparse patch matching method belongs to multi-atlas based segmentation methods, 

in the following, we will illustrate the importance of features in such context. As briefly 

mentioned in the Introduction, good features in multi-atlas based segmentation should 

identify the correct correspondences between the target image and the atlas images. In 

computer vision, various handcrafted features, such as Haar features [18], HOG features 

[20] and Local Binary Patterns [21], have been proposed in different applications, with 

promising results such as in object detection of natural images. However, these features are 

not suitable for MR prostate images, as they are not invariant to both the inhomogeneity of 

MR images and the appearance variations of prostate gland.

To describe and compare the effectiveness of different features for identifying 

correspondences in two images, Fig. 4 shows a typical example by computing the similarity 

maps between one point (shown as red cross in Fig. 4(a)) in the target image (Fig. 4(a)) and 

all points in an aligned atlas image (Fig. 4(b)). The white contours in (a) and (b) show the 

prostate boundaries, and the black dashed cross in Fig. 4 (b) indicates the correct 

correspondence of the red-cross target point in the atlas image. The effectiveness of features 

can be reflected by the similarity map. If features are distinctive for correspondence 

detection, the similarity computed by using these features would be high for correct 

correspondences and low for incorrect correspondences. Fig. 4(c–f) shows the similarity 

maps computed using different handcrafted features, such as intensity patch features, Haar 

features, HOG features and LBP features, respectively. It is clear that none of these features 

could capture correct correspondence, as the similarity between the corresponding voxels 

indicated by the red crosses is low, compared to that of nearby voxels. This shows that the 

existing handcrafted features are insufficient in multi-atlas based segmentation for the MR 

prostate.

Guo et al. Page 5

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



To relieve the limitation of handcrafted features, it is necessary to learn discriminant features 

adaptive to MR prostate images. To demonstrate the effectiveness of deep learning features, 

Fig. 4 (g) and (h) provide the similarity maps computed using the two kinds of deep learning 

features obtained by our proposed unsupervised and supervised stacked sparse auto-encoder 

(SSAE), respectively. Compared to similarity maps of handcrafted features, it is clear that 

the correct correspondence can be better identified with the deep learning features, 

especially for the supervised SSAE. In the following section, we will elaborate how these 

features could be adaptively learned from MR prostate images by SSAE.

B. Stacked Sparse Auto-Encoder (SSAE) for Learning the Latent Feature Representation

As illustrated in the previous section, it is necessary to learn the feature representation 

adaptive to the data, thus alleviating the need of labor-intensive feature engineering. To 

achieve this purpose, we introduce stacked sparse auto-encoder (SSAE) as a way to learn the 

latent feature representation from a collection of training prostate image patches. Stacked 

sparse auto-encoder is a deep learning architecture, which consists of basic feature learning 

layers, i.e., sparse auto-encoders (SAE). It is built by layer-wise stacking of sparse auto-

encoders (Fig. 7). In the following paragraphs, we first introduce the auto-encoder as a basic 

feature learning algorithm. Then, we explain sparse auto-encoder, which imposes sparsity 

constraint for learning the robust shallow feature representations. Finally, we elaborate how 

to learn deep feature hierarchy by stacking multiple sparse auto-encoders layer-wisely.

1) Basic Auto-Encoder—Serving as the fundamental component for SSAE, the basic 

auto-encoder (AE) trains a feed-forward non-linear neural network, which contains three 

layers, i.e., input layer, hidden layer, and output layer, as illustrated in Fig. 5. Each layer is 

represented by a number of nodes. Blue nodes on the left and right sides of Fig. 5 indicate 

the input and output layers, respectively, and green nodes indicate the hidden layer. Nodes in 

the two neighboring layers are fully connected, which means that each node in the previous 

layer can contribute to any node in the next layer. Basically, AE consists of two steps, 

namely encoding and decoding. In the encoding step, AE encodes the input vector into a 

concise representation through connections between input and hidden layers. In the 

decoding step, AE tries to reconstruct the input vector from the encoded feature 

representation in the hidden layer. The goal of AE is to find a concise representation of input 

data, which could be used for the purpose of best reconstruction. Since we are interested in 

the representation of image patches, in this application the input to AE is an image patch, 

which is concatenated as a vector. In the training stage, given a set of training patches X = 

{xi ∈ ℝL, i = 1, …, N}, where N and L are the number and the dimension of training 

patches, respectively, AE automatically learns the weights of all connections in the network 

by minimizing the reconstruction error in Eq. (1).

(1)

where W, b, Ŵ, b̂ are the parameters in the AE network, and σ(a) = (1 + exp(−a))−1. Given 

an input vector xi, AE first encodes it into the concise representation hi = σ(Wxi + b), where 
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hi is the responses of xi at the hidden nodes, and the dimension of h equals to the number of 

nodes in the hidden layer. In the next step, AE tries to decode the original input from the 

encoded representation, i.e., with Ŵhi + b̂. To learn effective features for the input training 

patches, AE requires that the dimension of the hidden layer is less than that of the input 

layer. Otherwise, the minimization of Eq. (1) would lead to trivial solutions, e.g., identity 

transformation. Studies [32] have also shown that the basic AE learns very similar features 

as PCA.

Once the weights {W,b,Ŵ,b̂} have been learned through the training patches, in the testing 

stage AE could efficiently obtain a concise feature representation for a new image patch 

xnew by a forward passing step, i.e., hnew = σ(Wxnew + b).

2) Sparse Auto-Encoder—Rather than limiting the dimension of hidden layer (i.e., 

feature representation), an alternative could be imposing regularization on the hidden layer. 

Sparse auto-encoder (SAE) falls into this category. Instead of requiring the dimension of 

hidden layer less than that of the input layer, SAE imposes sparsity regularization on the 

responses of hidden nodes (i.e., h) to avoid the problem of trivial solutions suffered by the 

basic AE. Specifically, SAE enforces the average response of each hidden node over the 

training set to be infinitesimal, i.e., , where  is the response of the i-th 

training input at hidden node j, and ρ is a very small constant. In this way, to balance both 

the reconstruction power and the sparsity of the hidden layer, only a few useful hidden nodes 

could have responses for each input, thus forcing the SAE network to learn sparse feature 

representation of the training data. Mathematically, we can extend Eq. (1) to derive the 

objective function of SAE by adding a sparsity constraint term shown below:

(2)

where δ is a parameter to balance between reconstruction and sparsity terms, and M is the 

number of hidden nodes. KL(ρ|ρj) is the Kullback-Leibler divergence between two Bernoulli 

distributions with probability ρ and ρj. As we can see, the sparsity term is minimized only 

when ρj is close to ρ for every hidden node j. Since ρ is set to be a small constant, 

minimizing Eq. (2) could lead to the sparse responses of hidden nodes, hence the sparsity of 

learned feature representation.

3) Stacked Sparse Auto-Encoder—By using SAE, we can learn the low-level features 

(such as Gabor-like features as shown in Fig. 6) from the original data (MR image patches). 

However, low-level features are not enough due to large appearance variations of the MR 

prostate. It is necessary to learn abstract high-level features, which could also be invariant to 

the inhomogeneity of MR images. Motivated by the human perception, which constitutes a 

deep network to describe concepts in a hierarchical way using multiple levels of abstraction, 

we recursively apply SAE to learn more abstract/high-level features based on the features 

learned from the low-level. This multi-layer SAE model is referred to as a stacked sparse 

Guo et al. Page 7

IEEE Trans Med Imaging. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



auto-encoder (SSAE), which stacks multiple SAEs on top of each other for building deep 

hierarchies.

Fig. 7 shows a typical SSAE with R stacked SAEs. Let W(r), b(r), Ŵ(r) and b̂(r) denote the 

connection weights and intercepts between the input layer and hidden layer, and between the 

hidden layer and output layer in the r-th SAE, respectively. In the encoding part of the 

SSAE, the input vector xi is first encoded by the first SAE for obtaining the low-level 

representation , i.e., . Then, the low-level representation  of 

the first SAE is considered as the input vector to the next SAE, which encodes it into higher 

level representation , i.e., . Generally, the r-th level 

representation  can be obtained by a recursive encoding procedure 

 with . Similarly, the decoding step of SSAE recursively 

reconstructs the input of each SAE. In this example, SSAE first reconstructs the low-level 

representation  from the high-level representation , i.e., 

with  for r =R,…,2. Then, using the reconstructed low-level representation , 

the original input vector could be estimated, i.e., .

After stacking multiple SAEs together by feeding the output layer from the low-level SAE 

as the input layer of a high-level SAE, SSAE is able to extract more useful and general high-

level features. In the optimization of SSAE, this deep architecture is first pre-trained in an 

unsupervised layer-wise manner and then fine-tuned by back propagation. Since the 

aforementioned SSAE network is trained based only on the original image patches, without 

using the supervised label information, it is denoted as the unsupervised SSAE. Fig. 8 shows 

some typical prostate image patches and their reconstructions by the unsupervised SSAE 

with R=4.

However, since the unsupervised SSAE trains the whole network on the unlabeled data, the 

high-level features learned from unsupervised SSAE are only data-adaptive, that is, not 

necessarily discriminative to separate prostate and background voxels. To make the learned 

feature representation discriminative [33, 34], the supervised fine-tuning is often adopted by 

stacking another classification output layer on the top of the encoding part of the SSAE, as 

shown in red dashed box of Fig. 9. This top layer is used to predict the label likelihood of 

the input data xi by using the features learned from the most high-level representation . 

The number of nodes in the classification output layer equals to the number of labels (i.e., 

“1” denotes prostate, and “0” denotes background). Using the optimized parameters from 

the pre-training of SSAE as initialization, the entire neural network (Fig. 9) can be further 

fine-tuned by back-propagation to maximize the classification performance. This tuning step 

is referred to as the supervised fine-tuning, in contrast with the unsupervised fine-tuning 

mentioned before. Accordingly, the entire deep network is referred to as the supervised 
SSAE. Fig. 10 gives a visual illustration of typical feature representations of the first and 

second hidden layers learned by a four-layer supervised SSAE based on the visualization 

method in [35]. Here, Figs. 10 (a) and (b) show the visualization of 60 units obtained from 

the first and second hidden layers under unsupervised pre-training (with unlabeled image 
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patches) and supervised fine-tuning (with labeled image patches), respectively. It can be seen 

that higher hidden layer tends to be more affected by the classification layer we introduced.

After learning all the parameters {W(r), Ŵ(r), b(r), b̂(r)} of SSAE (r =1,…,R), where R 
denotes the number of stacked SAEs, the high-level representations of a new image patch 

xnew can be efficiently obtained by a recursive forwarding pass, i.e., 

 with  for r=1,…, R. The final high-level 

representation  will be used as features to guide the sparse patch matching (Section 

II.C), and propagate labels from atlas images to the target image for estimating the prostate 

likelihood map.

C. Sparse Patch Matching with the Deep Learning Features

Before sparse patch matching, all atlas images are registered to the target image. This 

registration includes two steps. First, linear registration is applied for initial alignment, with 

the guidance from the landmarks automatically-detected around the prostate region [36]. 

Then, the free-form deformation (FFD) [37] is further adopted to the linearly aligned images 

for deformable registration.

After learning the SSAE networks (either in unsupervised or supervised manner), each new 

image patch in the testing stage can be encoded as a high-level feature vector (i.e., the last 

hidden layer of the SSAE). These features can be fed into a segmentation framework for 

labeling voxels as either prostate or background. As one of the popular segmentation 

frameworks, multi-atlas based segmentation demonstrates its effectiveness on dealing with 

image variations in different applications [38, 39]. However, traditionally the multi-atlas 

based segmentation adopts only the intensity or handcrafted features for measuring the 

similarity between different local patches, or computing the weights of different patches 

during label propagation. Since MR prostate images exhibit large structural and appearance 

variations, we propose to incorporate the deep learning features, instead of the conventional 

handcrafted features, into the multi-atlas segmentation framework. As the features extracted 

by the deep learning methods are usually more robust and discriminative, the performance of 

multi-atlas segmentation can be improved at the same time. Fig. 11 gives the general 

description of our multi-atlas based method, called sparse patch matching. In this method, 

instead of computing pair-wise intensity similarity as a matching weight, we propose to 

select only a small number of similar atlas patches by sparse representation, which is more 

robust to outliers. In the following, we give the detailed description for our sparse patch 

matching method.

In order to estimate the prostate likelihood map of a target image Is, we first align all the 

atlas images {Ip, p=1,…,P} and their label maps {Gp, p=1,…,P} onto the target image Is. 

Then, to determine the prostate likelihood of a particular voxel v in the target image Is, we 

first extract the image patch centered at voxel v from the target image, and then all image 

patches within a certain searching neighborhood (v) across all the aligned atlas images.

Next, the deep learned feature representations for those extracted intensity patches are 

obtained through the encoding procedure of the learned SSAE as introduced in Section II.B. 
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Denote fs(v) as the deep learning features for the target image patch at point v, and denote 

Av as the feature matrix resulted from column-wise combination of deep learning features of 

atlas patches, i.e., Av =[fp(u)|p=1,…,P;u ∈ (v)]. To estimate the prostate likelihood Qs(v) 

for voxel v in the target image Is, we linearly combine the label of each voxel u ∈ (v) from 

each atlas image Ip with a weighting vector αv= [αv(p,u)]u=1,…,| (v)|;p=1,…,P as follows

(3)

According to Eq. (3), it is easy to see that the robustness and accuracy of prostate likelihood 

estimation depends on how well the weighting vector αv is determined. In the literature, 

different weight estimation methods have been proposed [40, 41]. Most multi-atlas based 

segmentation methods directly compute αv as the pair-wise similarity between intensity 

patches, such as using the Euclidean distance. In our method, we compute the weighting 

vector αv different from the previous methods in respect to the following two aspects. First, 
instead of using the intensity or handcrafted features, the high-level features are learned 

from the deep learning architecture. Second, with the help of recently proposed sparse 

representation method [4], we enforce sparsity constraint upon the weighting vector αv. In 

this way, we seek for the best representation of the target patch using a limited set of similar 

atlas patches. Mathematically, the optimization of αv can be formulated as the sparse 

representation problem below:

(4)

The first term is the data fitting term, which measures the difference between the target 

feature vector fs(v) and the linearly combined feature representation Av αv from all atlas 

image patches. The second term is the sparsity term, which attributes to the sparsity property 

of the weighting vector αv. η controls the strength of sparsity constraint on the weighting 

vector αv. If η is larger, the number of non-zero elements in αv will be smaller. In this way, 

only a few patches in patch dictionary Av will be selected to reconstruct the target features 

fs(v) in a non-parameter fashion, thus reducing the risk of including those misleading atlas 

patches in the likelihood estimation.

Based on the derived weighting vector αv, the prostate likelihood Qs(v) for a target point v 
can be estimated by Eq. (4). Since the weighting vector αv is sparse, the prostate likelihood 

Qs(v) is finally determined by the linear combination of labels corresponding to atlas 

patches with non-zero elements in vector αv. After estimating the prostate likelihood for all 

voxels in the target image Is, a likelihood map Qs is generated, which can be used to robustly 

locate the prostate region (as shown in Fig. 11). Usually, a simple thresholding or level set 

method [42, 43] can be applied to binarize the likelihood map for segmentation. However, 

since each voxel in the target image is independently estimated in the multi-atlas 

segmentation method, the final segmentation could be weird as no shape prior is considered. 
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In order to robustly and accurately estimate the final prostate region from the prostate 

likelihood map, it is necessary to take into account the prostate shape prior during the 

segmentation.

III. Second Level: Data and Shape Driven Deformable Model

The main purpose of this section is to segment the prostate region based on the prostate 

likelihood map estimated in the previous section. The likelihood map can be used in two 

aspects for deformable model construction. First, the initialization of deformable model can 

be easily built by thresholding the likelihood map. In this way, the limitation of model 

initialization problem in the traditional deformable segmentation can be naturally relieved. 

Second, the likelihood map can be used as the appearance force to drive the evolution of 

deformable model. Besides, in order to deal with the large inter-patient shape variation, we 

propose to use sparse shape prior for deformable model regularization. In the following 

paragraphs, we first introduce the sparse shape composition as a non-parametric shape 

modeling method. Then, we present the optimization of our deformable model by jointly 

considering both shape and appearance information. Finally, the proposed deformable 

segmentation method is summarized.

A. Shape Prior by Sparse Shape Composition

Here, our deformable model is represented by a 3D surface, which is composed of K 
vertices {dk|k=1,…,K}. After concatenating these K vertices {dk|k=1,…,K} into a vector d, 

each deformable model can be represented as a shape vector with length of 3·K. Let D 
denotes a large shape dictionary that includes prostate shape vectors of all training subjects. 

Each column of shape dictionary D corresponds to the shape vector of one subject. The 

shape dictionary can be used as a shape prior to constrain the deformable model in a learned 

shape space. Instead of assuming the Gaussian distribution of shapes and then simply using 

PCA for shape modeling as in the Active Shape Model [44], we adopt a recently proposed 

method, named sparse shape composition [45], for shape modeling. In the sparse shape 

composition, the shapes are sparsely represented by shape instances in the shape dictionary 

without the need of Gaussian assumption. Specifically, given a new shape vector d and shape 

dictionary D, sparse shape composition method reconstructs shape vector d as the sparse 

representation of shape dictionary D by minimizing the following objective function:

(5)

where ψ(d) denotes the target shape d that is affine aligned onto the mean shape space of 

shape dictionary D. ε indicates the sparse coefficient for the linear shape combination. Once 

(ε, ψ) are estimated by Eq. (5), the regularized shape can be computed by ψ−1(Dε), where 

ψ−1 is the inverse affine transform of ψ.

B. Optimization of Deformable Model Method

For each target image, the segmentation task is formulated as the deformable model 

optimization problem. During the optimization procedure, each vertex of deformable model 
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dk is driven iteratively by the information from both prostate likelihood map and shape 

model until converged at the prostate boundaries. Mathematically, the evolution of the 

deformable model can be formulated as the minimization of an energy function, which 

contains a data energy Edata and a shape energy Eshape as in Eq. (6):

(6)

The data term Edata is used to attract the 3D surface towards the object boundary based on 

the likelihood map. Specifically, each vertex dk is driven by the force related to the gradient 

vector of prostate likelihood map. Denote  as the gradient vector at vertex dk in the 

prostate likelihood map, and n⃗s(dk) as the normal vector on the vertex dk of surface. When 

vertex dk deforms exactly to the prostate boundary and also its normal direction aligns with 

the gradient direction of prostate boundary, the local matching term 〈 , n⃗s(dk)〉 is 

maximized. In this case, we formulate to minimize the data energy Edata as:

(7)

Since all the vertices on the deformable model are jointly evolved during the deformation, 

the matching of the deformable model with prostate boundary will be robust to possible 

incorrect likelihood on some vertices, as well as inconsistency between neighboring vertices.

The shape term Eshape is used to encode the geometric property of prostate shape based on 

the estimated coefficient ε and the transformation φ in Eq. (5). Specifically, the shape term is 

formulated as below:

(8)

where the first term constrains the deformed shape d to be close to the regularized shape 

ψ−1(Dε) by the sparse shape composition, and the second term imposes the smoothness 

constraint on shape, which prevents large deviations between each vertex dk and the center 

of its neighboring vertices dj ∈ (dk).

By combining Eq. (7) and Eq. (8) into Eq. (6), the vertices on the deformable model are 

iteratively driven towards the prostate boundary while constraining the shape in a non-

parametric shape space.

C. Summary of the Proposed Deformable Segmentation Method

Generally, the overall optimization of deformable model can be summarized as an 

expectation-maximization (EM) algorithm, which minimizes the data energy and shape 

energy alternatively. Given the target image Is, the initial deformable surface d0 is estimated 

by solving the sparse learning problem in Eq. (5). Then the “M” step and “E” step are 
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alternatively executed as follows. Based on the likelihood map generated from stacked 

sparse auto-encoder and sparse patch matching, in the “M” step, the deformable model dt is 

first evolved to minimize the data energy function Edata (Eq. (7)). Then, in the “E” step, the 

parameters (εt, ψt) is estimated for the shape refinement by solving Eq. (5), and the 

deformable model dt is further refined by minimizing the shape energy (Eq. (8)) with the 

computed parameters (εt, ψt). After T iterations of the above EM step, the output shape dT is 

converted to a binary label map Gs, which gives the final segmentation result of the target 

image Is.

IV. Experiments and Analysis

A. Materials and Parameter Settings

We evaluate our method on the dataset, which includes 66 T2-weighted MR images from the 

University of Chicago Hospital. The images are acquired with 1.5T magnetic field strength 

from different patients under different MR image scanners (34 images from Philips Medical 

Systems and 32 images from GE Medical Systems). Under this situation, the difficulty for 

the segmentation task increases since both shape and appearance differences are large. In 

Fig. 12, images (b) and (e) were acquired from a GE MRI scanner, while the other three 

were acquired from a Philips MRI scanner. As shown in Fig. 12, image (c) was obtained 

without the endorectal coil. It has different prostate shape with other four images acquired 

with the endorectal coil. Besides, the prostate appearance suffers from the inhomogeneity (as 

in (b) and (d)) and noises (as in (d) and (e)), which further produce large variations. The 

image dimension and spacing are different from image to image. For example, the image 

dimension varies from 256×256×28 to 512×512×30. The image spacing varies from 

0.49×0.49×3 mm to 0.56×0.56×5 mm. The manual delineation of the prostate in each image 

is provided by a clinical expert as the ground truth for quantitative evaluation. As the 

preprocessing of the dataset, the bias field correction [46] and histogram matching [47] are 

applied to each image successively. We adopted the two-fold cross-validation. Specifically, 

in each case, the images of one fold are used for training the models, while the images of 

other fold are used for testing the performance.

The parameters for deep feature learning are listed below. The patch size is 15×15×9. The 

number of layers in SSAE framework is 4. The number of nodes in each layer of SSAE is 

800, 400, 200, 100, respectively. Thus, the deep learning features have the dimensionality of 

100. The target activation ρ for the hidden units is 0.15. The sparsity penalty β is 0.1. The 

Deep Learning Toolbox [48] is used for training our SSAE framework.

The searching neighborhood (v) is defined as the 7×7×7 neighborhood centered at voxel 

v. For sparse patch matching, the parameter η in Eq. (4), which controls the sparsity 

constraint, is 0.001. For the final deformable model segmentation, the parameter λ in Eq. 

(6), which weights the shape energy during deformation, is 0.5, and the parameter μ in Eq. 

(5) is 0.5.
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B. Evaluation Criteria

Given the ground-truth segmentation S and the automatic segmentation F, the segmentation 

performance is evaluated by four metrics: Dice ratio, precision, Hausdorff distance, and 

average surface distance. Dice ratio and precision measure the overlap between two 

segmentations. Hausdorff distance and average surface distance measures the boundary 

distance between two surfaces of segmentation. Detailed definitions are given as Table I, 

where V indicates the volume size, eS and eF are the surfaces for the ground-truth and 

automatic segmentations, respectively, and dist(di,dj) denotes the Euclidean distance 

between vertices di and dj.

C. Experiment Results

1) Evaluation of the Performance of First Level—Inspired by paper [49], we plot the 

PCA-projected features to show the effectiveness of different features in separating voxels 

from different classes (e.g., the prostate class and the non-prostate class). After mapping 

each feature vector to the subspace spanned by the first three principal components, the 

effective features would 1) cluster the voxels with the same class label as close as possible 

and 2) separate the voxels with different class labels as far as possible. First, we demonstrate 

the discrimination power of our deep learning features in Fig. 13, by visualizing the PCA-

projected feature distributions of different feature representations, i.e., intensity patch (Fig. 

13 (a)), handcrafted (Fig. 13 (b)), features learned by unsupervised SSAE (Fig. 13 (c)), and 

features learned by supervised SSAE (Fig. 13 (d)). Specifically, for the case of handcrafted 

features, we include three commonly used features, i.e., Haar [50], HoG [47] and LBP [21]. 

The same patch size is used for computing all features under comparison. It can be seen that 

the deep learning features from supervised SSAE have better clustering results in the 

projected feature space, and thus better discriminative power than other two predefined 

features (i.e., intensity, and handcrafted), as well as deep learning features by unsupervised 

SSAE. The superior performance of supervised SSAE over the unsupervised SSAE indicates 

the necessity of utilizing label information to improve the discrimination power of learned 

features.

Next, we evaluate the segmentation accuracy of different feature representations in the 

context of sparse patch matching. Table II lists the quantitative results (Dice ratio, precision, 

Hausdorff distance, and average surface distance) for all feature representations. The p-

values (computed with paired t-test at 5% significance level), comparing the supervised 

SSAE with all other methods, are provided below each quantitative result. It can be observed 

that our supervised SSAE method significantly outperforms all the intensity and handcrafted 

feature methods. According to the paired t-test at 5% significance level, both our proposed 

method (unsupervised and supervised SSAE) outperformed the rest of competing method, 

but the supervised SSAE is not statistically superior to the unsupervised SSAE.

Fig. 14 further shows the typical likelihood maps estimated by four different feature 

representations for three different patients. It can be observed that the features learned from 

supervised SAE can better capture the prostate boundary, especially on the anterior and right 

posterior parts of the prostate. Fig. 15 shows some typical segmentation results obtained by 

the sparse label matching method with four different feature representations, respectively. 
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Similarly, the proposed method (i.e., supervised SSAE) achieves the best segmentation, 

especially on the anterior parts of the prostate, which demonstrates the effectiveness of our 

proposed method. Moreover, Fig. 16 gives the typical prostate segmentation results of 

different patients produced by four different feature representations, respectively. 3D 

visualization of the segmentation result has been added below each segmentation result 

shown in 2D. For each 3D visualization, the red surface indicates automatic segmentation 

results with different features, such as intensity, handcrafted, unsupervised SSAE and 

supervised SSAE, respectively. The transparent grey surfaces indicate the ground-truth 

segmentations. Our proposed supervised SSAE method improves the segmentation accuracy 

on both the anterior and posterior parts of the prostates.

2) Evaluation of the Performance of Second Level—In this section, we further 

evaluate our deformable model to show its effectiveness. The comparison methods contain 

three different deformable model based methods. The first one is the conventional Active 

Shape Model (ASM). The second one uses intensity features for multi-atlas label fusion, and 

then finalizes the segmentation by adopting a deformable model on the produced likelihood 

map, similar to our proposed method. The second method follows the same procedure as the 

first one except using the handcrafted features, such as Haar, HOG, and LBP, instead of 

intensity patch for multi-atlas label fusion. Table III shows the segmentation results of 

intensity, handcrafted and supervised SSAE with/without deformable model and the p-value 

(with paired t-test at 5% significance level) between the supervised SSAE with deformable 

model and all other methods. According to the paired t-test at 5% significance level on Dice 

ratio, our proposed deformable model is statistically the best among all the competing 

methods. Specifically, our proposed supervised SAE outperforms the ASM, the intensity 

based deformable model, and the handcrafted based deformable model by 10.7%, 2.1% and 

1.6%, respectively. Besides, it can be seen that, after adopting the second level of 

deformable segmentation, the segmentation accuracy can be further improved for all the 

comparing methods.

D. Discussion

1) The Issues of Deep Learning Method—The key advantage of deep learning 

methods is learning good features automatically from data and avoiding using the manually-

designed feature extractors, which often require high engineering skills. SAE differs from 

AE and PCA in the aspect that it imposes sparsity on the mapped features (i.e., responses of 

hidden nodes), thus avoiding the problem of trivial solutions when the dimensionality of 

hidden features is more than that of the input features. By stacking SAE together, SSAE is 

able to learn the hierarchical feature representation, similar to other deep learning models. 

Besides, we use unsupervised initialization in the pre-training stage, which prevents the later 

supervised training from falling into the bad local minimum. This also contributes to good 

performance of our method.

However, the issue of small dataset vs. large number of variables arises during the training 

of the deep network. To prevent the potential issue raised from the limited number of 

training samples, two strategies are adopted in our method. First, we pre-trained the deep 

network in a layer-by-layer manner [31, 51], which can learn a hierarchy of feature 
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representation one layer a time. Specifically, in the training of each layer, the features 

learned from previous layer are feed into the next layer. The first three layers consist of 

320,000, 80,000, 20,000 parameters, respectively. In our experiment, totally 396,000 training 

samples were used, which should be sufficient for this lay-wise pre-training step. Second, in 

the fine-tuning stage, the entire deep network is refined only by several iterations, thus better 

preventing the overfitting issue.

To further relieve the possible overfitting issues, we can also use the idea of transfer learning 

[52–55]. Specifically, in the unsupervised pre-training step, we can borrow MR images from 

other body parts (e.g., heart) to initialize our deep network, thus capturing more general MR 

image appearance. We believe that this initialization could benefit the fine-tuning step and 

thus overcome the small sample problem. Note that similar strategies have been widely used 

in the field of computer vision and machine learning [31, 51–56].

2) The Issue of Deformable Segmentation Method—According to Eq. (7), the data 

term of deformable model is driven by the gradient of the prostate likelihood map. One 

potential issue may happen if evolving the deformable model according to this data term. 

That is, the gradient will be zero if the initial shape is a bit away from the boundary. We 

proposed two strategies to address this potential issue. First, we obtained the initial prostate 

shape by thresholding the probability map, which makes the initialization not far away from 

the boundary. Second, the deformation is regularized by the shape model. Thus, even some 

model vertices cannot find the boundary in the capture range, the shape model can still pull 

them towards the boundary as long as other vertices have been deformed to the boundary. 

That is, shape regularization makes all vertices deform as a whole, thus addressing the 

capture range issue.

3) The Computational Time—For our algorithm, the computational time mainly 

contains three parts: 1) registration part; 2) multi-atlas label fusion part; 3) deformable 

segmentation part. For registration, the run-time for each affince and non-linear registration 

is about 20 seconds and four minutes, respectively. For multi-atlas label fusion, the 

computational time is about 45 minutes, which is the major computational cost of our 

method. This mainly is due to the individual labeling for a large amount of voxels in each 

subject image. Currently, we implement multi-atlas label fusion in MATLAB, which is time-

consuming for the loop job of sequentially labeling each voxel. For improving the efficiency 

of our algorithm, one possible solution is to implement the whole label fusion step by using 

the C++ language. In this way, we expect the computational time to be reduced to 10 

minutes for the entire label fusion part. As for the deformable model segmentation part, the 

computational time is less than one minute.

V. Conclusion

In this paper, we present an automatic segmentation algorithm for T2 MR prostate images. 

To address the challenges of making the feature representation robust to large appearance 

variations of the prostate, we propose to extract the deep learning features by the SSAE 

framework. Then, the learned features are used under sparse patch matching framework to 

estimate the prostate likelihood map of the target image. To further relieve the impact of 
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large shape variation in the prostate shape repository, a deformable model is driven toward 

the prostate boundary under the guidance from the estimated prostate likelihood map and 

sparse shape prior. The proposed method is extensively evaluated on the data set containing 

66 prostate MR images. By comparing with several state-of-the-art MR prostate 

segmentation methods, our method demonstrates the superior performance regarding to the 

segmentation accuracy.
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Fig. 1. 
(a) Typical T2-weighted prostate MR images. Red contours indicate the prostate glands 

delineated manually by an expert. (b) Intensity distributions of prostate and background 

voxels around the prostate boundary of (a). (c) The 3D illustrations of prostate surfaces 

corresponding to each image in (a).
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Fig. 2. 
The prostate shape distribution obtained from the PCA analysis.
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Fig. 3. 
The schematic description of our proposed segmentation framework.
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Fig. 4. 
The similarity maps computed between a reference voxel (red cross) in the target image (a) 

and all voxels in the atlas image (b) by the four handcrafted feature representations, i.e., 

intensity (c), Haar (d), HOG (e) and LBP (f), as well as the two deep learning feature 

representations, namely unsupervised SSAE (g) and the supervised SSAE (h). White 

contours indicate the prostate boundaries, and the black dashed crosses indicate the ground-

truth point in (b), which is corresponding to the red cross in (a).
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Fig. 5. 
Construction of the basic AE.
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Fig. 6. 
The low-level feature representation learned from the SAE. Here, we reshape each row in W 
into the size of image patch, and only visualize its first slice as an image filter.
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Fig. 7. 
Construction of the unsupervised SSAE with R stacked SAEs.
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Fig. 8. 
Typical prostate image patches (a) and their reconstructions (b) by using the unsupervised 

SSAE with four stacked SAEs.
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Fig. 9. 
Construction of the supervised SSAE with a classification layer, which fine-tunes the SSAE 

with respect to the task of voxel-wise classification between prostate (label = 1) and 

background (label = 0).
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Fig. 10. 
Visualization of typical feature representations of the first hidden layer (first row) and 

second hidden layer (second row) for the unsupervised pre-training (a) and supervised fine-

tuning (b), respectively.
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Fig. 11. 
The schematic description of sparse patch matching
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Fig. 12. 
Five typical T2-weighted MR prostate images acquired from different scanners, showing 

large variations of both prostate appearance and shape, especially for the cases with or 

without using the endorectal coils.
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Fig. 13. 
Distributions of voxel samples by using four types of features: (a) intensity, (b) handcrafted, 

(c) unsupervised SSAE, and (d) supervised SSAE. Red crosses and green circles denote 

prostate and non-prostate voxel samples, respectively.
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Fig. 14. 
(a) Typical slices of T2 MR images with manual segmentations. The likelihood maps 

produced by sparse patch matching with four feature representations: (b) intensity patch, (c) 

handcrafted, (d) unsupervised SSAE, and (e) supervised SSAE. Red contours indicate the 

manual ground-truth segmentations.
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Fig. 15. 
Typical prostate segmentation results of the same patients produced by four different feature 

representations: (a) intensity, (b) handcrafted, (c) unsupervised SSAE, and (d) supervised 

SSAE. Three rows show the results for three different slices of the same patient, 

respectively. Red contours indicate the manual ground-truth segmentations, and yellow 

contours indicate the automatic segmentations.
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Fig. 16. 
Typical prostate segmentation results of three different patients produced by four different 

feature representations: (a) intensity, (b) handcrafted, (c) unsupervised SSAE, and (d) 

supervised SSAE. Three odd rows show the results for three different patients, respectively. 

Red contours indicate the manual ground-truth segmentations, and yellow contours indicate 

the automatic segmentations. Three even rows show the 3D visualization of the 

segmentation results corresponding to the images above. For each 3D visualization, the red 

surfaces indicate the automatic segmentation results using different features, such as 

intensity, handcrafted, unsupervised SSAE and supervised SSAE, respectively. The 

transparent grey surfaces indicate the ground-truth segmentations.
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Table I

Definition of Evaluation Measurement

Dice ratio

Precision

Hausdorff distance max(H(eS, eF), H(eS, eF)), H(eS, eF) = maxdi∈eS{mindj∈eFdist(di, dj)}

Average surface distance

S: ground truth segmentation; F: automatic segmentation; V: volume size;

eS: surfaces of ground-truth segmentation;

eF: surface of automatic segmentation;

di: vertices on the surfaces eS; dj: vertices on the surfaces eF;

dist(di,dj) : Euclidean distance between vertices di and dj
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